哈工大研究生选修课航天材料与工艺可靠性报告模板

哈工大研究生选修课航天材料与工艺可靠性报告模板
哈工大研究生选修课航天材料与工艺可靠性报告模板

2016 年春季学期研究生课程考核

考核科目:航天材料与工艺可靠性技术学生所在院(系):机电工程学院

学生所在学科:

学生姓名:

学号:

学生类别:

考核结果阅卷人

航空航天材料发展现状与展望

一、航空航天材料的地位和作用

1.1 高性能材料是发展高性能飞行器的基础保障

自莱特兄弟制造的人类第一架飞机“飞行者一号”问世以来,航空技术取得了大跨越的发展,以战斗机为代表的军用飞机现已发展到第5 代,其最大飞行速度达4倍声速。在此过程中,航空材料的发展所经历的阶段如表1所示。可以看到,材料的进步对飞机的升级换代起到关键的支撑作用。

表 1 飞机机体材料发展阶段

发展阶段年代机体材料

第 1 阶段1903—1919 木、布结构

第 2 阶段1920—1949 铝、钢结构

第 3 阶段1950—1969 铝、钛、钢结构

第 4 阶段1970—21 世纪初铝、钛、钢、复合材料结构(以铝为主)第 5 阶段21 世纪初至今复合材料、铝、钛、钢结构(以复合材料为主)

发动机是飞机的“心脏”,其性能的优劣制约发动机是飞机的“心脏”,其性能的优劣制约着飞机的能力,而发动机性能的提高又与所使用的耐高温结构材料密切相关。随着飞机航程的加长和速度的提高,要求发动机推力、推重比(发动机推力与重量之比)越来越大,这就意味着发动机的压力比、进口温度、燃烧室温度以及转速都须极大地提高。根据美国先进战斗歼击机研究计划和综合高性能发动机技术研究计划,发动机推重比要达到20,而其油耗比要比目前再降低50%。众所周知,推重比的提高取决于发动机涡轮前进口温度的提高:对于推重比在15~20以上的发动机,其涡轮前进口温度最高达2227~2470℃。高性能航空发动机对材料的性能提出了更高要求,除高比强度、高比模量外,对耐高温性能需求更为突出。由此可见,航空发动机性能的提高有赖于高性能材料的突破。

1.2 轻质高强度结构材料对降低结构重量和提高经济效益贡献显著

轻质、高强度是航空航天结构材料永远追求的目标。碳纤维复合材料是20世纪60年代出现的新型轻质高强度结构材料,其比强度和比模量是目前所有航空航天材料中最高的。有数据表明:碳纤维复合材料的比强度和比刚度超出钢与铝合金的5~6倍。复合材料在飞行器上的应用日益扩大,质量占比在不断增加。材料具有较高的比强度和比刚度,就意味着同样质量的材料具有更大的承受有效载荷的能力,即可增加运载能力。结构重量的减少意味着可多带燃油或其他有效载荷,不仅可以增加飞行距离,而且可以提高单位结构重量的效费比。飞行器的结构重量每减1磅所获得的直接经济效益见表2。

表 2 飞行器结构减重的直接经济效益

机种减重经济效益/(万美元·磅-1)

小型民机50

直升机300

战斗机400

商用运输机800

超声速运输机3000

航天飞机30000

1.3 材料的可靠性事关飞行安全

飞行器是多系统集成体,所涉及的零部件达数十万计,元器件达数百万计,要用到上千种材料。飞行器要在各种状态和各种极端环境条件下飞行,如何确保其飞行安全至关重要。除设计、制造、使用和维护维修要有极其严格的质量控制要求外,材料的可靠性显得尤为关键。飞行史上的许多事故教训表明,材料失效是导致飞行事故的重要原因之一:大到一个结构件的断裂,小到一个铆钉或密封圈的失效,都可能导致飞行事故。因此,加强材料的可靠性评价研究对于提高飞行安全性有不可忽视的意义。

二、航空航天材料的分类

航空航天材料既是研制生产航空航天产品的物质保障,又是推动航空航天产品更新换代的技术基础。从材料本身的性质划分,航空航天材料分为金属材料、无机非金属材料、高分子材料和先进复合材料4大类;按使用功能,又可分为结构材料和功能材料2大类。对于结构材料而言,最关键的要求是质轻高强和高温耐蚀;功能材料则包括微电子和光电子材料、传感器敏感元材料、功能陶瓷材料、光纤材料、信息显示与存储材料、隐身材料以及智能材料。

对于航空材料来说,包括3大类材料,飞机机体材料、发动机材料、机载设备材料。而航天材料则包括运载火箭箭体材料、火箭发动机材料、航天飞行器材料、航天功能材料等。具体到材料的层面,航空航天材料涉及范围较广,包括铝合金、钛合金、镁合金等轻合金,超高强度钢,高温钛合金、镍基高温合金、金属间化合物(钛铝系、铌铝系、钼硅系)、难熔金属及其合金等高温金属结构材料,玻璃纤维、碳纤维、芳酰胺纤维、芳杂环纤维、超高分子量聚乙烯纤维等复合材料增强体材料,环氧树脂、双马来酰亚胺树脂、热固性聚酰亚胺树脂、酚醛树脂、氰酸酯树脂、聚芳基乙炔树脂等复合材料基体材料,先进金属基及无机非金属基复合材料,先进金属间化合物基复合材料,先进陶瓷材料,先进碳/碳复合材料以及先进功能材料。

三、航空航天材料简介

1.铝合金

飞机机身结构材料应用构成比例预测表明,21世纪初期占主导地位的材料是铝合金。开发航空航天技术用铝合金时首先要解决的课题,是如何在保证高使用可靠性及良好工艺性的前提下减轻结构质量。目前急待解决的问题是开发具有良好焊接性能的高强铝合金,并将其用于制造整体焊接结构。

提高飞行器有效载荷的方法是提高强度或降低密度(不降低强度)。用锂对铝进行合金化,可降低合金密度,提高弹性模量。已经用带卷轧制法生产出了铝锂(Al-Li)合金板材,其中包括厚度小于0.5mm的薄板。使用铝基层状复合材料可大幅度提高飞机蒙皮的可靠性、使用寿命及有效载荷,这种复合材料的特点

是裂纹扩展速度特别低(仅为传统材料的1/20~1/10),强度(提高50%~100%)和断裂韧性高,而密度较小(减轻10%~15%),将其作为机身蒙皮材料,以及作为修理作业用的裂纹铆钉材料是很有前途的。

2.高强钢

在现代飞机结构中,钢材用量稳定在5%~10%的水平,而在某些飞机上,例如超音速歼击机上,钢材是一种特定用途的材料。高强钢通常使用在要求有高刚度、高比强度、高疲劳寿命,以及具有良好中温强度、耐腐蚀性和一系列其他参数的结构件中。无论是在半成品生产中,还是在复杂结构件的制造中,尤其是在以焊接作为最终工序的焊接结构件生产中,钢材都是不可替代的材料。

长期以来,飞机制造业使用最多的钢材,是强度水平为1600~1850MPa、断裂韧性约为77.5 ~91MPa/m2的中合金化高强钢。目前,在保持同样断裂韧性指标的条件下,已将钢材的最低强度水平提高到了1950MPa,还开发出了新型经济合金化的高抗裂性、高强度焊接结构钢。高强钢的发展方向为进一步完善冶金生产工艺、选择最佳的化学成分及热处理规范、开发强度性能水平为2100~2200MPa的高可靠性结构钢。在活性腐蚀介质作用下使用的机身承力结构件,特别是在全天候条件下使用的承力结构件上,广泛使用高强度耐蚀钢,这种钢的强度水平与中合金结构钢相近,可靠性参数(断裂韧性、抗腐蚀开裂强度等)大大超过中合金结构钢。

高强钢的优点是:可采用不同的焊接方法实施焊接,焊接承力结构件时,焊后不必进行热处理,无论是在热状态,还是在冷状态,均具有良好的可冲压性等。最有希望适用高强钢的材料,是马氏体类型的低碳弥散强化耐腐蚀钢和过渡类型的奥氏体——马氏体钢,研究表明,在保持高可靠性和良好工艺性的条件下,是能够大幅度提高高强度耐腐蚀钢强度水平的。低温技术装备是高强度耐蚀钢的一个特殊应用领域及发展方向。装备氢燃料发动机的飞机具有良好的发展前景,应该把在液氢和氢气介质中工作的无碳耐腐蚀钢作为研究方向。

3.高强钛合金

提高钛合金在机身零件中使用比例的潜力是相当巨大的。据预测,钛合金在客机机身中的使用比例将达到20%,而在军机机身中的应用比例将提高到50%。其前提是要保证:钛合金有更高的强度及可靠性;进一步提高使用温度;具备高的工艺性能及良好的可焊接性;能生产各种半成品;改进结构形式,开发新的设计方案,尽可能多地在结构中使用成熟的合金与工艺。

采用高强钛合金可减轻结构质量,同时提高结构的重量效率、可靠性及工艺性。计划开发兼备高强度(1350MPa)与高工艺性的板材合金,这种合金的强度将是工业纯铁强度的4倍,而工艺特性则与工业纯钛相近;还将研制并使用具有更高热强性、热稳定性和使用寿命的“近α型”热强钛合金。

4.热强钛合金

钛合金的发展方向之一,是研制具有较高热强性,特别是具有高稳定性和长寿命的“近α型”热强钛合金。第6代航空发动机将使用以固溶强化和金属间化合物综合强化的热强钛合金板材。以钛铝化合物为基的合金,是未来的研究方向。“γ”合金在700~900℃温度下的比热强性超过钢材及热强合金,但塑性较差。

开发热强钛合金的新方向,是采用金属间化合物强化的以β固溶体为基的合

金。这种合金的特点是在600~700℃温度下具有较高的热强性和令人满意的塑性性能。与现有的钛合金相比,研发这种类型的钛合金可使强度和热强性提高25%~30%。

5.聚合物复合材料

代表航空航天技术开发水平的一个重要标志是聚合物复合材料使用数量的多少。聚合物复合材料在比强度和比刚度方面具有非常明显的优越性,兼备良好的结构性能和特殊性能,在航空领域获得了广泛的应用。

采用以碳纤维增强塑料为基体的聚合物复合材料,是减轻结构质量的有效措施之一。聚合物复合材料通常是指高弹性模量的碳纤维增强塑料,特点是刚度大(弹性模量196GPa)、高温尺寸稳定性好,同时还保持了高的抗压强(1000MPa)。在新一代航空技术装备中采用碳纤维增强塑料,可提高尾翼部件,特别是尾尖部件的空气动力学刚度,减轻结构质量,保证要求的飞行技术品质。高弹性模量的碳纤维增强塑料还可有效地应用于在开放的宇宙空间工作的接收与转发天线构件、无线电电子设备的承载构件、火箭零部件、薄壳构件及长的杆形件,热应力仅为金属构件的1/20~1/10。高弹性模量碳纤维增强塑料的以上特性结合低密度,可制造供组装与维修空间站用的操作手。今后几年需要解决的问题包括:进一步改进碳纤维增强塑料的结构特性与特殊性能,特别是要将工作温度提高到400℃。

作为结构材料,新型复合材料——有机塑料将发挥越来越大的作用。最近几

(抗拉强度)值达到年,正在研制第2代有机塑料。单一用途的有机塑料的σ

b

3000~3200MPa,E值提高到130GPa。试验研究表明,有可能获得弹性模量为200~250GPa的有机塑料,需要指出的是,这实际上就是将工作温度范围扩大1倍(205~300℃),还可显著降低复合材料的吸水率。在比强度和比弹性模量方面,现代的有机塑料,特别是未来的有机塑料将超过所有已知的以聚合物、金属和陶瓷为基体的复合材料。

目前,以预浸胶工艺制造的玻璃纤维增强塑料和碳纤维增强塑料结构件得到越来越多的应用。采用这种工艺方法时,只需一道工序就可制得具有普通曲率和复杂曲率的零件。与传统的聚合物复合材料相比,预浸胶基复合材料的特点是抗裂性提高40%~50%、抗剪强度提高20%~50%、疲劳强度和持久强度提高20%~35%。采用这种复合材料可使劳动量与耗能量减少1/2使结构质量(特别是在采用蜂窝填充剂的情况下)减轻50%,结构密封性提高5倍。

6.镍合金

以最佳合金化及最佳组织的方法开发特种合金,可显著提高单晶叶片的使用性能。其中最有前途的合金是以锌合金化的热强镍合金。含镍合金具有更高的工作温度与更高的持久强度特性。在含6%~7%的试验合金上得到了创纪录的持久强度值:σ100100> 300MPa,从而保证了第6代发动机用的带有冷却通道的单晶叶片的研制。采用含镍合金,可使涡轮入口温度提高到2000~2100K,使冷却空气的消耗量减少30%~50%,而在冷却空气消耗量相同时,使叶片使用寿命延长1~3倍。

7.燃气涡轮发动机盘与热场焊接结构件用材料

对燃气涡轮发动机盘用材提出的要求与对叶片用材提出的要求略有不同:其

一,涡轮盘的工作温度低于叶片的工作温度;其二,对材料可靠性的要求提高。改善涡轮盘用合金使用性能的上述要求,应采用综合方法加以解决,诸如发展合金化原理、完善强化机制、开发熔炼、变形及热处理的新工艺方法等。

航空发动机制造业目前面临的特殊课题,是要研制诸如焊接机匣、火管和一系列其他的热场焊接结构件。开发火管材料的主要问题是提高其结构刚度,解决该问题还需满足一系列苛刻的综合性工艺要求:良好的可焊接性、高的工艺塑性等。使用以上合金可使火管的工作温度提高150~200℃,使可靠性和使用寿命延长50%~100%,大幅度提高焊接机匣的比强度,同时减轻质量15%。

8.抗氧化防护涂层

采用抗氧化防护涂层,是延长热强合金(首先是涡轮叶片)使用寿命的重要因素。目前,作为在混合粉末中扩散渗铝制取防护涂层工艺的替代技术,新工艺及各种成分复杂的涂层已经开始采用。研究人员开发出了由不同元素离子为基体的等离子真空涂敷新方法。在涂层厚度大致相同情况下(50~70μm),采用合金化的原始喷涂合金,可有效保护叶片不受硫化物、氧化物腐蚀,与批量生产的渗铝涂层相比,可使叶片寿命延长一个数量级。

多组分材料高能真空等离子工艺涂敷涂层的新方法中,高速等离子流对固体表面的作用,可使被处理表面的成分、组织、显微几何尺寸、理化性能都得到有目的的强化。该工艺的主要优点是:涂层质量高,致密无气孔、塑性好、附着牢固(大于100MPa);通用性好,所有类型的防护涂层都可在一台工业装置上涂敷;沉积精度高。涂层、涂敷设备与工艺的成本较低。采用多组分材料高能真空等离子工艺涂敷涂层,可获得各种各样的涂层,既有扩散涂层,又有凝聚涂层和凝聚——扩散涂层。

9.金属间化合物合金

进一步提高燃气涡轮发动机工作温度及零件使用寿命的迫切性,对探寻比镍基体相强化固溶体稳定性更好的新合金基体提出了要求。新合金基体适宜采用Al类型的金属间化合物,与固溶体的普通金属键相比,金属间化合物的共价Ni

3

键可更有效地解决合金热强性的问题。根据对Ni

Al基体补充合金化,以及由铸

3

造工艺决定的铸件组织就可调整这些合金的热强性水平。在此情况下,当由等轴组织向柱状组织过渡,而后再向单晶组织过渡时,合金的热强性升高。

单晶组织金属间化合物合金的综合性能较好。在热强性水平相同情况下(温度1100℃),金属间化合物合金所含的钨(W)、钼(Mo)等稀缺贵重难熔金属的数量明显低一些。以金属间化合物为基体的合金,可有效用于制造工作温度范围在900~1150℃之间的冷却式和非冷却式喷管导向叶片、火管及喷管零件。该领城的最新科研成果可将合金的热强性提高到50~70MPa以上。

10.金属复合材料

热强材料研究领域的进一步突破(工作温度提高到1300℃以上),要靠金属复合材料来保证。金属复合材料的基体可采用不同材料,如钛、金属间化合物等,而增强材料则可采用丝状晶体、包括碳化硅颗粒在内的弥散难熔化合物颗粒、氧化物纤维或钨纤维。

特种复合材料是指所谓的自然复合体,这种复合材料是按照共晶合金定向结晶工艺制取的。这种合金中的每个共晶相都是垂直于结晶线生长的,因此通过移

动平面结晶线的方法就可获得具有一定取向的纤维状组织。这种材料的强化剂是难熔金属碳化物(TaC,NbC)单晶的丝状晶体相互搅在一起的连续的骨架。开发

>70MPa)。的自然复合体材料,可在1200℃高温下保持高的持久强度水平(σ

1200b

据预测,复合材料在先进燃气涡轮发动机中的应用比例将会大幅度提高(达到40%)。

四、航空航天材料特性

1.耐老化和耐腐蚀

各种介质和大气环境对材料的作用表现为腐蚀和老化。航空航天材料接触的介质是飞机用燃料(如汽油、煤油)、火箭用推进剂(如浓硝酸、四氧化二氮、肼类)和各种润滑剂、液压油等,其中多数对金属和非金属材料都有强烈的腐蚀作用或溶胀作用。大气中太阳的辐照、风雨的侵蚀、地下潮湿环境中长期贮存时产生的霉菌会加速高分子材料的老化过程,耐腐蚀性能、抗老化性能、抗霉菌性能是航空航天材料应该具备的良好特性。

2.适应空间环境

空间环境对材料的作用主要表现为高真空(1.33×10-10Pa)和宇宙射线辐照的影响。金属材料在高真空下互相接触时,由于表面被高真空环境所净化而加速了分子扩散过程,出现“冷焊”现象;非金属材料在高真空和宇宙射线辐照下会加速挥发和老化,有时这种现象会使光学镜头因挥发物沉积而被污染,密封结构因老化而失效。航天材料一般是通过地面模拟试验来选择和发展的,以求适应于空间环境。

3.寿命和安全

为了减轻飞行器的结构质量,选取尽可能小的安全余量而达到绝对可靠的安全寿命,被认为是飞行器设计的奋斗目标。对于导弹或运载火箭等短时间一次使用的飞行器,人们力求把材料性能发挥到极限程度。为了充分利用材料强度并保证安全,对于金属材料已经使用“损伤容限设计原则”,这就要求材料不但具有高的比强度,而且还要有高的断裂韧性。在模拟使用的条件下测定出材料的裂纹起始寿命和裂纹的扩展速率等数据,并计算出允许的裂纹长度和相应的寿命,以此作为设计、生产和使用的重要依据。对于有机非金属材料则要求进行自然老化和人工加速老化试验,确定其寿命的保险期。复合材料的破损模式、寿命和安全也是一项重要的研究课题。

五、航空航天材料的发展方向

1)高性能

高性能是指轻质、高强度、高模量、高韧性、耐高温、耐低温,抗氧化、耐腐蚀等。材料的高性能对降低飞行器结构重量和提高结构效率、提高服役可靠性及延长使用寿命极为重要,是航空航天材料研究不断追求的目标。

2)特殊功能

材料在光、电、声、热、磁上的特殊功能是支撑某些关键技术以提高飞行器机动性能和突防能力的重要保证。如以红外材料为基础的光电成像夜视技术能增

强坦克、装甲车、飞机、军舰及步兵的夜战能力,红外成像制导技术可大大提高导弹的命中率和抗干扰能力,以新型固体激光材料为基础的激光测距和火控系统等可使灵活作战能力大大加强。

3)复合化

复合化已成为新材料的重要发展趁势之一。业内专家指出,航空复合材料未来20~30年将迎来新的发展时期,甚至引发航空产业链的革命性变革,包括设计理念的创新和设计团队知识的更新,航空产品供应链的战略性改变,新型复合材料技术不断出现(如混杂复合技术、源于自然界中珍珠贝壳结构启发的仿生复合技术),以及对航空维修业提出前所未有的挑战。

4)智能化

智能化是航空航天材料重要发展趁势之一。智能复合材料将复合材料技术与现代传感技术、信息处理技术和功能驱动技术集成于一体,将感知单元(传感器)、信息处理单元(微处理器)与执行单元(功能驱动器)联成一个回路,通过埋置在复合材料内部不同部位的传感器感知内外环境和受力状态的变化,并将感知到的变化信号通过微处理器进行处理并作出判断,向功能驱动器发出指令信号;而功能驱动器可根据指令信号的性质和大小进行相应的调节,使构件适应有关变化。整个过程完全自动化,从而实现自检测、自诊断、自调节、自恢复、自保护等多种特殊功能。智能复合材料是传感技术、计算机技术与材料科学交叉融合的产物,在许多领域展现了广阔的应用前景,例如飞机的智能蒙皮与自适应机翼就是智能复合材料构成的一种高端的智能结构。

5)整体化

整体化制造不仅可减少机械装配件数量,节约材料和工时,还能减少因装配失误埋下的事故隐患。铝合金一直是航空航天重要结构材料,用铝合金厚板(厚度>6 mm)制造飞机整体部件如机身框架、机翼壁板、翼梁、翼肋等是重要发展趋势之一。

6)低维化

低维化是指维数小于3的材料的应用,具体来说包括二维(超薄膜)、一维(碳纳米管)和准零维(纳米颗粒)材料。其中碳纳米管在航空航天中的应用得到了广泛的研究,用它制备复合材料也取得了较大进展。

7)低成本化

航空航天材料从过去单纯追求高性能发展到今天综合考虑性能与价格的衡,低成本化贯穿材料、结构设计、制造、检测评价以及维护维修等全过程。对碳纤维复合材料而言,其制造成本在整个成本中占有相当大的比例;因此,对其低成本制造技术应投入足够关注。各种低成本制造技术发展很快,尤其是以树脂传递成型(RTM)为代表的液体成型技术和以大型复杂构件的共固化/共胶接为代表的整体化成型技术等均得到了很大的发展。

工程材料实验报告模板

工程材料实验报告 专业: 姓名:,学号: 姓名:,学号: 姓名:,学号: 青海大学机械工程学院 年月日

工程材料综合实验 ●金相显微镜的构造及使用 ●铁碳合金平衡组织分析 ●碳钢的热处理 ●金相试样的制备 ●碳钢热处理后的显微组织分析 ●硬度计的原理及应用 ●碳钢热处理后的硬度测试 ●常用工程材料的显微组织观察 实验一金相显微镜的构造和使用 一、实验目的 熟悉金相显微镜的基本原理、构造;了解金相显微镜的使用注意事项,掌握金相显微镜的使用方法。 二、实验设备及材料 三、实验内容 1)金相显微镜的基本原理2)金相显微镜的构造3)显微镜使用注意事项 四、实验步骤 五、实验报告 实验二铁碳合金平衡组织分析 一、实验目的 (1)熟悉铁碳合金在平衡状态下的显微组织。 (2)了解铁碳合金中的相与组织组成物的本质、形态及分布特征。

(3)分析并掌握平衡状态下铁碳合金的组织和性能之间的关系 二、实验设备及材料 三、实验内容 1)铁碳合金的平衡组织 2)各种组成相或组织组成物的特征 3)铁素体与渗碳体的区别 四、实验步骤 五、实验报告 实验三碳钢的热处理 一、实验目的 1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火 2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能的影响。 二、实验设备及材料 三、实验内容 1)加热温度的选择 2)保温时间的确定 3)冷却方法 四、实验步骤 五、实验报告 实验四金相试样的制备 一、实验目的 1)了解金相试样的制备过程。 2)学会金相试样的制备技术。

二、实验设备及材料 三、实验内容 1)取样 2)镶样 3)磨制 4)抛光 四、实验步骤 五、实验报告 实验五碳钢热处理后的显微组织分析 一、实验目的 观察碳钢热处理后的显微组织 二、实验设备及材料 三、实验内容 1)钢冷却时所得到的各种组织组成物的形态 2)钢淬火回火后的组织 四、实验步骤 五、实验报告 实验六硬度计的原理及应用 一、实验目的 1)熟悉洛氏硬度计、布氏硬度计、显微硬度计的原理、构造。 2)学会三种硬度计的使用 二、实验设备及材料 三、实验内容 1)洛氏硬度实验原理 2)布氏硬度试验原理 3)显微硬度计的原理 四、实验步骤 五、实验报告 实验七碳钢热处理后的硬度测试

土木工程材料实验报告

广西科技大学鹿山学院 实验报告 课程名称:土木工程材料 指导教师: 班级: 姓名: 学号: 成绩评定: 指导教师签字: 年月日

土木工程材料实验课的要求 一、实验室的纪律要求 1.进入实验室后,要听从教师的安排,不得大声说笑和打闹。 2.进入实验室后,对本组所用的仪器设备进行检查,如有缺损或失灵应立即报告,由教师修理或调换,不得私自拆卸。实验结束时,应将所用仪器设备按原位放好,经检查后方可离开实验室。 3.要爱护实验仪器设备,严格按照实验操作规程进行实验,同时注意人身安全,非本次实验所用的室内其他仪器,不得随便乱动。 4.在实验过程中,当仪器设备被损坏时,当事者应立即向实验室教师报告,由其根据学校的规定给予检查或赔偿等处理。 5.实验结束后,每组学生对所用的仪器设备及桌面、地面应加以清理,并由各实验小组轮流做全室的卫生整理。 6.完成实验后,经教师同意后方可离开实验室。 二、实验与实验报告的要求 1.每次做实验以前,要认真阅读实验指导书,熟悉实验内容和实验方法步骤。 2.要以严肃的科学态度、严格的作风、严密的方法进行实验,认真记录好实验数据。 3.在实验课进行中要认真回答教师提出的问题,回答问题的情况作为实验课考核成绩的一部分。 4.要认真填写、整理实验报告,不得潦草,不得缺项、漏项,报告中的计算部分必须完成,同时要保持实验报告的整洁。 5.实验报告应及时完成,并按老师规定的时间上交。

实验一土木工程材料的基本性质实验报告 一、实验内容 二、主要仪器设备及规格型号 三、实验记录 (一) 材料的表观密度测试 试样名称: _____________________ 实验日期: ____________________ 气温/室温: _____________________ 湿度:____________________

工程材料实验报告

工 程 材 料 实 验 报 告 院系:机械工程学院 班级:10届机电一班 组员:魏仕宏 1000407008 崔继文 1000407010 丁元辉 1000407021 郑鹏涛 10004070

实验项目名称:金相试样的制备及铁碳合金平衡组织观察与分析 一、实验目的和要求 1.通过观察和分析,熟悉铁碳合金在平衡状态下的显微组织,熟悉金相显微镜的使用; 2.了解铁碳合金中的相及组织组成物的本质、形态及分布特征; 3.分析并掌握平衡状态下铁碳合金的组织和性能之间的关系。 二、实验内容和原理 1 概述 碳钢和铸铁是工业上应用最广的金属材料,它们的性能与组织有密切的联系,因此熟悉掌握它们的组织,对于合理使用钢铁材料具有十分重要的实际指导意义。 ⑴碳钢和白口铸铁的平衡组织 平衡组织一般是指合金在极为缓慢冷却的条件下(如退火状态)所得到的组织。铁碳合金在平衡状态下的显微组织可以根据Fe—Fe3C相图来分析。从相图可知,所有碳钢和白口铸铁在室温时的显微组织均由铁素体(F)和渗碳体(Fe3C)所组成。但是,由于碳含量的不同,结晶条件的差别,铁素体和渗碳体的相对数量、形态,分布和混合情况均不一样,因而呈现各种不同特征的组织组成物。碳钢和白口铸铁在室温下的平衡组织见表1。 a)工业纯铁——室温时的平衡组织为铁素体(F),F为白色块状(如图1所示); b)亚共析钢——室温时的平衡组织为铁素体(F)+珠光体(P),F呈白色块状,P呈层片 状,放大倍数不高时呈黑色块状(如图2所示)。碳质量分数大于0.6%的亚共析 钢,室温平衡组织中的F呈白色网状包围在P周围(如图3所示); c)共析钢——室温时的平衡组织是珠光体(P),其组成相是F和Fe3C(如图4、5所示); d)过共析钢——室温时的平衡组织为Fe3CⅡ+P。在显微镜下,Fe3CⅡ呈网状分布在层片 状P周围(如图6所示); e)亚共晶白口铸铁——室温时的平衡组织为P+Fe3CⅡ+ Ld'。Fe3CⅡ网状分布在粗大块 状的P的周围,Ld'则由条状或粒状P和Fe3C基体组成(如图7所示);

建筑材料实验报告模板

建筑材料实验报告 XXXXX学院 土木工程系 班级 姓名 学号

水泥性能测试试验报告 试验日期: 气(室)温: C:湿度: 一、试验内容 二、主要仪器设备 三、试验记录 所选水泥样品产地、厂名 水泥品种:出厂标号:

1.水泥细度测定(干筛法) 结论: 根据国家标准GB 该水泥细度为 2.水泥标准稠度用水量测试 室温:℃;相对湿度: % (1)试件成型日期年月日 成型三条试件所需材料用量 (2)测试日期年月日;龄期:天 (3)抗折强度测定 (4)抗压强度测定

4.确定水泥强度等级(只按试验一个龄期的强度评定) 根据国家标准 该水泥强度等级为 混凝土用骨料性能试验报告 试验日 期: 气(室)温: C:湿度: 一、试验内容 二、主要仪器设备 三、试验记录 1.砂的筛分析试验 筛孔尺寸(mm)105 2.5 1.250.630.3150.16筛底筛余质量(g) 分计筛余量a(%) 累计筛余量A(%)

砂样细度模数Mx Mx= Mx= 结论:按M X 该砂样属于砂,级配属于区;级配情况。2.砂的泥含量测试 编号冲洗前的烘干试样 质量G1(g) 冲洗后的烘干试样 质量G2(g) 泥含量(%) 测定值 (%) 平均值 (%) 3.砂的视密度测试 试样名称:水温:℃ 编号试样质量 G12(g) 瓶+砂+满水 质量G13(g) 瓶+满水 质量G14(g) 砂样在水中所占 的总体积V(cm3) 视密度 ρ0(g/cm3) 平均值 (g/cm3) 编号 容量筒容积 V(L) 容量筒质量 G1(kg) 容量筒+砂 质量 G2(kg) 砂质量 G(kg) 堆积密度 (kg/L) 平均值 (kg/L) 级配连续粒级 筛孔尺寸 分计筛余(g)(%) 累计筛余(%) 石子筛分析测试结果评定: (1)最大粒径: mm

产品可靠性试验报告模板

产品可靠性试验报告一、试验样品描述 二、试验阶段 三、试验结论

四、试验项目

High Temperature Storage Test (高温贮存) 实验标准: 产品可靠性试验报告 测试产品状态 ■小批□中批□量产 开始时间/Start Time 结束时间/Close Time 试验项目名称/Test Item Name High Temperature Storage Test (高温贮存) 产品名称Name 料号/P/N (材料类填写供应商) 试验样品/数量 试验负责人 (5Pcs ) 实验测试结果 ■通过□不通过□条件通过 试验目的 验证产品在高温环境存储后其常温工作的电气性能的可靠性 试验条件 Test Condition 不通电,以正常位置放入试验箱内,升温速率为1℃/min,使产品温度达到70℃,温度稳定后持续8小时,完成测试后在正常环境下放置2小时后进行产品检查 试验条件图 Test Condition 仪器/设备 高温烤箱、万用表、测试工装 合格判据 试验后样品外观、机械性能、电气性能、等各项性能正常 包装压力测试 OK 包装振动测试 OK 包装跌落测试 OK Group 7 酒精测试 OK RCA 纸带耐磨测试 附着力测试 OK 百格测试 OK 材料防火测试

备注说明 注意:测试不通过或条件通过时需要备注说明现象或原因、所有工作状态机器需要连接信号线、功能测试涵盖遥控距离和按键功能 Low Temperature Storage Test(低温贮存) 实验标准: 产品可靠性试验报告 测试产品状态■小批□中批□量产 开始时间/Start Time 结束时间/Close Time试验项目名称/Test Item Name Low Temperature Storage Test (低温贮存) 机型名称Name料号/P/N(材料类填写供应商)试验样品/数量试验负责人实验测试结果■通过□不通过□条件通过 试验目的验证产品低温环境存储后其常温工作的电气性能的可靠性 试验条件Test Condition 不通电,以正常位置放入试验箱内,降温速率为1℃/min,使试验箱温度达到-30℃,温度稳定后持续8小时,完成测试后在正常环境下放置2小时,后进行产品检查. 试验条件图Test Condition

工程材料实验报告(完整版)

工程材料实验报告(完整版) 报告文档·借鉴学习 2 工程材料实验报告 专业: 机械设计制造及其自动化10--11 姓名: 郑 杰,学号: 10041127 姓名: 周邵巍,学号: 10041128 姓名: 李欣欣,学号: 10041129 姓名: 谢 强,学号: 10041118 报告文档·借鉴学习 3工程材料综合实验●金相显微镜的构造及使用●金相显微试样的制备●铁碳合金平衡组织观察●碳钢热处理操作、组织观察和硬度测定一、实验目的 运用所学的理论知识和实验技能以及现有的实验设备,通过自己设计实验方案、独立实验并得出实验结果,达到进一步深化课堂内容,加强对《工程材料》课程理论系统认识,并提高分析问题解决问题的能力。 通过做这个实验,使学生们可以充分了解以下知识,并学会操作一些必要的

设备仪器: 1、分别研究铁碳合金在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分组织与性能之间的相互关系; 3、了解碳钢的热处理操作; 4、研究加热温度、冷却速度、回火温度对碳钢性能的影响; 5、观察热处理后钢的组织及其变化; 6、了解常用硬度计的原理,初步掌握硬度计的使用。 二、 实验设备及材料 11、、显微镜、浴磨机、抛光机、热处理炉、硬度计、砂轮机等; 22、、金像砂纸、水砂纸、抛光布、研磨膏等; 33、、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢45#、高碳钢T10) 三、 实验内容 三个尺寸形状基本相同的试样分别是低碳钢、中碳钢、高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。 1、设计实验方案:三种碳钢的热处理工艺(加热温度、保温和冷却时间)。 样品加热温度保温时间冷却方式20#880℃20min空冷45#880℃高温回火600℃20min高温回火30min水冷T101100℃20min水冷2、做实验前完成。选定硬度测试参数,一般用洛氏硬度。 样品20#45#T10硬度HRB50HRC20HRC633、热处理前后的金相组织观察、硬度测试。 报告文档·借鉴学习 44、分析碳钢成分——组织——性能之间的关系。 样品成分组织性能20#马氏体F+P 冲压性与焊接性良好45#马氏体F+P 经热处理后可获得良好的综合机械性能T10马氏体+奥氏体P+Fe3CII 硬度高,韧性适中5、 四、

工程材料综合实验(基础实验+钢的热处理)实验报告

工程材料综合实验 处 理 报 告 单位:过程装备与控制工程10-1班 实验者: 侯鹏飞学号10042107 胡兴文学号10042108 李东升学号10042110

【实验名称】 工程材料综合实验 【实验目的】 运用所学的理论知识和实验技能以及现有的实验设备,通过自己设计实验方案、独立实验并得出实验结果,达到进一步深化课堂内容,加强对《工程材料》课程理论的系统认识,并提高分析问题和解决问题的能力。 通过做这个实验,使学生们可以充分了解以下知识,并学会操作一些必要的仪器和设备: 1、研究铁碳合金在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、 组织与性能之间的相互关系; 3、了解碳钢的热处理操作; 4、研究加热温度、冷却速度、回火温度对碳钢性能的影响; 5、观察热处理后钢的组织及其变化; 6、了解常用硬度计的原理,初步掌握硬度计的使用。 【实验材料及设备】 1、显微镜、预磨机、抛光机、热处理炉、硬度计、砂轮机等; 2、金相砂纸、水砂纸、抛光布、研磨膏等;

3、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢 45#、高碳钢T10) 【实验内容】 三个形状尺寸基本相同的试样分别是低碳钢、中碳钢和高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。 1、设计实验方案:三种碳钢的热处理工艺(加热温度、保温时间、冷却方式)。做实验前完成。 样品加热温度保温时间冷却方式 20# 880℃25min 空冷 45# 淬火880℃ 高温回火600℃淬火25min 高温回火25min 水冷 T10 900℃30min 水冷 2、选定硬度测试参数,一般用洛氏硬度。 样品20# 45# T10 硬度HRB50 HRC20 HR63 3、热处理前后的金相组织观察、硬度的测定。 4、分析碳钢成分—组织—性能之间的关系。 样品成分组织性能 20# 马氏体F+P冲压性与焊接性良好 45# 马氏体F+P经热处理后可获得良好的综 合机械性能 T10 马氏体+奥氏体P+Fe3C II硬度高,韧性适中 【实验步骤】

电子产品可靠性测试报告.docx

XXXX股份有限公司检测中心 检测报告 报告编号:2019-5-25 样品名称电子产品可靠性测试样品编号2019-5-25 委托单位XXXX 实业有限公司型号/规格RC661-Z2委托单位 XXXXXX检测类别委托试验地址 样品来源 收样日期2019年4月15日 委托方送样 方式 2019 年4月15日~ 样品数量120检测日期 2019年5月15日 1.高低温工作试验10.外箱跌落试验18.标签酒精测试 2.高温高湿工作试验11.外箱振动试验19.盐雾测试 3.外箱温湿度交变储存试验 12.稳定性测试20.外箱抗压测试 4.外箱高温高湿储存试验13.铅笔硬度测试21.ESD 测试 检测项目 5.冷热冲击试验14.底噪测试22.电源通断测试 6.裸机跌落试验15.防水测试23.裸机振动试验 7.裸机微跌试验16.大头针缝隙安全测试 https://www.360docs.net/doc/b012483579.html,B 线摇摆测试 8.彩盒包装跌落试验17.标签橡皮测试25.125℃高温存放 9.快递盒包装跌落试验 样品说明委托方提供120 个样品用于本次试验,其中: 裸机 40台, PCBA 20 块,带包装 3 箱( 60台)。

参考标准: 检测依据 YD/T 1539-2006《移动通信手持机可靠性技术要求和测试方法》 检测结论样品按照要求完成了测试,测试结果见报告正文 备注--- 编制:审核:批准: 批准人职务: 年月日年月日年月日 第1页共 9页

XXXX股份有限公司检测中心 检测报告 报告编号:2019-5-25 试验情况综述 序号项目 1高低温1 标准要求 温度45℃ 试验情况 工作 试验 2高温 高湿 工作 试验3外箱 温湿度 交变 储存 试验 持续时间 6 小时 2温度45℃~ -10 ℃ 降温时间 2 小时 3温度-10 ℃ 持续时间 6 小时 4温度-10 ℃~ 45℃ 升温时间 1 小时 每循环时间15小时 循环次数4 样品状态在线测试 温度40℃ 相对湿度90﹪ 持续时间96h 样品状态在线测试 1温度70℃ 湿度40﹪ 持续时间12 小时 2温度70℃~ -20 ℃ 降温时间 2 小时 3温度-20 ℃ 4持续时间12 小时 温度-20 ℃~ 湿度40 ﹪ 升温时间 1 小时 每循环时间27 小时 循环次数4 样品状态包装、不

工程材料实验报告

工程材料实验报告(红色字体,在提交报告时全部需要删除) 专业统统用小四号宋体 班级 姓名 学号 组员由于组员较多,字体可以小一点 重庆邮电大学移通学院管理工程系 年月日 1

目录 (目录页码需要标上,包括每一页下面都需要添加页码,封面和目录无页码) 一、水泥技术性能实验······································································ 二、水泥胶砂强度检验······································································ 三、普通混凝土拌合物性能实验·························································· 四、混凝土强度实验········································································· 五、骨料实验·················································································· 六、钢筋实验·················································································· 七、实验心得 ····················································································

工程材料实验报告.

工程材料综合实验 机械设计制造及其自动化13-4 实验者:韩西浩学号:1304010402

一实验目的 1、区别和研究铁碳合金在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之 间的相互关系; 3、了解碳钢的热处理操作; 4、研究加热温度、冷却速度、回火温度对碳钢性能的影响; 5、观察热处理后钢的组织及其变化; 6、了解常用硬度计的原理,初步掌握硬度计的使用。 二实验设备及材料 1、显微镜、预磨机、抛光机、热处理炉、硬度计、砂轮机等; 2、金相砂纸、水砂纸、抛光布、研磨膏等; 3、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢45#、高碳钢 T10) 三实验内容 三个形状尺寸基本相同的试样分别是低碳钢、中碳钢和高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。 。 四实验步骤: 8、观察平衡组织并测硬度: (1)制备金相试样(包括磨制、抛光和腐蚀); (2)观察并绘制显微组织; (3)测试硬度。 9、进行热处理。 10、观察热处理后的组织并测硬度: (1)制备金相试样(包括磨制、抛光和腐蚀);

(2)观察并绘制显微组织。五实验报告

图片分析 1#试样 2#试样 3#试样 4#试样 5#试样 6#试样 铁素体 铁素体 珠光体 铁素体 铁素体 珠光体 珠光体 珠光体 Fe 3C Ⅱ

7#试样 8#试样 9#试样 Fe 3C Ⅱ 珠光体 低温莱式体 低温莱式体 低温莱式体 Fe 3C I

珠光体 Fe3CⅡ T10碳质量分数为1.00%(千分之十)的优质碳素工具钢,硬度高,韧性适中。热处理后为回火马氏体和残余奥氏体。 热处理工艺: 硬度为 组织性能: 实验者:代银

土木工程材料实验报告(DOC)

土木工程材料实验报告 姓名 班级 学号

材料表观密度及吸水率实验 一、实验名称:材料表观密度及吸水率实验 二、实验目的要求 通过试验来掌握材料表观密度和吸水率的测量方法。材料的表观密度是指在自然状态下单位体积的质量。利用材料的表观密度可以估计材料的强度、吸水性、保温性等,同时可用来计算材料的自然体积或结构质量;吸水率是指材料与水接触吸收水分的性质,当材料饱和吸水时,其含水率为吸水率。 三、试验条件 室温 ℃ 相对湿度 % 水温 ℃ 四、仪器设备 游标卡尺、天平、鼓风烘箱、干燥器、温度计、直尺等。 五、试验方法与步骤 A.表观密度实验步骤: 1、将待测材料的试样放入105~110℃的烘箱中烘至恒重,取出置于干燥器中冷却至室温; 2、用游标卡尺两处试样尺寸,计算出体积V 0; 3、用天平称量出试样的质量m 。 4、实验结果计算。 B.表观密度实验步骤: 1、将试件置于烘箱中,以100±5℃的温度烘干至恒重。在干燥器中冷却至室温后以天平称其质量m 1(g ),精确至0.01g 。 2、将试件放在盛水容器中,将水自由进入。 3、加水至试件高度的41处,6小时后将水加至高出试件顶面20mm 以上, 在放置48小时让其自由吸水。 4、取出试件,用湿纱布擦去表面水分,立即称其质量m 2(g )。 5、实验结果计算。 六、试验结果与计算 材料的表观密度按下式计算:0 0V m = ρ= 吸水率按照下式计算: %1001 1 2?-= m m m W x =

砂筛分析实验 一、实验名称:砂筛分析实验 二、实验目的要求 通过试验获得砂的细度模数和级配曲线,并掌握砂颗粒粗细程度和颗粒搭配间的关系,掌握砂质量好坏的判定依据,为拌制混凝土时选用原材料作准备。 三、试验条件 室温℃相对湿度% 水温℃ 四、仪器设备 摇筛机、标准筛、天平、浅盘、毛刷和容器等。 五、试验方法与步骤 1、按要求称取四分后的干燥试样500g; 2、将标准筛按孔径由大到小顺序叠放,加底盘后,将试样倒到最上层4.75mm 筛内,加盖后,手工摇筛5分钟; 3、按孔径大小,逐个用手于洁净的盘上进行筛分,通过的颗粒并入下一号筛内并和下一号筛中的试样一起过筛。 4、称量各号筛的筛余试样质量m i。 六、试验结果与计算

工程材料基础实验报告

实验二碳钢和铸铁的平衡组织和非平衡组织 的观察与分析 一.实验目的 1.观察和分析碳纲和白口铸铁在平衡状态下的显微组织。 2.分析含碳量对铁碳合金的平衡组织的影响,加深理解成分、组织和性能之间的相互关系。 3.熟悉灰口铸铁中的石墨形态和基体组织的特征,了解浇铸及处理条件对铸铁组织和性能的影响,并分析石墨形态对铸铁性能的影响。 4.识别淬火组织特征,并分析其性能特点,掌握平衡组织和非平衡组织的形成条件和组织性能特点。 二、.实验仪器及材料 1.观察表2—1中的金相样品. 2.几种基本组织的概念与特征见表2—2 3.XJB—1型、4X型、XJP—3A型和MG型金相显微镜数台 4.多媒体设备一套 5.金相组织照片两套 三、实验内容 1.实验前应复习课本中有关部分,认真阅读实验指导书。 2.熟悉金相样品的制备方法与显微镜的原理和使用。 3.认真聆听指导教师对实验内容、注意事项等的讲解。 4.用光学显微镜观察和分析表2—1中各金相样品的显微组织。 5.观察过程中,学会分析相、组织组成物及分析不同碳量的 铁碳合金的凝固过程、室温组织及形貌特点。 四、实验问题分析 2.根据实验结果,结合所学知识,分析碳钢和铸铁成分、组织和性能之间的关系。 (1)亚共析钢 含碳量在(0.0218—0.77)%之间的铁碳合金,室温组织为铁素体和珠光体, 随着含碳量的增加,铁素体的数量逐渐减少,而珠光体的数量则相应的增加, 显微组织中铁素体呈白色,珠光体呈暗黑色或层片状。 (2)过共析钢 含碳量在(0.77—2.11)%之间,室温组织为珠光体和网状二次渗碳体,含碳 量越高,渗碳体网愈多、愈完整。当含碳量小于1.2%时,二次渗碳体呈不连 续网状,强度、硬度增加,塑性、韧性降低,当含碳量大于或等于1.2%时, 二次渗碳体呈连续网状,使强度、塑性、韧性显著降低,过共析钢含碳量一般 不超过(1.3—1.4)%,二次渗碳体网用硝酸酒精溶液腐蚀呈白色,若用苦味

系统测试报告(详细模板)

xxxxxxxxxxxxxxx 系统测试报告 xxxxxxxxxxx公司 20xx年xx月

版本修订记录

xxxxxx测试报告 目录 1引言 (1) 1.1编写目的 (1) 1.2项目背景 (1) 1.3术语解释 (1) 1.4参考资料 (1) 2测试概要 (2) 2.1系统简介 (2) 2.2测试计划描述 (2) 2.3测试环境 (2) 3测试结果及分析 (3) 3.1测试执行情况 (3) 3.2功能测试报告 (3) 3.2.1系统管理模块测试报告单 (3) 3.2.2功能插件模块测试报告单 (4) 3.2.3网站管理模块测试报告单 (4) 3.2.4内容管理模块测试报告单 (4) 3.2.5辅助工具模块测试报告单 (4) 3.3系统性能测试报告 (4) 3.4不间断运行测试报告 (5) 3.5易用性测试报告 (5) 3.6安全性测试报告 (6) 3.7可靠性测试报告 (6) 3.8可维护性测试报告 (7) 4测试结论与建议 (9) 4.1测试人员对需求的理解 (9) 4.2测试准备和测试执行过程 (9) 4.3测试结果分析 (9) 4.4建议 (9)

1引言 1.1 编写目的 本测试报告为xxxxxx软件项目的系统测试报告,目的在于对系统开发和实施后的的结果进行测试以及测试结果分析,发现系统中存在的问题,描述系统是否符合项目需求说明书中规定的功能和性能要求。 预期参考人员包括用户、测试人员、开发人员、项目管理者、其他质量管理人员和需要阅读本报告的高层领导。 1.2 项目背景 项目名称:xxxxxxx系统 开发方:xxxxxxxxxx公司 1.3 术语解释 系统测试:按照需求规格说明对系统整体功能进行的测试。 功能测试:测试软件各个功能模块是否正确,逻辑是否正确。 系统测试分析:对测试的结果进行分析,形成报告,便于交流和保存。 1.4 参考资料 1)GB/T 8566—2001 《信息技术软件生存期过程》(原计算机软件开发规范) 2)GB/T 8567—1988 《计算机软件产品开发文件编制指南》 3)GB/T 11457—1995 《软件工程术语》 4)GB/T 12504—1990 《计算机软件质量保证计划规范》 5)GB/T 12505—1990 《计算机软件配置管理计划规范》

产品可靠性试验报告

产品可靠性试验报告(初稿) 一、试验样品描述 项目描述备注产品型号 Sample type: 样品数量 Sample qty: 硬件版本 H/W version: 软件版本 S/W version: 测试申请人: Test applicant: 申请日期 Application date: 二、试验阶段 测试单位 测试阶段□样品■小批□中批□量产 三、试验结论 测试结论■通过□不通过□条件通过

四、试验项目 Summary of Contents 测试项目测试结果备注 Group 1 高温贮存OK 低温贮存OK 恒温恒湿贮存OK 高低温度/电压交变测试 交变湿热OK Group 2冷热冲击测试OK 振动测试OK 跌落测试OK 防水测试 漏电起痕测试 灼热丝测试 雷击测试 噪音测试 ROHS测试 Group 3 按键寿命测试OK 插拔寿命测试OK 接口弯折测试OK 电线摇摆测试 盐雾测试 Group 4开/关机测试OK 耐高压试验OK ESD测试

High Temperature Storage Test (高温贮存) 实验标准: 产品可靠性试验报告 测试产品状态 ■小批□中批□量产 开始时间/Start Time 结束时间/Close Time 试验项目名称/Test Item Name High Temperature Storage Test (高温贮存) 产品名称Name 料号/P/N (材料类填写供应商) 试验样品/数量 试验负责人 (5Pcs ) 实验测试结果 ■通过□不通过□条件通过 试验目的 验证产品在高温环境存储后其常温工作的电气性能的可靠性 试验条件 Test Condition 不通电,以正常位置放入试验箱内,升温速率为1℃/min ,使产品温度达到70℃,温度稳定后持续8小时,完成测试后在正常环境下放置2小时后进行产品检查 试验条件图 Test Condition 仪器/设备 高温烤箱、万用表、测试工装 合格判据 试验后样品外观、机械性能、电气性能、等各项性能正常 序列号(S/N ) 外观 结构 包装压力测试 OK 包装振动测试 OK 包装跌落测试 OK Group 7 酒精测试 OK RCA 纸带耐磨测试 附着力测试 OK 百格测试 OK 材料防火测试

工程材料实训报告

热加工工艺专用周教学计划 本周实习内容主要是铸造、锻压、焊接。 先说铸造吧! 铸造:1.将液态金属浇注到与零件的形状和尺寸相适应的铸型空腔中,待其冷却凝固,以获 得毛坯或零件的生产方法。 2.用于铸造的金属统称为铸造合金。铸造方法包括两大类:砂型铸造(最常用的方法)和特种铸造。 铸造的优点: l .可以制成形状复杂、特别是具有复杂内腔的毛坯,如箱体、汽缸体、床身、机座等,而且铸件的重量可轻仅几克,重达几百吨(铸件在液态下成型,因而可以制成各种形状复杂的铸件)。 2 .适应性强。工业中常用的金属材料(碳钢、合金钢、铸铁、铜合金、铝合金、镁合金等),都可以用于铸造,其中应用最广的是铸铁; 3 .铸造所用的原材料来源广泛,价格低廉,设备投资小,铸件成本较低。因此,铸造方法是最常用的毛坯生产手段之一,广泛应用于机器制造业中。 铸造生产存在的主要问题: 1.生产过程较复杂,工序多,影响铸件质量的因素较多,所以废品率较高。特别是手工造型,劳动强度大,生产率低,铸件质量不够稳定; 2.铸件质量问题不仅涉及铸型工艺,还与铸型材料、模具、合金种类、合金熔炼及浇注等因素密切相关,而这些因素在生产过程中较难综合、精确地控制,所以,铸件一般较容易出现成分和组织不太均匀、晶粒较粗、缩孔、缩松、气孔、夹渣、砂眼等缺陷,使铸件的力学性能一般不如锻件高。 合金的铸造性能 铸造合金除具有符合要求的物理、化学和力学性能外,还要考虑它的铸造性能。合金的铸造性能是指在铸造生产中表现出来的工艺性能,它对获得合格铸件具有极大的影响。 一、 1 .流动性及其对铸件质量的影响 金属液充满铸型的能力称为流动性。合金的流动性好,容易充满铸型,能获得外形完整、轮廓清晰、尺寸精确、薄而复杂的铸件;合金凝固收缩时能得到补缩;此外还有利于非金属合金的流动性 杂质及气体的上浮和排除,使铸件的质量提高。相反,流动性差的合金,由于充型不好,可使铸件产生浇不足、冷隔、气孔和夹渣等缺陷。 2 温度及铸型条件等。 (1)化学成分位于共晶成分附近的合金,凝固温度低,凝固范围窄,流动性好;离开共晶点越远,凝固范围越宽,其流动性越差。这是由于枝晶发达,会嘛磕属液的流动。铸铁中的硅和磷可提高铁水的流动性,而硫则使铁液的流动性降低。在常用的铸造合金中,铸铁和有色合金的流动性较好,铸钢较差。 (2)浇注温度提高浇注温度可使金属液的粘度下降,同时因过热度大,金属液含热量增加,传给铸型的热量也增多,减慢了金属液的冷却速度,使合金的流动性提高。所以高温浇注是防止铸件产生浇不足、冷隔和某些气孔、夹渣等铸造缺陷的主要工艺措施。但过大地提高浇注温度,会使合金的总收缩量增加,吸气增多,氧化严重,晶粒粗大,又会使铸件产生缩孔、缩松、粘砂和气孔等缺陷。 (3)铸型条件含水量过高,导热性好,型腔薄而复杂,浇口截面小,直浇口过低,铸

可靠性测试产品高加速寿命试验方法指南

术语和定义 HALT(High Accelerated Life Test):高加速寿命试验,即试验中对试验对象施加的环境应力比试验对象整个生命周期内,包括运输、存储及运行环境内,可能受到的环境应力大得多,以此来加速暴露试验样品的缺陷和薄弱环节,而后对暴露的缺陷和故障从设计、工艺和用料等诸方面进行分析和改进,从而达到快速提升可靠性的目的。 运行限或操作限(Operation Limit):指产品某应力水平上失效(样品不工作或其工作指标超限),但当应力值略有降低或回复初始值时,试样又恢复正常工作,则样品能够恢复正常的最高应力水平值称为运行限。 破坏限(Destruct Limit):在某应力水平上升到某值时,样品失效,即使当应力回落到低于运行限时,试样仍然不能恢复正常工作,这时的应力水平值称为破坏限。 裕度(Margin):产品运行环境应力的设计限与运行限或破坏限的差值。产品的裕度越大,则其可靠性越高。 夹具(Fixture):在HALT试验的振动项目中固定试样的器具。振动试验必须使用夹具,使振台振动能量有效地传递给试样。 加速度传感器(Accelerometer):在某方向测量试样振动加速度大小的传感器。在HALT试验的振动项目中使用加速度传感器可以监视试验箱振动能量通过夹具有效传递给试样的效率。 振动功率谱密度(Vibrating Power Spectral Density):也称为加速谱密度,衡量振动在每个频率点的加速度大小,单位为(g2/Hz)。 Grms(Gs in a root mean square):振动中衡量振动强度大小的物理单位,与加速度单位相同,物理含义为对振动功率谱密度在频率上积分后的平方根。 热电偶(Thermocouple):利用“不同导体结合在一起产生与温度成比例的电压”这一物理规律制作的温度传感器。在HALT试验的热应力测试项目中,利用热电偶监视产品各点的温度分布。 功能测试(Functional Test):对试样的测试,用以判断试样能否在测试环境下完成规定的功能,性能是否下降。一般是通过测量试样的关键参数是否达到指标或利用诊断模式测试试样的内部性能。 摘要:本文围绕产品HALT试验,详细介绍HALT试验基本要求、总体过程及试验过程。 关键词:HALT试验、基本要求、试验过程 1、HALT试验基本要求 1.1对试验设备的要求 1.1.1对试验箱的要求 做HALT试验的设备必须能够提供振动应力和热应力,并满足下列指标: 振动应力:必须能够提供6个自由度的随机振动;振动能量带宽为2Hz~10000Hz;振台在无负载情况下至少能产生65Grms的振动输出。 热应力:目标是为产品创造快速温度变化的环境,要求至少45℃/min的温变率;温度许可范围至少为-90℃~+170℃。

工程材料实验报告(完整版)

工程材料实验报告 专业:机械设计制造及其自动化10-1 姓名:郑杰,学号:10041127 姓名:周邵巍,学号:10041128 姓名:李欣欣,学号:10041129 姓名:谢强,学号:10041118

工程材料综合实验 ●金相显微镜的构造及使用 ●金相显微试样的制备 ●铁碳合金平衡组织观察 ●碳钢热处理操作、组织观察和硬度测定 一、实验目的 运用所学的理论知识和实验技能以及现有的实验设备,通过自己设计实验方案、独立实验并得出实验结果,达到进一步深化课堂内容,加强对《工程材料》课程理论系统认识,并提高分析问题解决问题的能力。 通过做这个实验,使学生们可以充分了解以下知识,并学会操作一些必要的设备仪器: 1、分别研究铁碳合金在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分组织与性能之间的相 互关系; 3、了解碳钢的热处理操作; 4、研究加热温度、冷却速度、回火温度对碳钢性能的影响; 5、观察热处理后钢的组织及其变化; 6、了解常用硬度计的原理,初步掌握硬度计的使用。 二、实验设备及材料 1、显微镜、浴磨机、抛光机、热处理炉、硬度计、砂轮机等; 2、金像砂纸、水砂纸、抛光布、研磨膏等; 3、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢45#、高碳 钢T10) 三、实验内容 三个尺寸形状基本相同的试样分别是低碳钢、中碳钢、高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。 1、设计实验方案:三种碳钢的热处理工艺(加热温度、保温和冷却时间)。 样品加热温度保温时间冷却方式 20# 880℃20min 空冷 45# 880℃ 高温回火600℃20min 高温回火30min 水冷 T10 1100℃20min 水冷 2、做实验前完成。选定硬度测试参数,一般用洛氏硬度。样品20# 45# T10 硬度HRB50 HRC20 HRC63

软件系统测试报告(实用版)

软件系统测试报告 实用版 2016年06月

版本修订记录

目录 1引言 (1) 1.1 编写目的 (1) 1.2 项目背景 (1) 1.3 术语解释 (1) 1.4 参考资料 (1) 2测试概要 (2) 2.1 系统简介 (2) 2.2 测试计划描述 (2) 2.3 测试环境 (2) 3测试结果及分析 (3) 3.1 测试执行情况 (3) 3.2 功能测试报告 (3) 3.2.1 系统管理模块测试报告单 (3) 3.2.2 功能插件模块测试报告单 (4) 3.2.3 网站管理模块测试报告单 (4) 3.2.4 内容管理模块测试报告单 (4) 3.2.5 辅助工具模块测试报告单 (4) 3.3 系统性能测试报告 (4) 3.4 不间断运行测试报告 (5) 3.5 易用性测试报告 (5) 3.6 安全性测试报告 (6) 3.7 可靠性测试报告 (6) 3.8 可维护性测试报告 (7) 4测试结论与建议 (9) 4.1 测试人员对需求的理解 (9) 4.2 测试准备和测试执行过程 (9) 4.3 测试结果分析 (9) 4.4 建议 (9)

1引言 1.1编写目的 本测试报告为xxxxxx软件项目的系统测试报告,目的在于对系统开发和实施后的的结果进行测试以及测试结果分析,发现系统中存在的问题,描述系统是否符合项目需求说明书中规定的功能和性能要求。 预期参考人员包括用户、测试人员、开发人员、项目管理者、其他质量管理人员和需要阅读本报告的高层领导。 1.2项目背景 ?项目名称:xxxxxxx系统 ?开发方: xxxxxxxxxx公司 1.3术语解释 系统测试:按照需求规格说明对系统整体功能进行的测试。 功能测试:测试软件各个功能模块是否正确,逻辑是否正确。 系统测试分析:对测试的结果进行分析,形成报告,便于交流和保存。 1.4参考资料 1)GB/T 8566—2001 《信息技术软件生存期过程》(原计算机软件开发规范) 2)GB/T 8567—1988 《计算机软件产品开发文件编制指南》 3)GB/T 11457—1995 《软件工程术语》 4)GB/T 12504—1990 《计算机软件质量保证计划规范》 5)GB/T 12505—1990 《计算机软件配置管理计划规范》

软件系统测试报告通用

软件系统测试报告 2016年06月

版本修订记录

目录 可靠性测试报告.......................................................

1引言 1.1编写目的 本测试报告为xxxxxx软件项目的系统测试报告,目的在于对系统开发和实施后的的结果进行测试以及测试结果分析,发现系统中存在的问题,描述系统是否符合项目需求说明书中规定的功能和性能要求。 预期参考人员包括用户、测试人员、开发人员、项目管理者、其他质量管理人员和需要阅读本报告的高层领导。 1.2项目背景 项目名称:xxxxxxx系统 开发方: xxxxxxxxxx公司 1.3术语解释 系统测试:按照需求规格说明对系统整体功能进行的测试。 功能测试:测试软件各个功能模块是否正确,逻辑是否正确。 系统测试分析:对测试的结果进行分析,形成报告,便于交流和保存。 1.4参考资料 1)GB/T 8566—2001 《信息技术软件生存期过程》(原计算机软件开发规范) 2)GB/T 8567—1988 《计算机软件产品开发文件编制指南》 3)GB/T 11457—1995 《软件工程术语》 4)GB/T 12504—1990 《计算机软件质量保证计划规范》 5)GB/T 12505—1990 《计算机软件配置管理计划规范》

2测试概要 2.1系统简介 xxxxxxxxxxxxxxxxxxxx 2.2测试计划描述 本测试报告按照xxxxx系统使用手册介绍系统的功能,测试系统的能力是否满足《xxxx 项目需求规格说明书》的功能和性能需求。测试分为功能测试和系统测试两部分。 功能测试覆盖各子系统中的功能模块,本测试针对在现有产品功能模块以及实施结果分别进行测试,测试整个系统是否达到需求规格说明书中要求实现的功能,以及测试系统的易用性、用户界面的友好性。 系统测试包括系统的易用性、可靠性、安全性、可维护性进行测试,整个系统集成后提供服务的能力,还包括系统服务性能测试、疲劳测试(不间断运行)。 2.3测试环境

电子产品可靠性测试报告

样品名称电子产品可靠性测试样品编号2019-5-25 委托单位XXXX实业有限公司型号/ 规格RC661-Z2 委托单位 地址 XXXXXX检测类别委托试验 样品来源 方式 委托方送样收样日期 2019年4月15日 检测日期 2019年4月15日~ 2019年5月15 日 样品数量120 检测项目1.高低温工作试验 10.外箱跌落试验 18.标签酒精测试 2.高温高湿工作试验 11.外箱振动试验 19.盐雾测试 3.外箱温湿度交变储存试验 12.稳定性测试 20.外箱抗压测试 4.外箱高温高湿储存试验 13.铅笔硬度测试 21.ESD测试 5.冷热冲击试验 14.底噪测试 22.电源通断测试 6.裸机跌落试验 15.防水测试 23.裸机振动试验 7.裸机微跌试验 16.大头针缝隙安全测试 https://www.360docs.net/doc/b012483579.html,B线摇摆测试 8.彩盒包装跌落试验 17.标签橡皮测试 25.125℃高温存放 9.快递盒包装跌落试验 样品说明委托方提供120个样品用于本次试验,其中:裸机40台,PCBA 20块,带包装3箱(60台)。 检测依据参考标准: YD/T 1539-2006 《移动通信手持机可靠性技术要求和测试方法》 检测结论样品按照要求完成了测试,测试结果见报告正文 备注 --- 编制:审核:批准: 批准人职务: 年月日年月日年月日试验情况综述

序号 项目 标准要求 试验情况 1 高低温 工作 试验 1 温度 45℃ 试验完成, 样品外观 和功能正常 持续时间 6小时 2 温度 45℃~-10℃ 降温时间 2小时 3 温度 -10℃ 持续时间 6小时 4 温度 -10℃~45℃ 升温时间 1小时 每循环时间 15小时 循环次数 4 样品状态 在线测试 2 高温 高湿 工作 试验 温度 40℃ 试验完成, 样品外观 和功能正常 相对湿度 90﹪ 持续时间 96h 样品状态 在线测试 3 外箱 温湿度 交变 储存 试验 1 温度 70℃ 试验完成, 样品外观 和功能正常 湿度 40﹪ 持续时间 12小时 2 温度 70℃~-20℃ 降温时间 2小时 3 温度 -20℃ 持续时间 12小时 4 温度 -20℃~70℃ 湿度 40﹪ 升温时间 1小时 每循环时间 27小时 循环次数 4 样品状态 包装、不开机 序号 项目 标准要求 试验情况 4 外箱 温度 60℃

相关文档
最新文档