关于平面不规则结构的判断及调整课件

合集下载

平面不规则结构

平面不规则结构
添加副标题
平面不规则结构的分析
汇报人:
目录
CONTENTS
01 添加目录标题
02 平面不规则结构的 类型
03 平面不规则结构的 影响因素
04 平面不规则结构的 分析方法
05 平面不规则结构的 优化设计
06 平面不规则结构的 工程实践
添加章节标题
ቤተ መጻሕፍቲ ባይዱ
平面不规则结构的类型
平面不规则结构的定义
平面不规则结构是指在平面上具有不规则形状的结构。 它们可以是任意形状,如三角形、四边形、多边形等。 平面不规则结构可以是对称的,也可以是不对称的。 它们可以是规则的,也可以是不规则的。
离散元分析法的局限性:计算量大, 需要高性能的计算机进行计算
边界元分析法
边界元分析法是一种基于边界积分方程的数值分析方法 适用于求解平面不规则结构的应力、位移和应变等问题 边界元分析法具有较高的计算效率和准确性 边界元分析法在工程领域得到了广泛的应用,如结构分析、流体力学等
解析法
解析法是一种通过数学方法求解问题的方法 解析法可以应用于各种类型的平面不规则结构 解析法需要具备一定的数学知识和技能 解析法可以提供精确的解,但可能需要较长的计算时间
温度对结构稳定 性的影响:温度 升高,结构稳定 性降低,容易发 生变形和破坏
温度对结构耐久 性的影响:温度 升高,结构耐久 性降低,容易发 生老化和腐蚀
温度对结构安全 性的影响:温度 升高,结构安全 性降低,容易发 生火灾和爆炸
施工误差
测量误差:测量工 具、测量方法、测 量人员等因素导致 的误差
材料误差:材料质 量、材料尺寸、材 料性能等因素导致 的误差
施工难度:不规则 结构的施工难度和 施工技术要求
材料选择:选择合 适的材料以满足不 规则结构的力学性 能和美观要求

高层建筑结构设计中平面不规则问题的分析与抗震措施

高层建筑结构设计中平面不规则问题的分析与抗震措施

之二十二,也高过了20%。

塔楼结构平面图勘察设计条件下的弹性时程以及不屈服,借助SATWE做出具体的验算以及分析;验算弹塑性静力的时候使用了EPDA,按照斜向以及水平作用正交对指标进行了计算。

3.2结果(1)分析周期。

无论是SATWE计算,还是GSSAP计算,都可以有如下所得:周期1、2都是平动的,周期3是扭转的。

比较扭转周期以及第1平动周期,二者之间的比值小于0.85这个限值,为0.807。

平动周期在两方面行比较接近,也就是运动性能没有很大的差距。

(2)水平位移。

不同水平荷载的条件下,弹性层间位移角即使在最大的条件下,也符合规范的具体要求。

(3)抗剪承载力值和层间刚度的比值。

伴随楼层增加,本建筑物的侧向高度呈均匀状态的减小。

不同工况条件下,规范的具体要求都能够得到满足:刚度最小的为首层刚度,和上一层相比,首层的刚度仅仅是其上一层的79%,和上面三层对应的平均刚度相比,首层的高度是平均水平的84%;在抗剪承载力方面,首层也是最小的,是其上一层剪承载力的95%,符合规范对应的具体要求。

(4)反应谱法其余主要计算结果。

计算时所选振型数满足规范要求,剪重比均大于1.6%,可不另作楼层地震剪力调整。

刚重比大于1.4,可通过整体稳定验算,且由于该值大于2.7,可不考虑重力二阶效应。

框架所承担的最大倾覆弯矩比例小于50%,底层框架承担的倾覆弯矩为45.6%,说明本工程结构布置的剪力墙数量较为合理,两程序在底部剪力及底部倾覆弯矩较接近,说明其计算结果可互相印证。

(5)弹性时程分析。

计算时选取了1条程序所提供的二类场地人工波数据以及2组天然波数据,经比对该3组波的计算结果,均符合《高规》3.3.5条要求。

(6)验算Pushover,中震和大震条件下的不屈服性能。

计算的过程中,大震推覆验算是依据X、Y向展开的。

结果告诉我们:推覆性能点在所有方向上对应的层间最大位移角应该要比限值小,这样结构体系能够在大震的情况下,具有抗震的功效。

结构类型特别不规则的判别

结构类型特别不规则的判别

不规则程度为下列情况之一为特别不规则(上海):1)结构平面凹进或凸出的一侧尺寸(从抗侧力构件截面中心算起)大于相应投影方向总尺寸的40%;2)结构平面突出长度超过连接宽度抗震设防烈度7度时为2倍,抗震设防烈度8度时为1.5倍;3)结构平面为角部重叠的平面图形或细腰形平面图形,其中角部重叠面积小于较小图形的25%,细腰形平面中部两侧收进超过平面宽度50%;4)楼板的尺寸和平面刚度急剧变化,例如,有效楼板宽度小于该层楼板典型宽度的40%,或开洞面积大于该层楼面面积的35%(包括错层);5)等效剪切刚度小于相邻上层的60%,或小于其上相邻三个楼层平均值的70%;6)除顶层或裙房(辅楼)高度小于主楼20%外,局部收进的水平向尺寸大于相邻下一层的30%;7)下部楼层水平尺寸小于上部楼层水平尺寸的0.8倍,或整体外挑尺寸大于5m;8)转换层位置超过《高规》规定的高位转换层的结构(即抗震设防烈度7度:5层及其以上,抗震设防烈度8度:3层及其以上);9)错层结构(错层高度≥1200mm)、连体结构、或多塔楼建筑;10)抗侧力结构的层间受剪承载力小于相邻上一层的65%;11)塔楼位置明显偏置的大底盘(裙房)建筑;12)厚板转换的建筑;13)巨型结构的高层建筑;14)单跨框架结构的建筑;15)超出规范规定的混合结构体系(如下部为钢筋混凝土结构、上部为钢结构)的建筑。

同时具有下述三项及三项以上不规则的为特别不规则(上海):1)楼层的最大弹性水平位移(或层间位移)大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍(计算该指标时应采用刚性楼板模型);2)建筑平面长宽比抗震设防烈度7度大于6.0,抗震设防烈度8度大于5.0;3)结构平面凹进或凸出的一侧尺寸(从抗侧力构件截面中心算起)大于相应投影方向总尺寸的30%;4)结构平面突出部分长度超过连接宽度;5)楼板的尺寸和平面刚度急剧变化,例如,有效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%;6)等效剪切刚度小于相邻上层的70%,或小于其上相邻三个楼层等效剪切刚度平均值的80%;7)除顶层或裙房(辅楼)高度小于主楼20%外,局部收进的水平向尺寸大于相邻下一层的25%;8)下部楼层水平尺寸小于上部楼层水平尺寸的0.9倍,或整体外挑尺寸大于4m;9)带转换层(抗震设防7度转换层位于5层以下,抗震设防烈度8度转换层位于3层以下)、加强层、或错层(错层高度≥600mm或梁高)等复杂结构的建筑(任一类型按一项不规则计);10)抗侧力结构的层间受剪承载力小于相邻上一层的80%。

SATWE计算中关于建筑平面不规则的判定

SATWE计算中关于建筑平面不规则的判定

1 0 2. 4 1 38 . 1 73 0.
3 00. 0 1 91 /1 3. 30 0 0. 1 8 /1 78. 30 0 0.
19 61 19 61
1 25 5 1 25 5
14 .0 93 .9 14 .0
8. 03 1 38 .
坤在文献【 】 1 中给 出了判断结构 质量与 刚度不均匀 、 不对
称 的具 体方法 :根据楼层最大 位移与平 均位移 的 比值判 “
断, 若该值超过扭转位移 比下 限 12较多 ( . 比如 A级高 度
[ 收稿 日期 ] 05 — 1 20 1~2 0

在选择偶然偏心 的情况下 考虑扭转 耦联时结 构 的振 动周期( ) x, 秒 、 Y方 向的平动系数 、 扭转系数 :
板为结构的嵌 固端 。具体方案见 图: 计算结果如下 :
在选择双 向地震 力的情况 下考虑扭 转耦联 时结构 的
振动周期 ( 、 Y方 向的平动系数 、 秒) x, 扭转系数 : 振型号 期 转 角 平 动系数 ( 周 X+Y 扭转系数 ) 况, 即质量与刚度分 布明显不均匀 、 对称 的结构。黄 小 不
工程概 况 : 工 程 为武 汉地 区一 高层 住宅 结 构 ( 6 本 1
层) 钢筋混凝土框架 一剪力 墙结 构 ( 含一层地 下室 ) 筑 建 高度为 5 . 0 建 筑面 积 64 . m 1 2 m, 4 7 3 抗 震 设 防烈 度 为 6 度, 抗震设防类别为丙类 , 设计基本 地震加速 度为 0 0 g .5 。
1 8 5. /1 8
66 .8
1 35 . 5. 35 1. 31 4. 5 0 1. 4 2 2. 2 8 1. 2 1 1. 2 7

谈平面不规则高层建筑结构设计

谈平面不规则高层建筑结构设计

谈平面不规则高层建筑结构设计提纲:1. 平面不规则高层建筑结构设计的特点和优劣2. 平面不规则高层建筑结构设计中的挑战和解决方案3. 案例分析:平面不规则高层建筑结构设计的成功案例4. 平面不规则高层建筑结构设计中的技术革新和发展趋势5. 建筑专家在平面不规则高层建筑结构设计中的角色和责任一、平面不规则高层建筑结构设计的特点和优劣平面不规则高层建筑结构设计的特点是指其躯体平面处于不规则形状,因此其结构设计多具有复杂性、独特性、适应性等特点。

这一设计方式通常会产生很多截面不同的构件,同时在楼层的高差和局部结构的特殊需求方面,更具挑战性,因而需要某些特殊技术来解决或优化。

在平面不规则高层建筑结构设计中,采用已有技术和材料以完成复杂结构是其优劣势之一。

在某些情况下,平面不规则的建筑更有可能拥有更好的视觉效果与更高的价值。

然而,良好的视觉效果和更高的价值对于周围的环境和社会价值并不总是一致的,同时当建筑的性能成为最终结果的决定因素时,实现功能性强大的平面不规则高层建筑是有挑战性的。

二、平面不规则高层建筑结构设计中的挑战和解决方案平面不规则高层建筑结构设计面临的主要挑战来自于几个方面:首先,这些建筑中使用的构建材料和技术还处于发展阶段,这会使设计师需要思考如何在保证建筑结构刚性的同时减轻建筑负荷和提高建筑耐用性。

其次,平面不规则高层建筑结构通常存在多层结构的问题,在这种情况下,需要设计更为复杂的结构系统,以使结构在各个方向和层间均保持平衡,从而满足建筑高度和形态上的要求。

三、案例分析:平面不规则高层建筑结构设计的成功案例1. 中国塔中国塔位于中国澳门,由金蝶集团楼盘开发,其中一代表了现代建筑技术和极具视觉效果的设计。

这座塔楼平面不规则,拥有七个角,折叠的外墙设计对建筑结构提出了巨大的挑战。

为了解决这个问题,设计师采用了高强度钢材,以确保建筑的刚性,同时将塔楼与外部性能进行了协调,实现了平衡和稳定性。

这种结构设计提供了在紧凑空间内最大化底层商务区域的足够空间的可能性。

高层建筑结构中平面布置不规则问题的探讨

高层建筑结构中平面布置不规则问题的探讨

高层建筑结构中平面布置不规则问题的探讨说到高层建筑,大家脑袋里第一时间想起的是什么?大多是那些摩天大楼,挺拔入云,像一根根笔直的钢筋笔,写下了现代都市的天际线。

看着这些高楼大厦,咱们的眼光不免停留在那钢铁水泥打造的表面,琢磨着这些建筑的结构到底是怎么支撑住的。

尤其是有些楼盘,形状一看就不规则,像个大写的“L”字、像个弯弯曲曲的蛇,怎么看都不像是“标准”建筑。

别急,今天咱就聊聊这些平面不规则的高楼建筑结构,分析下它们为什么能够屹立不倒,又是怎样解决这些“不按常理出牌”的问题的。

说实话,不规则的平面布置,这可是高层建筑设计中的一大挑战。

咱们从“规则”说起。

大多数传统建筑都是方方正正的形状,大家可能会想,“那不是挺好的吗?简单直接,谁看了不懂”。

可是,城市的发展,尤其是人口激增,空间变得越来越有限了。

土地稀缺,建筑师们也得脑袋开花,得想办法在有限的空间内尽量实现最大化的利用,既要容纳更多的人,又要不失美观。

可一旦建筑物的形状开始变得不规则,问题就来了,支撑力、结构安全这些都得重新考虑。

比如说,有些建筑的外形就像个“Z”字形,或者一边宽,一边窄。

咱们就举个例子,一座高楼的底层是宽敞的商业空间,上面逐渐收缩,像一个逐步收紧的沙漏。

看上去好像挺时尚,挺前卫,但一旦建筑物的外形不规则,重心就不再集中,这就意味着,承重结构要重新调整,以保证楼体的稳定性。

否则,一旦风大,楼就可能被吹得“东倒西歪”,那可就不妙了。

楼体的各个部分需要承受的力量都不一样,尤其是高楼大厦,风压、地震这些自然力的影响都会不同。

建筑物上层的“高个子”部分,可能受到的风压比底部大得多,尤其在高空的时候,风力的影响更为显著。

这就要求设计师必须根据不同楼层的具体情况,做出相应的结构调整。

为了避免楼体不规则形状带来的问题,设计师们往往会在建筑内部设置一系列支撑体系,就像给不规则的楼形加上“筋骨”,让它在风雨面前也能稳稳当当。

不过话说回来,解决这些问题并不是一蹴而就的,得靠一些巧妙的设计。

基于高层建筑结构设计中平面不规则问题的分析与处理

基于高层建筑结构设计中平面不规则问题的分析与处理摘要:现阶段,我国的高层或超高层建筑不断兴起,在针对高层建筑进行结构设计的过程中,要充分把握平面不规则等相关问题,对于问题的根源进行全面深入的探究,然后提出和落实更科学可行的处理方案,以此确保该类问题得到更有效的解决,为整体工程结构设计水平的提升提供必要的支持。

基于此,下文重点分析高层建筑结构设计过程中平面不规则的相关问题以及处理措施等内容。

关键词:高层建筑;结构设计;平面不规则问题;处理措施引言从实践情况可以看出,在针对高层建筑进行结构设计的过程中,往往有很多不规则的设计内容,在平面不规则设计方面,往往存在一定的问题,例如,在水平方向上因为不规则结构可能出现一定程度的偏心测力,这对于结构的抗侧力会造成十分严重的影响。

在这样的情况下,就需要高度重视相关问题,然后切实提出和落实切实可行的处理措施,以此确保高层建筑结构更加安全稳定,有更加良好的施工效能。

1.基于高层建筑结构设计中平面不规则问题的分析通常我们所称之为的高层建筑主要指的是10层及10层以上或房屋高度大于28m的住宅建筑,以及房屋高度大于24m的其他高层民用建筑。

在针对高层建筑结构进行设计的过程中,针对有些建筑来说,不可避免地会涉及一定程度的不规则的情况。

针对此类情况而言,需要着重做好不规则设计工作,例如,结构平面布置不规则、结构竖向布置不规则设计等相关内容,针对平面不规则设计而言,在具体的设计过程中,可能存在一定的问题或者不足,在平面不规则结构方面有比较典型的体现方式,首先是扭转不规则高层建筑结构,其中包括扭转位移比大于1.2的结构及任一层的偏心率大于15%或相邻层质心水平距离大于相邻层中该方向较大边长的15%。

其中扭转位移比大于1.2,主要指的是在考虑偶然偏心影响的规定水平地震力作用下,楼层两端抗侧力构件弹性水平位移或层间位移的最大值大于该楼层平均值的1.2倍。

其次,是建筑结构平面轮廓不规则高层建筑结构,通常情况下这类建筑的不规则设计主要指的是平面的长度和窄度都超过既定的标准,由此导致整个平面结构凹陷进去,而凸出来的部分通常情况下又太细,在这样的情况下就会导致楼板局部的连接不够持续稳定,没有连续性或者凹凸情况并没有呈现出均匀规律的状态,不够规则,进而导致楼板局部缺乏应有的连续性,对于工程的质量也会造成一定程度的影响。

建筑结构不规则判别

结构设计归纳系列之二
建筑结构不规则性判别
2015.11
主要内容
❖ 一.规范规定 ❖ 二.几个术语 ❖ 三.设计目标及依据 ❖ 不规则分类及判定
一、规范规定
一、规范规定
一、规范规定
一、规范规定
二、几个术语定义
❖ 根据《抗规》3.4.1条文解释:
特别不规则:具有较明显的抗震薄弱部位,可能引起 不良后果者,参考界限见《超限高层审查要点2015》 ,主要分为:
》3.4、3.5节判断 ❖ 上述判断在方案阶段结构专业亟需介入
超限高层审查要点的规定
超限高层审查要点的规定
超限高层审查要点的规定
超限高层审查要点的规定
所以高层建筑凡是符合表1~5者,均应 按《审查要点》规定在初步设计阶段报 省超限高层建筑工程抗震设防专家委员 会进行超限专项审查。
四、不规则判定
❖ 外挑大于10%和4米 ❖ 多塔
注:4a、4b不重复计算不规则项
竖向不规则之刚度突变
❖ 刚度计算应根据结构类型不同选用不同的计算方法
竖向不规则之尺寸突变
竖向不规则之构件间断
❖ 上下层墙、柱、支撑不连续 ❖ 含加强层、连体类
竖向不规则之承载力突变
❖ 相邻层受剪承载力变化大于80%
竖向不规则之局部不连续
有效楼板宽度和典型楼板 宽度都是从楼板传递水平 地震作用的角度来度量
楼电梯间周边有墙与连梁 围合,可保证水平力有效 传递,故不按开洞考虑
楼电梯间周边墙分散或整 体性差(单片墙或无连梁 封闭围合)则无板部分按 开洞考虑
悬挑部分不计入典型楼板 宽度、有效楼板宽度计算
竖向不规则
❖ 结构立面剖面布置的关键是避免承载力和楼层刚度 突变,避免出现薄弱层(率先屈服,出现较大的塑 性变形集中)并确保竖向力传递的有效性

建筑结构不规则程度的判断


46
简答题:
简述哪些结构布置类型属平面不规则?
47
六、竖向不规则
序 号 B1 B2 竖向不规则内容 侧向刚度(注5)小于 相邻上层的 侧向刚度小于其上相邻 三层平均值的 一般不 规则 70% 80% 特别不 超限程度 规则 控制 60% 70%
48
地下1层(层高3000),地上18层(底层3600、标准 层2850)剪力墙结构住宅。 剪切刚度判断
• 多层结构周期比控制
20
多层钢结构实例:典型两个主轴方向动力特性相差太大 振型号 周 期 转角 平动系数 (X+Y) 扭转系数 1 0.9746 179.98 1.00 (1.00+0.00) 0.00 2 0.7078 173.03 0.02 (0.02+0.00) 0.98 3 0.4251 90.01 1.00 (0.00+1.00) 0.00
i层剪力i层层间位移52六竖向不规则竖向不规则内容一般不规则特别不规则超限程度控制b1侧向刚度注5小于相邻上层的7060b2侧向刚度小于其上相邻三层平均值的8070b3竖向抗侧力构件不连续见转换层53竖向不规则内容一般不规则特别不规则超限程度控制b4层间受剪承载力小于相邻上层的8065b5除顶层或高度小于主楼总高20的裙房高规外局部收进的水平尺寸大于相邻下一层的2530等效剪切刚度收进层小于下层的50连续两次收进后小于未收进层的30545556竖向不规则内容一般不规则特别不规则超限程度控制b4层间受剪承载力小于相邻上层的8065b5除顶层或高度小于主楼总高20的裙房高规外局部收进的水平尺寸大于相邻下一层的2530等效剪切刚度收进层小于下层的50连续两次收进后小于未收进层的30b6下部楼层水平尺寸小于上部楼层水平尺寸90或外挑4m80或外挑5mb15对多高层均有要求b6仅对高层57选择题

基于平面不规则高层商住楼结构设计分析与调整措施探讨


关 键 词 : 高 层 商 住 楼 ; 平 面 不 规 则 ; 结 构 设 计 ; 外 荷
载 ;调 整 措 施 中 图 分 类 号 :T 3 U1 文 献 标 识 码 :B 文 章 编 号 :17 4 1 (0 0 3— 0 5— 3 6 2— 0 1 2 1 )0 04 0
0 引 言
湖 南 某 商 住 综 合 楼 2号 楼 建 筑 为 地 下 1层 、 地 上 2 3 层 ,其 中裙 楼 2层 ,总 建 筑 面 积 为 2 0 建 筑 物 平 面 630 m 。 呈八 字 型 , 上 部 由 四 个 住 宅 单 元 组 成 ,总 长 为 6 .9 5 4 0m, 总宽为 1 .5m。 由于场地 的极不规 则 ,使其 建筑结构平面 8 6 设计 时多处局部 凸凹 ,整体 呈锯齿形 状 ,共有 十多个块体 ,
2 1 年 第 3期 00
第 3 6卷 总第 1 5期 5
S c u n Bu l i e M atral i h a id n ei s
f之材 』
・4 ・ 5
2 1 年 6月 00
基 于 平 面 不 规 则 高 层 商 住 楼
结 构 设 计 分 析 与 调 整 措 施 探 讨
I巳

}- l l L

图 1 综 合楼 平 面 布 置及 连 廊 设 置 图
通过对设计 方案 的初步 调整 ,从 而使 本建 筑基 本 能满
形成 二十条不等边 的不规则多边形 。
足《 高规》 . . 条 的规定 ,即 :在 高 层建 筑 的独 立 结构 单 43 1 元 内 ,宜使结 构平 面形状 简单 ,规 则 、刚度和 承 载力分 布
马 继 华
( 湖南 省 轻工 纺织 设计 院 ,湖南 长 沙
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r:形心与转心在 垂直于地震方向
的距离
2
1
r 0.5B 1.0B 1.5B 2.0B 2.5B
楼层位移比:几何解释
控制位移比1.2时,相当于
控制转心与形心的r 距 2.离 5B
转动中心 CR
楼面形心CS r=2.5B
B
B
B
楼层位移比:几何解释
控制位移比1.4时,相当于
控制转心与形心的r距 1离 .25B
楼层位移比:如何进行立面控制
➢通过考察位移比的竖向变化规律我们知道, 结构底部的位移比理论上会趋于无穷大, 控制底部楼层的位移比有时难以实行。
➢笔者建议,仅对于楼面标高高于结构主体 总高度1/4的楼层,才按照规范限值控制 其位移比;对于地下室以及楼面标高不高 于结构主体总高度的1/4的楼层,可以不 必控制其位移比。
➢ L/B>6 (抗震设防烈度6,7度) ➢ L/B>5 (抗震设防烈度8,9度)
凹进太多
➢ l/Bmax >0.35 (抗震设防烈度6,7度) ➢ l/Bmax >0.30 (抗震设防烈度8,9度)
凸出太细
➢ l/b >2.0 (抗震设防烈度6,7度) ➢ l/b >1.5 (抗震设防烈度8,9度)
20 )
(0 z 1)
H
L : 垂直于地震方向的楼面 边长; e : 质量偏心距 H : 结构总高度; EI / GJ : 抗弯 / 抗扭刚度
结构相对标高z/H
楼层位移比:竖向变化规律
扭转位移成分竖向变化规律
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0 0 1 2 3 4 5 6 7 8 9 10 扭转位移成分F(z/H)
扭转不规则
➢ 单向偶然偏心地震作用下的位移比超过1.2
扭转特别不规则
➢ A类高层建筑:单向偶然偏心地震作用下的位移比 超过 1.5,或者Tt/T1>0.90
➢ B类高层建筑、混合结构、复杂高层:单向偶然偏 心地震作用下的位移比超过 1.4,或者Tt/T1>0.85
平面不规则的类型:凹凸不规则
平面太狭长
• 结构扭转效应随周期比的变化曲线
周期比接近1.0时,扭 转效应出现峰值
结构周期比:扭转效应与周期比
• 周期比接近1.0时,扭转效应出现峰值,故应 使周期比尽量远离1.0
• 理论上宜控制双向周期比均满足限值:
Tt 0.9(0.8)5 Tt 0.9(0.8)5
Tx1
Ty1
• 实际运用时,可采用较松的做法,满足下式即可:
楼层位移比:如何进行立面控制
• 控制1/4总高处的位移比小于1.5相当于控 制顶层位移比小于(1+0.5/3.68)=1.136
• 控制1/4总高处的位移比小于1.4相当于控 制顶层位移比小于(1+0.4/3.68)=1.109
• 控制1/4总高处的位移比小于1.2相当于控 制顶层位移比小于(1+0.2/3.68)=1.054
楼层位移比:基本概念
• 楼层位移比的概念
Dmax
D
• 楼层层间位移比的概念
max
楼层位移比:相关参量取值
➢ 最大位移:墙顶、柱顶节点的最大位移 ➢ 平均位移:墙顶、柱顶节点的最大位移与最小位
移之和除2 ➢ 最大层间位移:墙、柱层间位移的最大值 ➢ 平均层间位移:墙、柱层间位移的最大值与最小
• 如此看来,这个控制已经足够严格了!
3.结构周期比
• 扭转效应与周期比的关系 • 如何选取Tt,Tx1,Ty1
结构周期比:扭转效应与周期比
• 结构的地震扭转反应与两个因素有关:一 是偏心率,二是周期比。用公式表示就是:
结构相对扭转反应 偏心率 周期比
r
u
e r
,
Tt Tl
结构周期比:扭转效应与周期比
平面不规则的类型:凹凸不规则
平面太狭长 凹入太多
凸出太细
平面不规则的类型:凹凸不规则
狭长平面实例
平面不规则的类型:凹凸不规则
凹 凸 不 规 则 平 面 实 例
平面不规则的类型:凹凸不规则
凹 凸 不 规 则 平 面 实 例
平面不规则的类型:楼板局部不连续
一般不规则
➢ 有效宽度Be小于典型宽度B的50%:Be<0.5B
关于平面不规则结 构的判断及调整
目录
1. 平面不规则的类型 2. 楼层位移比 3. 结构周期比 4. 楼面凹凸不规则、楼板不连续结构的
调整和设计 5. 结构扭转效应控制:扭转不规则结构的
调整和设计
1.平面不规则的类型
• 扭转不规则 • 凹凸不规则 • 楼板局部不连续
平面不规则的类型:扭转不规则
控制位移比1.5时,相当于
控制转心与形心的r距 1离 .00B
控制位移比 2.0时,相当于
控制转心与形心的r距 0离 .50B
楼层位移比:竖向变化规律
笔者推导了规则单塔楼 在偶然
偏心地震作用下的位移 比公式 :
(
)
1
20 LeEI 11 H 2GJ
F ( )
F ( )
11(3 2 ) 2 ( 3 10
Tt
0.9(0.85)
maxTx(1,Ty1)
结构周期比:如何选取Tt,Tx1,Ty1
Tt :以扭转为主的第一周期 Tx1 :以X向平动为主的第一周期 Ty1 :以Y向平动为主的第一周期
结构周期比:如何选取Tt,Tx1,Ty1
➢ 开洞面积At大于楼面面积A的30%:At>0.3A
特别不规则
➢ 有效净宽度Be小于5米或一侧楼板最小有效宽度小于 2米
平面不规则的类型:楼板局部不连续
相对有效宽度太小(<50%)
相对开洞面积太大(>30%) 绝对有效宽度太小
(总宽<5m或单侧<2m)
2.楼层位移比
• 基本概念 • 计算条件 • 相关参量取值 • 几何解释:位移比与形心转心的关系 • 竖向变化规律,位移比立面控制
单向地震计算计入偶然偏心
双向地震计算不计入偶然偏心 单向地震计算计入偶然偏心
取不利结果判断
取不利结果判断
楼层位移比:几何解释
➢控制楼层的位移比等价于控制楼层
形心与楼层转动中心的距离 r ➢位移比与转动中心的关系:
x
1
By 几何解释
位移比1 B
4
2r
3
B:垂直于地震方 向的楼面宽度
值之和除2
➢ 不考虑无柱节点的位移!
楼层位移比:计算条件
➢是对结构整体抗扭特性的衡量,是结构 的全局指标,非局部指标。
➢为了保证位移比的全局意义,计算位移 比时,应采用强制刚性楼面假定
➢规范仅对地震作用要求位移比控制
楼层位移比:计算条件
单向地震计算不计偶然偏心
位 移 比 <1.2
位移比>=1.2
相关文档
最新文档