三视图练习题答案

合集下载

三视图及尺寸标注练习汇总(含答案)

三视图及尺寸标注练习汇总(含答案)

三视图及其尺寸专题练习1.根据立体图,请在答卷Ⅱ的题图中补全俯视图和左视图所缺的线条。

(2008.6会考)2.王凯同学设计的小型木质书架(如图甲所示)采用了图乙所示的燕尾形榫接结构。

请完成下列各题。

(2010.6会考)(1)下图为图乙A板的三视图,请用铅笔在答卷II的题图中,补全三视图所缺的线条。

(2)如果要制作此书架(不考虑加工余量),至少需要木板的大小是▲(请在下列选项中选择一项,填写序号)A.240×300 B.300×300 C. 360×300 D.600×2403. 如图甲所示是小黄设计的木质台灯支架,图乙是木条2的立体图。

请完成下列各题。

(2011.6会考)(1)下图为木2(图乙)的三视图,请用铅笔在题图中,补全三视图所缺的线条。

(2)制作完成后,发现该台灯支架的稳定性不够好,小黄想通过加长木条来提高稳定性,则图甲中适合加长的木条是________。

(填写木条编号)4..图甲是一款台灯。

支撑架、底座中的木条可相对转动,以调整台灯照明角度和姿势。

请完成下列各题。

(2012.6会考)(1)图乙为该台灯中一根木条的立体图及其三视图,请用铅笔在答卷n的题图中,补全三视图所缺的图线。

(2)要实现木条间可转动,连接方式应该选择▲ (选填“铰连接”或“刚连接”)。

5.如图甲所示的榫接结构,由木条①和木条②组成。

请完成下列各题。

(2013.6会考)图甲(1)图乙为木条①的立体图及其三视图,请用铅笔在题图中,补全三视图所缺的图线。

图乙(2)木条②的立体图应该是_________。

6.根据立体图,补全俯视图和左视图中所缺漏的图线。

(2008.10 高考)7.根据立体图补全三视图中所缺的图线。

(2009.3 高考)8.根据立体图补全三视图中所缺的图线。

(2009.9 高考)9.根据轴测图,补全三视图中缺少的图线。

(2010.3高考)10.根据轴测图,补全三视图中缺少的图线。

高三专项训练:三视图练习题(一)

高三专项训练:三视图练习题(一)

高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A. B. CD .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. B. C D. [7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A . B.C. D.1362942π+3618π+9122π+9182π+正视图俯视图9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .43π B . 163π C .1912π D . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+侧视图主视俯视第8题图俯视图侧视图 正视图12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .B .C .D .18.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π- π12π34π3π312正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .a 2C a 2D 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B .24+3π C .20+4π D .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312.23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )12正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为()A.942π+B.3618π+C.9122π+D.9182π+、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm)可得该几何体的体积是()A.313cm B.323cmC.343cm D.383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形 B. 圆柱 C. 立方体 D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为()正视图侧视图俯视图332正视图俯视图图1AB .12C .32 D1+28.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+ C 、643,32+D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是( ) A .21cm 3 B .32cm 3 C .65cm 3 D .87cm 3正视图俯视图图(1)侧(左)视图 1111130.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B.C.D. 32.已知几何体其三视图(如图),若图中圆半径为1,等腰三角形腰为3,则该几何体表面积为 ( ) A .6π B .5π C.4π D.3π2π+4π+2π4π+正视侧视俯视俯视..A .2,23B .22,2D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πcm 3C .36πcm 3D .48πcm 335 (A )348cm (B )324cm (C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.二、填空题 正视图 左视图俯视图正视图侧视图 俯视图 第6题 ·38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.主视图 左视图俯视图3主视图 俯视图 侧视图42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD 是直角梯形,则此几何体的体积为 ;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是1正视图俯视图左视图45.一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为的正三角形,其俯视图轮廓为正方形,则其体积是_________.48. 某几何体的三视图如图所示,则它的体积是___________俯视图m 3m 249.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

三视图含答案

三视图含答案
考点:三视图和表面积. 19.(15 年新课标 2 理科)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图, 则截去部分体积与剩余部分体积的比值为
(A) 【答案】D
1 8
(B)
1 7
(C)
1 6
(D)
1 5
【解析】 由三视图得, 在正方体 ABCD A1 B1C1 D1 中, 截去四面体 A A1 B1 D1 , 如图所示, , 设正方体棱长为 a ,则 VA A1B1D1
图 1-1 A. C. 17 27 B. D. 5 9 1 3
深圳群星个性化 微信号 1246957771 8
10 27
6.C 8.[2014·全国新课标卷Ⅰ] 如图 1-1,网格纸的各小格都是正方形,粗实线画出的是一 个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 8.B
深圳群星个性化 微信号 1246957771
13
再根据几何体的形状计算出表面积。 23.【2012 高考真题天津理 10】一个几何体的三视图如图所示(单位:m) ,则该几何体的
体积为_________m3. 【答案】 18 9 【解析】 根据三视图可知, 这是一个上面为长方体, 下面有两个直径为 3 的球构成的组合体, 两个球的体积为 2 为 18 9 。
1 3
8π 3 (m ) . 3
考点:1.三视图;2.几何体的体积.
深圳群星个性化 微信号 1246957771
5
G2 空间几何体的三视图和直观图 8.[2014·安徽卷] 一个多面体的三视图如图 1-2 所示,则该多面体的体积是(
)
图 1-2 A. 23 3 B. 47 6 C.6 D. 7

三视图问题全解析

三视图问题全解析

例 2.(天津卷)一个几何体的三视 图如图所示(单位:m),则该几何体的 体积为______m3.


考点突破
题型一 与面积或体积综合
例 3.(北京卷)某三棱锥的三视图如图所 示,该三棱锥的表面积是( )
A.28+6 5
✔B.30+6 5 C.56+12 5 D.60+12 5
例 4.(湖北卷)已知某几何体的三视图如图所 解法 1:(加)下面是一个圆柱,上面是
例 6.(湖南卷)某几何体的正视图和侧视图均如图所示,则 该几何体的俯视图不.可.能.是( )

例 7.(陕西卷)将正方体(如图①所示)截去两 个三棱锥,得到图②所示的几何体,则该几何体的 左视图为( )

解析: AD1 的投影是左上到右下的实线, B1C 的投影是左下到右上的虚线.
备考指津
●高考预测 三视图将一直是新课标高考的一个热点,考查形式以选择题和填
考点透视
1.考纲要求:
(3)考查难度: 一般为中低档题,有些题目较难.
必备技能
1.知识要求
从前面向后面正投影的投影图叫做正视图(主视图); 从左面向右面正投影的投影图叫做侧视图(左视图); 从上面向下面正投影的投影图叫做俯视图.
注意事项:
2.能力及数学思想方法要求
技巧传播
例 1.(辽宁卷)一个几何体的三 视图如图所示.则该几何体的表面积 为________.
空题为主,难度中等,对空间想像能力有较高的要求.
●训练指南
小试身手
1.(广东卷)某几何体的三视图如图所示,它的体积为( ) A.72πB.48π C.30πD.24π 答案:C
示,则该几何体的体积为( )
圆柱的一半,所以 V=π×12×2+12×π×12×2=3π.

初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】

29.2三视图第1课时简单几何体的三视图知能演练提升能力提升1.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()2.已知底面为正方形的长方体如图所示,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.下列几何体的主视图既是中心对称图形又是轴对称图形的是()4.如图,将Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是()5.如图,该几何体的俯视图是()6.如图,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()7.由若干个大小、形状完全相同的小立方块所搭成的几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()8.下图中右面的三视图是左面棱锥的三视图,能反映物体的长和高的是()A.俯视图B.主视图C.左视图D.都可以创新应用★9.如图,这是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可恰好堵住圆形空洞,又可恰好堵住方形空洞的是()★10.5个棱长为1的小正方体组成如图所示的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位);(2)画出该几何体的主视图和左视图.能力提升能力提升1.A2.B3.D4.D Rt△ABC绕直角边AC旋转一周所得到的几何体是圆锥,所以它的主视图是等腰三角形.5.B6.A要注意看的方向,本题是从上面看,即俯视,圆柱从上面看应该是圆形,正方体从上面看应该是正方形,并且它们是并列摆放的.7.A8.B由实物图可以知道能反映长的视图是主视图和俯视图,能反映高的视图是主视图和左视图,故选B.创新应用9.B10.解(1)522(2)如图.第2课时复杂几何体的三视图知能演练提升能力提升1.已知一个水平放置的圆柱形物体如图所示,中间有一个细棒,则此几何体的俯视图是()2.手提水果篮抽象的几何体如图所示,以箭头所指的方向为主视图方向,则它的俯视图为()3.如图,该零件的左视图是()4.有一个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图,该几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()6.如图,桌面上的模型由20个棱长为a的小正方体组成,现将该模型露在外面的部分涂上涂料,则涂上涂料部分的总面积为.7.已知某几何体的示意图如图所示,请画出该几何体的三视图.8.已知一个槽形工件如图所示,它是长方体中间切去了一个小的三角块,工人师傅要得到它的平面图形,请你画出它的三视图.★9.如图,下列是一个机器零件毛坯和它的主视图,请画出这个机器零件的左视图与俯视图.创新应用★10.如图,下列是一个机器零件的毛坯,请画出这个机器零件的三视图.★11.已知由若干个完全相同的小正方体组成的一个几何体如图所示.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加几个小正方体?能力提升1.C2.A3.D4.C5.A6.50a27.解如图所示.8.解如图所示.9.解如图所示.创新应用10.解三视图如图所示.11.解(1)左视图和俯视图如下:(2)在第二层第二列的第二行和第三行可各加一个;在第三层第二列的第三行可加一个,在第三列的第三行可加1个,2+1+1=4(个).故最多可再添加4个小正方体.第3课时从视图到实物知能演练提升能力提升1.已知由几个小正方体所搭的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的主视图为()2.已知一个几何体的三视图如图所示,则该几何体是()3.已知一个几何体的三视图如图所示,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100π cm2D.200π cm24.已知一个由小正方体所搭的几何体如图所示,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小正方体的个数),其中不正确的是()5.已知一个几何体的三视图如图所示(其中a,b,c为相应的边长),则这个几何体的体积是.6.用若干个小正方体搭成一个几何体,它的主视图和俯视图如图所示,问:搭成这样的几何体,最少需要多少个小正方体?最多需要多少个小正方体?7.已知某工件的三视图如图所示,求此工件的全面积.创新应用★8.如果一个几何体是由多个小正方体堆成,其三视图如图所示,那么这样的几何体一共有多少种情况?能力提升1.D2.D3.D通过三视图知原几何体是一个底面直径为10 cm,高为20 cm的圆柱体.则S侧面=10π×20=200π(cm)2.故选D.4.B A是从左面看到的,C是从正面看到的,D是从上面看到的.5.abc6.解由主视图得到该几何体有三列,高度分别为2,3,2;由俯视图得第一列和第三列各有2个,但是第二列最少有5个,最多有9个.所以搭成这样的几何体,最少需要9个小正方体,最多需要13个小正方体.7.解由三视图可知,该工件是一个底面半径为10 cm,高为30 cm的圆锥,圆锥的母线长为√302+102=10√10(cm),圆锥的侧面积为1×20π×10√10=100√10π(cm2),圆锥的底面积为2102π=100π(cm2),所以圆锥的全面积为100π+100√10π=100(1+√10)π(cm2).即工件的全面积为100(1+√10)π cm2.创新应用8.解主视图、左视图、俯视图都是由4个正方形组成,所以该物体是由一些完全一样的小正方体构成,所以该物体可以是由8个完全一样的小正方体组成的大正方体如图(1),而且也可以保持图(1)中下面一层有4个小正方体,那么上面一层4块中缺少任意一块,或缺对角的2块,这七种情况的三视图都如题图所示.。

三视图习题50道(含答案)

三视图习题50道(含答案)

word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。

高三专项训练:三视图练习题

高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A .23B .22C .5D .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. 1B. 3 C 6 D. 2[7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )332正视图俯视图A .43πB . 163πC .1912πD . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则侧视图主视俯视22 312第8题图2俯视图 332 1侧视图 正视图1 1 1其左视图的面积是( ) (A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π12B .π34C .π3D .π31218.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π-正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .12a 2C .32a 2 D .3a 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312. 23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )A. 6+3B. 24+3C. 24+23D. 32正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm )可得该几何体的体积是( )A .313cmB .323cm C .343cm D .383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形B. 圆柱C. 立方体D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为( )A 32B .12C .32D 312+ 正视图侧视图俯视图 332正视图俯视图图128.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+C 、643,32+ D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是 ( )A .21cm 3B .32cm 3C .65cm 3 D .87cm 3 30.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为正视侧视俯视正视图俯视图图(1)侧(左)视图 11111A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+C. 2323π+D. 2343π+ 32.已知几何体其三视图(如图),若图中圆半径为1, 等腰三角形腰为3,则该几何体表面积为 ( )A .6πB .5πC .4πD .3π33.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为( )A .2,23B .22,2 D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πc m 3C .36πcm 3D .48πcm 3正视图 2 32 左视图俯视图正视图 侧视图俯视35.一个多面体的三视图分别是正方形、等腰三角形和矩形, 其尺寸如图,则该多面体的体积为(A )348cm (B )324cm(C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.二、填空题3主视图 俯视图 侧视图39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.31正视图俯视图左视图主视图 左视图俯视图43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是45.一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3m 46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是_________.主视图左视图俯视图48.某几何体的三视图如图所示,则它的体积是___________49.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

三视图(含答案)

立体几何三视图1. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π2. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. 20πB. 24πC. 28πD. 32π3. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A. 90πB. 63πC. 42πD. 36π4. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A. 13+23πB. 13+ 23π C. 13+ 26π D. 1+ 26π5.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A. 32B. 23C. 22D. 26.某几何体的三视图如图所示,则该几何体的体积是()A. πB. 2πC. 4πD. 8π7.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8 cm3B. 12 cm3C. 32cm33D. 40cm338.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为()A. 13B. 16C. 83D. 439.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A. 圆锥B. 三棱锥C. 三棱柱D. 三棱台10.堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺).答案是()A. 25500立方尺B. 34300立方尺C. 46500立方尺D. 48100立方尺11.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A. πB. 2πC. 3πD. 4π12.某棱柱的三视图如图示,则该棱柱的体积为()A. 3B. 4C. 6D. 1213. 某几何体的三视图如图所示,则它的体积是( )A. 8−2π3B. 64−16π3C. 8−π3D. 64−12π3答案和解析1.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉其中后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.2.【答案】C【解析】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.3.【答案】B【解析】【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.【解答】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10-•π•32×6=63π,故选:B.4.【答案】C【解析】【分析】本题考查的知识点是由三视图求体积,根据已知的三视图,判断几何体的形状是解答的关键.由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得.故,故半球的体积为:,棱锥的底面面积为:1,高为1,故棱锥的体积,故组合体的体积为:.故选C.5.【答案】B【解析】解:由三视图可得直观图,再四棱锥P-ABCD中,最长的棱为PA,即PA===2,故选:B.根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.本题考查了三视图的问题,关键画出物体的直观图,属于基础题.6.【答案】A【解析】解:由三视图可知,该几何体为一圆柱通过轴截面的一半圆柱,底面半径直径为2,高为2.体积V==π.故选:A.由三视图可知,该几何体为底面半径直径为2,高为2的圆柱的一半,求出体积即可.本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.7.【答案】C【解析】解:由已知中的三视图可得,该几何体是一个正方体与一个正四棱锥的组合体,且正方体的棱长为2,正四棱锥的高为2;所以该组合体的体积为V=V 正方体+V 正四棱锥=23+×22×2=cm 3.故选:C .根据已知中的三视图可分析出该几何体是一个正方体与一个正四棱锥的组合体,结合图中数据,即可求出体积.本题考查了由三视图求体积的应用问题,是基础题目.8.【答案】D【解析】 解:由三视图和题意知,三棱锥的底面是等腰直角三角形,底边和底边上的高分别为、,三棱锥的高是2,∴几何体的体积V==,故选:D .由三视图和题意知,三棱锥的底面边长和三棱锥的高,由锥体的体积公式求出几何体的体积.本题考查由三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.9.【答案】C【解析】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形,则可得出该几何体为三棱柱(横放着的)如图.故选C .如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形,易得出该几何体的形状.本题考查简单几何体的三视图,考查视图能力,是基础题.10.【答案】C【解析】解:由已知,堑堵形状为棱柱,底面是直角三角形,其体积为立方尺.故选C.由三视图得到几何体为横放的三棱柱,底面为直角三角形,利用棱柱的体积公式可求.本题主要考查空间几何体的体积.关键是正确还原几何体.11.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,圆锥的底面半径为2,高为3,圆锥的体积为V圆锥=.此几何体的体积为.故选:B.由三视图可知:此几何体为圆锥的一半,即可得出.本题考查了由三视图恢复原几何体的体积计算,属于基础题.12.【答案】C【解析】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S=×(2+4)×2=6,棱柱的高为1,故棱柱的体积V=6.故选:C.由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.13.【答案】B【解析】解:由题意,几何体的直观图是正方体挖去一个圆锥,体积为=64-,故选B.由题意,几何体的直观图是正方体挖去一个圆锥,即可求出体积.本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.。

三视图练习题

三视图练习题一、基本概念题1. 请简述三视图的概念及其作用。

2. 三视图包括哪三个视图?分别表示物体的哪些信息?3. 在三视图中,主视图、俯视图和左视图之间的位置关系是怎样的?二、识图题(1)正方体(2)长方体(3)圆柱体(1)球体(2)圆锥体(3)圆环体(1)三棱柱(2)四棱锥(3)六棱柱三、绘图题(1)一个长方体,长、宽、高分别为10cm、6cm、4cm。

(2)一个圆柱体,底面直径为8cm,高为10cm。

(3)一个圆锥体,底面直径为6cm,高为8cm。

(1)一把直尺(2)一个手机(3)一个茶壶四、分析题(1)主视图为矩形,俯视图为圆形,左视图为矩形。

(2)主视图为三角形,俯视图为矩形,左视图为三角形。

(1)主视图、俯视图和左视图均为正方形。

(2)主视图、俯视图和左视图均为圆形。

五、应用题(1)主视图为长方形,长、宽、高分别为10cm、6cm、4cm。

(2)主视图为圆形,直径为8cm,高为10cm。

(1)一个长方体木箱,长、宽、高分别为60cm、40cm、20cm。

(2)一个圆柱形水桶,底面直径为40cm,高为50cm。

六、综合题(1)一个长方体上放置一个正方体。

(2)一个圆柱体和一个圆锥体组合在一起。

(1)一个长方体挖去一个圆柱体形成的组合体,长方体的长、宽、高分别为20cm、10cm、5cm,圆柱体直径为5cm,高为10cm。

(2)一个正方体和一个四棱锥组合在一起,正方体边长为8cm,四棱锥底面边长为6cm,高为4cm。

七、判断题1. 三视图中,主视图和俯视图的长度方向一定相同。

()2. 在三视图中,左视图的宽度方向与主视图的高度方向一致。

()3. 任何物体的三视图都可以通过旋转和翻转得到。

()八、选择题A. 主视图B. 俯视图C. 正视图D. 左视图A. 主视图B. 俯视图C. 左视图D. 所有视图A. 主视图反映了物体的长度和高度B. 俯视图反映了物体的长度和宽度C. 左视图反映了物体的宽度和高度D. 三视图中的每个视图都包含了物体的所有尺寸信息九、填空题1. 三视图是用于表达物体______、______和______三个方向尺寸的图样。

由三视图确定几何体-配套练习(含答案)

由三视图确定几何体-练习
一、选择题
1.某几何体的三视图如图所示,则组成该几何体共用了()小方块.
A. 12块
B. 9块
C. 7块
D. 6块
2. 一个几何体的三视图如图所示,这个几何体是( )
A. 圆锥
B. 圆柱
C. 三棱锥
D. 三棱柱
3. 下列三视图所对应的直观图是()
A. B. C. D.
二、填空题
4. 主视图、左视图、俯视图都一样的几何体为______________.
三、解答题
5.桌子上摆放着若干个碟子,从三个方向上看,三种视图如下,问桌子上共有
碟子多少个?
由三视图确定几何体-练习
参考答案
一、选择题
1.C. 解:∵观察该几何体的三视图发现该几何体共有三层,第一层有三个,第
二层有两个,第三层也有两个,
∴该几何体共有3+2+2=7个,
故选C.
2.D. 解:主视图是由两个矩形组成,而左视图是一个矩形,俯视图是一个三角形,
得出该几何体是一个三棱柱.故选D.
3.C. 解从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与
下面的长方体的顶面的两边相切高度相同.只有C满足这两点,故选
C.
二、填空题
4.正方体或球
解:依题意,主视图、左视图以及俯视图都相同的几何体为正方体或球.
三、解答题
5.解:从俯视图中可知桌上共有三列盆子.主视图左侧有5个,右侧有3个;
而左视图左侧有4个,右侧与主视图的左侧盆子相同,则共计有
12个盆子.
或第一层到第三层每层都是3个盘子,第四层有2个盘子,第五层有1
个盘子.所以共有个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档