图形的相似复习一
图形的相似知识点总复习

图形的相似知识点总复习一、选择题1.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323 CE NE==⨯=故选C.【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.2.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则DF的长为()A.235B.233C.334D.435【答案】D【解析】【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【详解】如图,在Rt△BDC中,BC=4,∠DBC=30°,∴3连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE=12BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴DF DE BF AB=,在Rt△ABD中,∠ABD=30°,3,∴AB=3,∴23 DFBF=,∴25 DFBD=,∴DF=224323555BD =⨯=, 故选D .【点睛】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE ∥是解本题的关键.3.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3D .3∶2【答案】B【解析】【分析】 根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S==. 【详解】 因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.4.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D【解析】【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.5.如图,在ABC 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO ∽CBO ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC , ∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE ∽ABC ,DEO ∽CBO ,DE AE BC AC ∴=,DE OD BC OC = . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴AG AE AF AC= ,故不正确; 故选C .【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.6.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上.若正方形ABCD 的边长为2,则点F 坐标为( )A .(8,6)B .(9,6)C .19,62⎛⎫ ⎪⎝⎭D .(10,6)【答案】B【解析】【分析】 直接利用位似图形的性质结合相似比得出EF 的长,进而得出△OBC ∽△OEF ,进而得出EO 的长,即可得出答案.【详解】解:∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴13BC OB EF EO ==, ∵BC =2,∴EF =BE =6,∵BC ∥EF ,∴△OBC ∽△OEF ,∴136BO BO =+, 解得:OB =3,∴EO =9,∴F 点坐标为:(9,6),故选:B .【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB 的长是解题关键.7.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;②2BG AG =;③EBFDEG ∆∆;④23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL”判定Rt △ADG ≌Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故②正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故③错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故④错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG⎧⎨⎩==, ∴Rt △ADG ≌Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,∵BE =EC ,∴EF =CE =BE =12a∴GE=12a+x由勾股定理得:EG2=BE2+BG2,即:(12a+x)2=(12a)2+(a-x)2解得:x=13∴BG=2AG,故②正确;∵BE=EF,∴△BEF是等腰三角形,易知△GED不是等腰三角形,∴△EBF与△DEG不相似,故③错误;连接CF,∵BE=CE,∴BE=12 BC,∴S△BFC=2S△BEF.故④错误,综上可知正确的结论的是2个.故选:B.【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.8.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5【答案】B【解析】【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.32B.92C33D.3【答案】A【解析】【分析】【详解】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,∵AC=3,AB=6,∴AD=32.故选A.考点:相似三角形的判定与性质.10.如图,边长为4的等边ABC 中,D 、E 分别为AB ,AC 的中点,则ADE 的面积是( )A 3B 3C 33D .23【答案】A【解析】【分析】 由已知可得DE 是△ABC 的中位线,由此可得△ADE 和△ABC 相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC 的面积.【详解】等边ABC 的边长为4,2ABC 3S 443∴== 点D ,E 分别是ABC 的边AB ,AC 的中点,DE ∴是ABC 的中位线,DE //BC ∴,1DE BC 2=,1AD AB 2=,1AE AC 2=, 即AD AE DE 1AB AC BC 2===, ADE ∴∽ABC ,相似比为12, 故ADE S:ABC S 1=:4, 即ADE ABC 11S S 43344==⨯= 故选A .【点睛】 本题考查了等边三角形的性质、相似三角形的判定与性质、三角形中位线定理,解题的关键是熟练掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.11.把Rt ABC ∆三边的长度都扩大为原来的3倍,则锐角A 的余弦值( )A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变 【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A 的大小不变,∴锐角A 的余弦值不变,故选:D .【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH 中,222AH EH AE += ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM == 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.13.在平面直角坐标系中,把△ABC 的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF ,把△DEF 与△ABC 相比,下列说法中正确的是( )A .横向扩大为原来的4倍,纵向缩小为原来的13 B .横向缩小为原来的14,纵向扩大为原来的3倍 C .△DEF 的面积为△ABC 面积的12倍D .△DEF 的面积为△ABC 面积的112 【答案】A【解析】【分析】【详解】解:△DEF 与△ABC 相比,横向扩大为原来的4倍,纵向缩小为原来的13;△DEF 的面积为△ABC 面积的169, 故选A.14.如图,已知ABC ∆和ABD ∆都O 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】 考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.15.如图,将图形用放大镜放大,应该属于( ).A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】【分析】 根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B .【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.16.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.17.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆,设PC x =,则5PD x =-,根据相似三角形的性质,得PC CE PD BD =,即253x x =-,解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k = 又点B 的坐标为(1,2)- ∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.19.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为P′(12a+1,12b﹣1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A′,B′,C′.若△ABC的面积为S1,△A′B′C′的面积为S2,则用等式表示S1与S2的关系为()A.S112=S2B.S114=S2C.S1=2S2D.S1=4S2【答案】D【解析】【分析】先根据点P及其对应点判断出变换的类型,再依据其性质可得答案.【详解】由点P(a,b)经过变换后得到的对应点为P′(12a+1,12b﹣1)知,此变换是以点(2,﹣2)为中心、2:1的位似变换,则△ABC的面积与△A′B′C′的面积比为4:1,∴S1=4S2,故选:D.【点睛】本题主要考查几何变换类型,解题的关键是根据对应点的坐标判断出其几何变换类型.20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40DE cm=,20EF cm=,测得边DF离地面的高度 1.5AC m=,8CD m=,则树高AB是()A.4米B.4.5米C.5米D.5.5米【答案】D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D ∴△ADEF∽△DCB∴BC DC EF DE=∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴80.20.4BC=解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
相似图形复习(1)

长比3:4
为9:16 面积比
。
A
D
GF
B
CE
7.如图,已知△ABC,P是AB上一点,连结CP, 要使△ACP∽△ABC,只需添加的条件是什么? (只要写出一种合适的条件)
P B
解:只需添加条件: A
∠B=∠ACP或∠ACB=∠APC或
AB AC
C
AC AP
8. 如图,AE2=AD·AB,且∠ABE=∠BCE, 试说明△EBC∽△DEB
————。
3.两个相似形的特征:对应边成比例,对应角相等;
4.识别两个多边形是否相似的方法:
如果两个多边形
,那么这两个多边形
相似 。
5.相似三角形:
定义:
的三角形叫相似三角形。如△ABC与
△A'B'C'相似,记作:
。
相似比:相似三角形
的比叫相似比,若△ABC∽△ A
‘ B ’C ‘ ,相似比为k,则△A’B‘C‘与△ABC的相似比是
பைடு நூலகம்
A D B
解:∵ AE2=AD·AB,得AE∶AD= AB∶AE
∵∠A=∠A ∴△AED∽△ABE
E
∴∠AED=∠ABE∵∠ABE=∠BCE
∴ ∠AED=∠BCE
C
∴DE∥BC
∴∠DEB=∠EBC ∵∠ABE=∠BCE
∴ △EBC∽△DEB
二、是相似三角形的面积比等于相似比的平方。
当堂训练
一、判断正误:
1、两个相似三角形对应中线之比是1:2,
√ 则对应角平分线之比也是1:2。( )
× 2、两个相似三角形面积比是1:2,则相似比是1:4。( )
3、△ABC∽△A′B′C′,相似比为2:3,若△ABC周长为6,
第三章《图形的相似》复习课(总复习1))(湘教版)

对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使 自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度 恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m, CE=0.8 m,CA=30 m(点A、E、C在同一直线上).
已知小明的身高EF是1.7 m,请你帮小明求出楼高AB(结果
点,若AD=3,BC=9,则GO∶BG=(
(A)1∶2 (C)2∶3 (B)1∶3
)
(D)11∶20
【解析】选A.∵四边形ABCD是梯形,AD∥BC, ∴∠OAD=∠OCB,∠ODA=∠OBC, ∴△AOD∽△COB.
4 OD AD 3 1 , OB BC 9 3
即 OD 1 BD. 又G是BD的中点,
精确到0.1 m). 【思路点拨】
【解析】过点D作DG⊥AB,分别交AB、EF于点G、H, 则EH=AG=CD=1.2 m,
DH=CE=0.8 m,DG=CA=30 m.
因为EF和AB都垂直于地面,所以EF∥AB, 所以∠BGD=∠FHD=90°,∠GBD=∠HFD, 所以△BDG∽△FDH.
FH DH . BG DG
32 (A) 3 16 (B) 3
)
10 (C) 3 8 (D) 3
【解析】选B.由AB∥DE,可得△CDE∽△CAB. 所以 CD DE ,
CA AB 所以 AB DECA 4 3 5 32 , CD 3 3
又CF为AB边上的中线,
2 2 3
所以 BF 1 AB 1 32 16 .
【解析】选A.∵∠ACB=90°,∠BDC=90°,∠B=∠B.
∴△ACB∽△CDB.
中考数学知识点总结图形的相似

中考数学知识点总结图形的相似在中考数学中,图形的相似是一个重要的知识点。
它不仅在几何题目中频繁出现,也是解决实际问题的有力工具。
下面就让我们一起来详细了解一下图形相似的相关知识。
一、相似图形的概念相似图形是指形状相同,但大小不一定相同的图形。
比如说,两个正方形,它们的边长可能不同,但形状是一样的,这就是相似图形。
相似多边形对应角相等,对应边的比相等。
如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形就是相似多边形。
二、相似三角形1、相似三角形的判定(1)两角分别相等的两个三角形相似。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(3)三边成比例的两个三角形相似。
如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(1)相似三角形对应边的比等于相似比。
(2)相似三角形对应角相等。
(3)相似三角形周长的比等于相似比。
(4)相似三角形面积的比等于相似比的平方。
三、相似三角形的应用1、测量高度在实际生活中,我们常常需要测量一些物体的高度,比如旗杆、建筑物等。
这时就可以利用相似三角形的知识来解决。
通过测量一些已知长度的线段和对应的角度,构建相似三角形,从而求出物体的高度。
2、测量距离相似三角形还可以用于测量距离。
比如,在河的一岸要测量到对岸某一点的距离,可以在这一岸选取两个点,构建相似三角形,通过测量已知边的长度和角度,来计算出河的宽度。
四、位似图形1、位似图形的概念如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。
(2)位似图形的对应边互相平行或在同一条直线上。
3、位似图形的作图在位似图形的作图中,要先确定位似中心,然后根据位似比确定对应点的位置,最后连接各点得到位似图形。
图形相似全章总复习

图形相似全章总复习夯实基础1、了解比例的基本性质,线段的比、成比例线段;2、掌握黄金分割的定义、性质及应用;3、理解相似三角形、相似多边形、相似比的概念;熟练掌握三角形相似的判定方法以及相似三角形的性质,并能够运用性质与判定解决有关问题;4、了解位似的概念,做的位似是特殊的相似变换,会利用位似的方法,讲一个图形放大或缩小;5、了解平行投影和中心投影的基本概念与性质,能综合运用图形相似的知识解决一些简单的实际问题.要点一、比例线段及黄金分割1.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c,则b2=ac(b称为a、c的比例中项).2.黄金分割的定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之比,即ABAPAPPB(此时线段AP叫作线段PB、AB的比例中项),则P点就是线段AB的黄金分割点(黄金点),这种分割就叫黄金分割.3. 黄金矩形与黄金三角形:黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点二、相似图形1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等.2.相似多边形各角分别相等,各边成比例的两个多边形,它们的形状相同,称为相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高,对应中线,对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.3.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点四、图形的位似及投影1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.4.平行投影在平行光的照射下,物体所产生的影称为平行投影.(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.(3)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.5.中心投影在点光源的照射下,物体所产生的影称为中心投影.(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.一、典型例题类型一、黄金分割1.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.举一反三【变式】如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.类型二、相似三角形2. 已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系时,这两个三角形相似?举一反三【变式】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.类型三、相似三角形的综合应用3.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.4. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=42,AF=3,求FG的长.5. 如图,已知在梯形ABCD中,AD//BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形.(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式.举一反三【变式】如图所示,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A 为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE 的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?类型四、图形的位似6.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.类型五、用相似三角形解决问题7.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?二、巩固练习一、选择题1.如图所示,给出下列条件:①;②;③;④. 其中单独能够判定的个数为( )A.1 B.2 C.3 D.42.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)3.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE×BC.A.2个B.3个 C.4个 D.5个4.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC = OB∶OD,则下列结论中一定正确的是 ( )A.①和②相似B.①和③相似 C.①和④相似D.②和④相似5.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥第4题第5题第6题6. 如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若P到BD的距离为32,则点P的个数为()A.1 B.2 C.3 D.47. 如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米第7题第8题8. 已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.512-B.512+C. 3D. 2二、填空题9.顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则DE=____________.第9题第10题10.如图,M是ABCD的边AB的中点,CM交BD于E,则图中阴影部分的面积与ABCD的面积之比为___ __.11.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。
图形的相似综合复习题

图形的相似综合复习题一.选择题(共10小题)1.已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.35°B.65°C.80°D.100°2.已知三个数2、3、4,如果再添加一个数,使得这四个数成比例,那么这个数可以是()A.1.5B.2C.2.5D.33.下列条件中,不能判定△ABC与△DEF相似的是()A.∠A=∠D=70°,∠B=∠E=50°B.∠A=∠D=70°,∠B=50°,∠E=60°C.∠A=∠E,AB=12,AC=15,DE=4,EF=5D.∠A=∠E,AB=12,BC=15,DE=4,DF=54.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形.如果其中一个是等腰角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”,如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD 和△ABC相似,∠A=46°,则∠ACB的度数为()A.113°B.92°C.113°或92°D.92°或134°5.如图,不能判定△AOB和△DOC相似的条件是()A.OA•CD=AB•OD B.C.∠A=∠D D.∠B=∠C6.如图,点D、E分别在AC、AB上,∠AED=∠C,且BC=2DE,则S四边形BEDC:S△ABC 的值为()A.1:3B.2:3C.3:4D.4:97.如图,在平行四边形ABCD中,点E在边AD上,DE:AE=1:3,连接AC交BE于点F,则△AEF的面积与△BCF的面积之比为()A.3:4B.9:16C.9:1D.3:18.如图,矩形ABCD∽矩形EFGH,已知AB=3cm,BC=5cm,EF=6cm,则FG的长为()A.8cm B.10cm C.12cm D.15cm9.如图,△ABC中,D、E分别为AB、AC边上的点,DE∥BC,若AD=2BD,则的值为()A.B.C.D.10.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上,若线段AB=6,则线段BC的长是()A.2B.4C.1D.3二.填空题(共6小题)11.如图,点A(3,1)在反比例函数的图象上,过A作直线AB⊥y轴于B,在第三象限的反比例函数图象上找一点P,使PH⊥AB于H,若P、H、A三点组成的三角形与△AOB相似,则P点的坐标是.12.如图,直线AD∥BE∥CF,直线AC交AD,BE,CF于点A,B,C;直线DF交AD,BE,CF于点D,E,F,已知=,则=.13.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=2米,BD=1米,BE=0.2米,那么井深AC为米.14.如图,以点O为位似中心,将△ABC缩小得到△A′B′C′,若=,△A′B′C′的周长为2,则△ABC的周长为.15.如图,平面直角坐标系中,正方形EFBG和正方形ABCD是以O为位似中心的位似图形,位似比为1:2,点F,B,C在x轴上,若AD=6,则点G的坐标为.16.已知过点B(3,﹣1)的抛物线y=x2﹣x+c与坐标轴交于点A、C如图所示,连结AC,BC,AB,第一象限内有一动点M在抛物线上运动,过点M作AM⊥MP交y轴于点P,当点P在点A上方,且△AMP与△ABC相似时,点M的坐标为.三.解答题(共4小题)17.如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形ACED 是一个平行四边形,平行四边形ACED的对角线AE分别交BD、CD于点G、点H.(1)证明:DG2=FG•BG;(2)若AB=8,BC=12,则线段GH的长度.18.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)连接AE,交CD于点F,当∠ADB=60°,AD=4时,直接写出EA的长.19.如图,已知△ABC∽△AEF,若B,E,F三点共线,线段EF与AC交于点O.(1)求证:△ABE∽△ACF;(2)若AF=4,BC=6,△AOF的面积为8,求△BOC的面积.20.如图①,有一块三角形余料△ABC,它的边BC=10,高AD=6.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,AD交PN于点E,则加工成的正方形零件的边长为多少?小颖解得此题的答案为,小颖善于反思,她又提出了如下的问题:(1)如果原题中所要加工的零件是一个矩形,且此矩形由两个并排放置的正方形组成.如图②,此时,这个矩形零件的相邻两边长又分别是多少?(2)如果原题中所要加工的零件只是一个矩形,如图③,这样,此矩形零件的相邻两边长就不能确定,但这个矩形的面积有最大值,求这个矩形面积的最大值以及这个矩形面积达到最大值时矩形零件的相邻两边长又分别是多少?。
中考数学总复习《图形的相似》专项提升训练(带有答案)
中考数学总复习《图形的相似》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.两个相似三角形的相似比是1:2,则其对应中线之比是( )A .1:1B .1:2C .1:3D .1:42.如图,在ABC 中2AC =,BC=4,D 为BC 边上的一点,且CAD B ∠=∠.若ADC △的面积为2,则ABD △的面积为( )A .4B .5C .6D .73.若35a b =,则下列各式一定成立的是( )A .53a b =B .35a b =C .65a b a +=D .145a b += 4.如图,在ABC 中DE BC ∥,AD=1,BD=2,AC=6,则CE 的长为( )A .2B .3C .4D .55.如图,在等边ABC 中,点D ,E 分别是BC AC ,上的点72AB CD ==,,60ADE ∠=︒则AE 等于( )A .5B .397C .6D .4176.下列命题正确的是( )A .方程210x x --=没有实数根B .两边成比例及一角对应相等的两个三角形相似C .平分弦的直径垂直于弦D .反比函数的图像不会与坐标轴相交7.已知ABC DEF ∽△△,:1:2AB DE =且ABC 的周长为6,则DEF 的周长为( ) A .3 B .6 C .12 D .248.在平面直角坐标系xOy 中,已知点()()()0,0,1,2,0,3O A B .若OA B ''△与OAB 是原点O 为位似中心的位似图形,且点B 的对应点为()0,9B '-,则点A 的对应点A '坐标为( ) A .()3,6 B .()3,6-- C .()3,6- D .()3,6- 9.如图,D 是ABC 边AB 上一点,添加一个条件后,仍不能使ACD ABC △∽△的是( )A .ACDB ∠=∠ B .ADC ACB ∠=∠ C .AD CD AC BC = D .AC AB AD AC = 10.如图,已知ABC DAC △∽△,37B ∠=︒和116∠=︒D ,则BAD ∠的度数为( )A .37︒B .116︒C .153︒D .143︒二、填空题11.如图,在矩形ABCD 中,8AB =和4BC =,连接AC ,EF AC ⊥于点O ,分别与AB 、CD 交于点E 、F ,连接AF 、CE ,则AF CE +的最小值为 .12.如图,在ABC 中,点D 、E 分别为AB 、AC 的中点,点F 为DE 中点,连接BF 并延长交AC 于点G ,则:AG GE = .13.如图AC ,AD 和CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:(1)CA 平分BCF ∠;(2)2CF EF =;(3)四边形ABCF 是菱形;(4)2AB AD EF =⋅.其中正确的结论是 .(填写所有正确结论的序号)14.如图AC 、BD 交于点O ,连接AB 和CD ,若要使AOB COD ∽,可以添加条件 .(只需写出一个条件即可)15.如图,在ABC 中4AC AB ==和30C ∠=︒,D 为边BC 上一点,且3CD =,E 为AB 上一点,若30ADE ∠=︒,则BE 的长为 .16.在ABC 中,6810AC BC AB D ===,,,是AB 的中点,P 是CD 上的动点,若点P 到ABC 的一边的距离为2,则CP 的长为 .17.如图,M 是Rt ABC △斜边AB 上的中点,将Rt ABC △绕点B 旋转,使得点C 落在射线CM 上的点D 处,点A 落在点E 处,边ED 的延长线交边AC 于点F .如果3BC =.4AC =那么BE 的长为 ;CF 的长为 .18.如图,在ABC 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若:3:1BF FD =,8BC =则CE 的长为 .三、解答题19.已知O 为ABCD 两对角线的交点,直线l 过顶点D ,且绕点D 顺时针旋转,过点A ,C 分别作直线l 的垂线,垂足为点E ,F .(1)如图1,若直线l 过点B ,求证:OE OF =;(2)如图2,若EFO FCA ∠=∠,2FC AE =求CFO ∠的度数;(3)如图3,若ABCD 为菱形4AE =,6AO =和8EO =直接写出CF 的长. 20.如图,在ABC 中2BAC C ∠=∠,利用尺规作图法在BC 上求作一点D ,使得ABDCBA .(不写作法,保留作图痕迹)21.如图,在Rt ABC △中90ACB ∠=︒,D 是AB 的中点,连接CD ,过点A 作AE CD ⊥于点E ,过点E 作EF CB ∥交BD 于点F .(1)求证:ACE BAC ∽△△;(2)若5AC =,5AB =求CE 及EF 的长.22.如图,在直角梯形OABC 中BC AO ∥,=90AOC ︒∠点A 、B 的坐标分别为()5,0、()2,6点D 为AB 上一点,且2BD AD =.双曲线()0k y x x=>经过点D ,交BC 于点E .求点E 的坐标.23.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .求证:APE FPA △∽△.24.如图1,菱形AGBD 边长为3,延长DB 至点C ,使得5BC =.连接AB ,AB AD =点E ,F 分别在线段AD 和AB 上,且满足DE AF =,连接BE ,DF 交于点O ,过点B 作BM BE ⊥,交DF 延长线于点M ,连接CM .图1 图2(1)求OB 与BM 之间的数量关系;(2)当DMB DCM △∽△时,求DO 的长度;(3)如图2,过点M 作MN CD ⊥交CD 于N ,求MN MC的最大值. 1.B2.C3.A4.C5.B6.D7.C8.B9.C10.C11.1012.2:113.①①①14.A C ∠=∠(答案不唯一)15.9416.103或52或3512 17. 59418.16519.(2)60CFO ∠=︒(3)CF 的长为7 21.(2)1CE = 655EF =. 22.4,63⎛⎫ ⎪⎝⎭/11,63⎛⎫ ⎪⎝⎭ 24.(1)3BM OB =(2)1OD =(3)1014101911316206517MN CN ++=。
九年级数学《图形的相似》总复习课件-PPT
6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。
图形的相似章节复习
图形的相似章节复习一、复习目标:1.了解线段的比,成比例线段;通过建筑、艺术等方面的实例了解黄金分割.2. 了解相似三角形的概念,掌握相似三角形的判定及直角三角形相似的判定;会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等二、【知识梳理】1.两条线段_______的比叫做这两条线段的_______.在四条线段a 、b 、c 、d 中,若a :b =c :d ,则称a 、b 、c 、d 四条线段成_______.若a :b =b :c ,则线段b 叫做线段a 和c 的比例_______.2.比例的性质:(1)若a c b d =,则ad =_______. (2)若a c b d =,则a b b+=_______. 3.黄金分割:点C 把线段AB 分成AC 和BC 两段(CA>BC),且AC 是AB 和BC 的_______,叫做把线段AB 黄金分割,点C 叫做线段AB 的________4.对应角_______,对应边成________的两个三角形叫做相似三角形,相似三角形对应边的比叫做______.5.相似三角形的判定方法:6.相似三角形的性质:7.相似多边形的性质:8.相似多边形的判定: 对应角_______,对应边_______的多边形是相似多边形.三【考点例析】考点一 比例性质1、已知513b a =,则a b a b-+的值是 2.已知点C 是线段AB 的黄金分割点,带AC AB ≈0.6 18,那么CB AC的近似值是_______ 3.已知三个数1,2, 3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是 。
4.两直角边的长分别为3和4的直角三角形的斜边与斜边上的高的比为( )考点二 相似三角形的判定6、△ABC 中,D 是AB 上的一点,再在 AC 上取一点 E ,使得△ADE 与△ABC 相似,则满足这样条件的E 点共有( ) A .0个 B .1个 C .2个 D .无数个7、如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是 ( )A .∠ABD =∠CB .∠ADB =∠ABCC .AB CB BD CD = D .AD AB AB AC= 8、 如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( )A .1对 B .2对C .3对D .4对 考点三 相似三角形的性质9、某校有两块相似的多边形草坪,其面积比为9:4,其中一块草坪的周长是36米,则另一块草坪的周长是10、 如图,在△ABC 中,EF ∥BC ,12AE EB =, S 梯形BCFE =8,则S △ABC 的值是考点四 综合运用12、如图,在yABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE =∠C . ⑴ 求证:△ABF ∽△EAD ;⑵ 若AB=4,∠BA=30°,求AE 的长;⑶ 在⑴、⑵的条件下,若AD=3,求BF 的长.13、如图,在△ABC 中,BA=BC=20cm ,AC=30cm ,点P 从A 点出发,沿AB 以每秒4cm 的速度向B 点运动,同时点Q 从C 点出发,沿CA 以每秒3㎝的速度向A 点运动,设运动的时间为x.⑴当x 为何值时,PQ ∥BC ?⑵当P 13BCQB Q ABC ABCS S S S ∆∆∆∆=时,求的值。
【图形的相似】全章复习提高
《图形的相似》全章复习提高一、【整章的知识结构】二、【知识要点归纳】(一)比例线段1、线段的比(长度之比):比例尺=实际距离图距(注:单位统一)2、比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a b =cd,那么,这四条线段叫做成比例线段,简称比例线段 3、比例中项:如果a b =b c 那么b 叫做a 、c 的比例中项,也可以写成b 2=ac4、比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a5、黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.6、平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
BAP相似多边形的性质相似 图形相似多边形相似三角形相似三角形的判定方法和性质三角形中位线梯形中位线三角形重心坐标与图形 的运动坐标表示物体 的位置●(1)对应边的比相等,对应角相等.●(2)相似三角形的周长比等于相似比.●(3)相似三角形的面积比等于相似比的平方.●(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.5.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似
(90分钟完卷,满分100分)
一、选择题(每小题3分,共30分)
1、下列说法正确的是()
A.两个等腰三角形一定相似B.两个菱形一定相似
C.两个梯形一定相似D.两个正方形一定相似
2、在比例尺为1:5000000的地图中,量得甲、乙两地的距离是25cm,则两地的实际距离为()
A.53×166m B.1.25×166m C.1.25×166km D.12500000cm
3、已知△ABC的三边长分别为5,12,13,和△ABC相似的△A1B1C1的最大边长为26,则△A1B1C1的周长是()
A.50 B.40 C.60 D.30
4、如果一个4米高的旗杆的影长为6米,同它临近的一个建筑物的影长是24米,那么这个建筑物的高度是()米。
A.16米B.17米C.18米D.20米
5、如图,若∠1=∠2=∠3,则图中的相似三角
形有()。
A.2对B.3对 C.4对D.5对
6、两个相似多边形的一组对应边分别为5cm和7.5cm,如果它们的面积之和为130cm2,则较小的多边形的面积是()。
A.50cm2B.40 cm2C.30 cm2D.45 cm2
7、在△ABC中,∠C=90°CD是高,则下列式子中,正确的是()。
A.AC2=AD·BC B.AC2=BD·AB
C.AC2=AD·AB D.AC2=BD·BC
8、张明同学想利用树影测量校园内的树高,他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教楼旁的一棵大树影长时,因大树靠近教楼,有一部分影子
在墙上,经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约( )米。
A .9.1 B .9.2 C .9.4 D .9.5
9、将△ABC 的三个顶点的横坐标都乘以-1,纵坐标不变,则所
得图形与原图形的关系是( )。
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .不存在对称关系
10、如图,△ABC 中,P 为AB 上一点,在下列四
个条件中:①∠ACB=∠B ,②∠APC=∠ACB ③AC 2
=AP ·AB ,
④AB ·CP=AP ·CB 能得出△ABC ∽△ACP 的是( )。
A .①②④
B .①③④
C .②③④
D .①②③ 二、填空题(每题4分,共16分)
11、如图,DE ∥BC ,
32=DB AD ,则=BC
DE , 若BC=12,则DE= 。
12、如图,有一池塘,要测量两端A 、B 的距离,可先在平地上取点C ,连接AC 并延长到D ,使CD=CB 3
1,连接DE ,如果量得DE 的长为36m ,那么池塘的宽AB 为 m 。
13、如果A 、B 的坐标分别为A (-4,5),B (-4,2),则将B 点向 平移 个单位可得到点A 。
14、如图,正方形ABCD 中,点N 为AB 的中点,
连接DN 并延长交CB 的延长线于点P ,连接AC 交DN 于点M ,
若PN=3,则DM 的长为 。
三、解答题(15—18小题,每小题7分,19—20小题,每小题8分,21小题10分)
15、如图,为了测量高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若AC=1.5m ,小明的眼睛离地面的高度为1.6m ,
请你帮小明计算一下楼房的高度(精确到0.1m)。
16、如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE,试说明BE·AD=CD·AE。
18、如图,在△ABC中,AB=7,AC=6, BC=8,线段BC所在直线以每秒2个单位的速度沿BA方向运动,并始终保持与原位置平行,记x秒时,该直线在△ABC内的部分的长度为y,试写出y关于x的函数关系式,并在直角坐标系中画出这一函数的图象。
19、如图,在△ABC中,∠C=90°, BC=8cm,AC=6cm,
点P从B出发,沿BC方向以2cm/s的速度移动,点Q
从C出发,沿CA的方向以1cm/s的速度移动,若P、Q
分别从B、C同时出发,经过多长
时间△CPQ与△CBA相似。
20、如图,等腰梯形ABCD中,AD∥BC, AD=3cm,BC=7cm,∠B=60°,P为下底BC 上一点(不与B、C重合),连结AB,过P点作PE交DC于E,使得∠APE=∠B。
⑴求证:△ABP∽△PCE;
⑵求等腰梯形的腰AB的长;
⑶在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由。