四川省内江市2011年中考数学试题及答案
重庆四川2011年中考数学试题分类解析汇编 专题1 实数

某某某某2011年中考数学试题分类解析汇编专题1:实数一、选择题1.(某某4分)在﹣6,0,3,8这四个数中,最小的数是A、﹣6B、0C、3D、8【答案】A。
【考点】有理数大小比较。
【分析】根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可:∵8>3>0>﹣6,∴最小的数是﹣6。
故选A。
2.(某某綦江4分)7的相反数是A、﹣7B、7C、17D、﹣17【答案】A。
【考点】相反数。
【分析】根据相反数的意义,只有符号不同的两个数为相反数,只要改变7前面的符号可得7的相反数。
故选A。
3.(某某綦江4分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为A、3B、2C、0D、﹣1【答案】A。
【考点】分类归纳(数字的变化类)。
【分析】首先由已知和表求出a、b、c,再观察找出规律求出第2011个格子中的数.已知其中任意三个相邻格子中所填整数之和都相等,则,3+a+b=a+b+c,a+b+c=b+c﹣1,解得a=﹣1,c=3,按要求排列顺序为,3,﹣1,b,3,﹣1,b,…,结合已知表得b=2,所以每个小格子中都填入一个整数后排列是:3,﹣1,2,3,﹣1,2,…,其规律是每3个数一个循环。
∵2011÷3=670余1,∴第2011个格子中的数为3。
故选A 。
4.(某某江津4分)2﹣3的值等于A 、1B 、﹣5C 、5D 、﹣1【答案】【考点】有理数的减法。
【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数:2﹣3=2+(﹣3)=﹣(3﹣2)=﹣1。
故选D 。
5.(某某潼南4分)5的倒数是 A .15 B .-5 C. -15D. 5 【答案】A 。
【考点】倒数。
【分析】根据倒数的定义,互为倒数的两数乘积为1,∵5×15=1,∴5的倒数是15。
故选A 。
5.(某某某某3分)4的平方根是A 、±16B 、16C 、±2D 、2【答案】C 。
2011年全国各地中考数学试卷试题分类汇编

2011年全国各地中考数学试卷试题分类汇编第2章 实数A. 一 23【答案】B【答案】D【答案】BA. 2 B【答案】A判断正确的是(A) m 0 (B) n ::: 0 (C) mn :: 0 (D) m - n 0--------------------------- > m 0 1 n【答案】C1的结果是()6.(2011江苏苏州, 1,3 分)23 (—23A. — 4B. — 1C.— 1D.42【答案】B5.(2011四川成都,8,3分)已知实数 m 、n 在数轴上的对应点的位置如图所示,则下列、选择题1. (2011福建泉州,1 , 3分)如在实数0,I — 2 |中,最小的是2. (2011广东广州市, 1, 3分)四个数一1 —0.1,2,3中为无理数的是).A. — 5B.—0.1C.3. (2011山东滨州,3分) 在实数 71、 1、2、sin303,无理数的个数为A.1B.2C.3D.44.(2011福建泉州,3分) (—2)2的算术平方根是(7. (2011山东济宁,1 , 3分)计算一1—2的结果是A 1B . 1C . —3D . 3【答案】C8. (2011四川广安,2, 3分)下列运算正确的是()A ._(_x+1) =x+1B .厲—75 = “C. 羽_2=2—73 D ./ i X2 2 .2(a —b) =a —b【答案】C9. (2011重庆江津,1 ,4分)2—3的值等于()A.1B. —5C.5D. —12【答案】D210. (2011四川绵阳1,3)如计算:-1-2=A.-1B.1C.-3D.3【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算83 9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则83 9=103 7+2=72.那么在计算63 7时,左、右手伸出的手指数应该分别为()A.1,2B.1,3C.4,2D.4,3【答案】A12. (2011湖北鄂州,10, 3分)计算-2^(-2 丫-(--)2 -1=()A. 2B.—2C. 6D. 10【答案】A13. (2011山东荷泽,6, 3分)定义一种运算☆,其规则为a^ b=— + 1,根据这个规则、a b计算2^3的值是A. - B6 15C . 5D . 6【答案】A14. (2011四川南充市,5, 3分) 下列计算不正确的是( )/、3 1 [1、1(C)3 =3(A) —— = _2(B ) ■- =2 21 3丿91 1【答案】A15. (2011浙江温州, 1, 4分)计算:(一1) +2的结果是() A . -1B. 1C. -3 D . 3【答案】B超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是(【答案】A【答案】C16. (2011浙江丽水, 4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数, A . +2B.C. +3D. +417.(2011台湾台北, 2) 计算(一3)3+ 52- ( — 2)2之值为何?A. 2B . D.— 6【答案】D18.(2011台湾台北,11)计算 4-:-(一1.6)— 7 ■- 2.5之值为何?4A .— 1.1B.— 1.8 C . — 3.2D . — 3.9【答案】C19. ( 2011台湾台北, 19)若a 、b 两数满足a 56 7 3 = 103, a“103= b ,则a b 之值为何?D .匹567【答案】C20. (2011四川乐山 1, 3分)小明家冰箱冷冻室的温度为一5C,调高 4C 后的温度为A . 4C.9C C . —1C D . —9C。
中考数学试题-一元一次方程和二元一次方程组试题

中考试题专题之6-一元一次方程和二元一次方程组试题及答案一、选择1、(四川省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .22、(桂林市、百色市)已知是二元一次方程组的解,则的值为( ).A .1B .-1C . 2D .33、(淄博市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=4、(齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种5、(吉林省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6、(深圳市)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A .45元B .90元C .10元D .100元7、(桂林百色)已知是二元一次方程组的解,则的值为( ). 21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩a b -21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩a b -A .1B .-1C . 2D .38、(江西)方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,. B .21x y =⎧⎨=⎩,. C .11x y =⎧⎨=⎩,. D .23x y =⎧⎨=⎩,. 9、(日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 A.43-B.43C.34D.34-10、(福州)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( ) A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩11、(长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm12、(台湾)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。
四川省眉山市2011年中考数学试卷(含解析)

四川眉山市2011年中考数学试卷解析1.(2011四川眉山,1,3分)—2的相反数是A .2B .—2C .21 D .—21【解题思路】根据相反数的定义:只有符号不同的两个数就是相反数,进行判断【答案】A 【点评】本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.难度较小. 2.(2011四川眉山,2,3分)下列运算正确的是A .a a a =-22B .4)2(22+=+a a C .632)(a a = D .3)3(2-=- 【解题思路】根据整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质,逐一检验.A .2a 2与-a 不是同类项,不能合并,本选项错误;B .∵44)2(22++=+a a a ,本选项错误; C .63232)(a a a ==⨯,本选项正确;D .33)3(22==-,本选项错误 .【答案】C【点评】本题考查了整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质的运用.关键是熟悉各种运算法则.难度较小.3.(2011四川眉山,3,3分)函数21-=x y 中自变量x 的取值范围是 A .2-≠x B .2≠x C .2<x D .2->x【解题思路】根据分式有意义的条件是分母不等于0,即可求解 【答案】B【点评】本题主要考查了分式有意义的条件,是需要熟记的内容.难度较小.4.(2011四川眉山,4,3分)2011年,我市参加中考的学生约为33200人,用科学记数法表示为A .332×102B .33.2×103C .3.32×104D .0.332×105 【解题思路】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【答案】C【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.难度较小.5.(2011四川眉山,5,3分)若一个正多边形的每个内角为150°,则这个正多边形的边数是A .12B .11C .10D .9 【解题思路】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°-150°=30°,再根据多边形外角和为360度即可求出边数.【答案】A 【点评】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.难度较小. 6.(2011四川眉山,6,3分)下列命题中,假命题是A .矩形的对角线相等B .有两个角相等的梯形是等腰梯形C .对角线互相垂直的矩形是正方形D .菱形的面积等于两条对角线乘积的一半【解题思路】分别根据矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质对各选项进行逐一判断即可.A .对角线相等是矩形的性质,故本选项正确;B .直角梯形中有两个角相等但不是等腰梯形,故本选项错误;C .符合正方形的判定定理,故本选项正确;D .符合菱形的性质,故本选项正确. 【答案】B【点评】本题考查的是命题与定理,熟知矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质是解答此题的关键.难度较小.7.(2011四川眉山,7,3分)化简:mm nm n -÷-2)(结果是 A .1--m B .1+-m C .m mn +- D .n mn --【解题思路】根据分式乘法及除法的运算法则进行计算,即分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【答案】原式=1)1()(+-=-⨯-m nm m m n 故选B【点评】本题考查的是分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.难度较小. 8.(2011四川眉山,8,3分)下列说法正确的是A .打开电视机,正在播放新闻B .给定一组数据,那么这组数据的中位数一定只有一个C .调查某品牌饮料的质量情况适合普查D .盒子里装有2个红球和2个黑球,搅均后从中摸出两个球,一定一红一黑【解题思路】分别根据随机事件、中位数及全面调查与抽样调查的概念进行解答. A .打开电视机,正在播放新闻是随机事件,故本选项错误;B .由中位数的概念可知,给定一组数据,那么这组数据的中位数一定只有一个,故本选项正确;C.由于调查某品牌饮料的质量具有一定的破坏性,故适合抽样调查,故本选项错误;D.由于盒子里装有2个红球和2个黑球,所以搅匀后从中摸出两个球,一红一黑是随机事件,故本选项错误.【答案】B【点评】本题考查的是随机事件、中位数及全面调查与抽样调查的概念,熟知以上知识是解答此题的关键,难度较小.9.(2011四川眉山,9,3分)如图所示的物体的左视图是【解题思路】根据左视图就是从左面看到的图形,从左边看去,就是两个长方形叠在一起,即可得出结果.【答案】D【点评】本题考查了三视图的知识,左视图就是从左面看到的图形,难度较小.10.(2011四川眉山,10,3分)已知三角形的两边长是方程x2-5x+6的两个根,则该三角形的周长L的取值范围是A.1<L<5 B.2<L<6 C.5<L<9 D.6<L<10【解题思路】先利用因式分解法解方程x2-5x+6=0,得到x=2或x=3,即三角形的两边长是2和3,再根据三角形三边的关系确定第三边的取值范围,从而得到三角形的周长L的取值范围.【答案】∵x2-5x+6=0,∴(x-2)(x-3)=0,∴x=2或x=3,即三角形的两边长是2和3,∴第三边a的取值范围是:1<a<5,∴该三角形的周长L的取值范围是6<L<10.故选D.【点评】题考查了用因式分解法解一元二次方程的方法:把方程左边分解成两个一次式的乘积,右边为0,从而方程就转化为两个一元一次方程,解一元一次方程即可.也考查了三角形三边的关系:三角形任意两边之和大于第三边.难度中等.11.(2011四川眉山,11,3分)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为A.50° B.25°C.40° D.60°【解题思路】由PA、PB是⊙O的切线,根据切线的性质得到∠OAP=∠OBP=90°,再根据四边形的内角和为360°可得到∠AOB,而AC是⊙O的直径,根据互补即可得到∠BOC 的度数.【答案】∵PA 、PB 是⊙O 的切线,∴∠OAP=∠OBP=90°, 而∠P=50°, ∴∠AOB=360°-90°-90°-50°=130°, 又∵AC 是⊙O 的直径, ∴∠BOC=180°-130°=50°. 故选A【点评】本题考查了圆的切线的性质:圆的切线垂直于过切点的半径;也考查了四边形的内角和为360°.难度中等.12.(2011四川眉山,12,3分)如图,直线b x y +-=(b >0)与双曲线xky =(x >0)交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ;有以下结论: ①OA=OB②△AOM ≌△BON③若∠AOB=45°,则S △AOB =k ④当AB=2时,ON-BN=1;其中结论正确的个数为A .1B .2C .3D .4【解题思路】①②设A (x 1,y 1),B (x 2,y 2),联立b x y +-=与xk y =,得x 2-bx+k=0,则x 1•x 2=k ,又x 1•y 1=k ,比较可知x 2=y 1,同理可得x 1=y 2,即ON=OM ,AM=BN ,可证结论;③作OH ⊥AB ,垂足为H ,根据对称性可证△OAM ≌△OAH ≌△OBH ≌△OBN ,可证S △AOB =k ;④延长MA ,NB 交于G 点,可证△ABG 为等腰直角三角形,当AB= 时,【答案】设A (x 1,y 1),B (x 2,y 2),代入xky =中,得x 1•y 1=x 2•y 2=k , 联立 ⎝⎛=+-=x ky b x y ,得x 2-bx+k=0, 则x 1•x 2=k ,又x 1•y 1=k , ∴x 2=y 1, 同理可得x 1=y 2, ∴ON=OM ,AM=BN ,∴①OA=OB ,②△AOM ≌△BON ,正确;③作OH ⊥AB ,垂足为H ,∵OA=OB ,∠AOB=45°,∴△OAM ≌△OAH ≌△OBH ≌△OBN , ∴S △AOB =S △AOH +S △BOH =S △AOM +S △BON = 21k+ 21k=k ,正确; ④延长MA ,NB 交于G 点, ∵NG=OM=ON=MG ,BN=AM , ∴GB=GA ,∴△ABG 为等腰直角三角形, 当AB=时,GA=GB=1,∴ON-BN=GN-BN=GB=1,正确.正确的结论有4个. 故选D .【点评】本题考查了反比例函数的综合运用.关键是明确反比例函数图象上点的坐标特点,反比例函数图象的对称性.难度较大.13.(2011四川眉山,13,3分)因式分解:=-234xy x .【解题思路】先提公因式x ,再利用平方差公式继续分解因式. 【答案】)2)(2(y x y x x -+【点评】本题考查了提公因式法与公式法分解因式,提取公因式后继续进行二次因式分解是关键,注意分解因式要彻底.难度较小. 14.(2011四川眉山,14,3分)有一组数据,2、6、5、4、5,它们的众数是 .【解题思路】根据众数的定义解答即可 【答案】5【点评】此题考查了众数的概念----一组数据中,出现次数最多的数位众数,众数可以有多个.难度较小. 15.(2011四川眉山,15,3分)如图,梯形ABCD 中,如果AB ∥CD ,AB=BC ,∠D=60°,AC 丄AD ,则∠B= .【解题思路】由∠D=60°,AC 丄AD ,得到∠ACD=30°,而AB ∥CD ,根据平行线的性质得到∠BAC=∠ACD=30°,又因为AB=BC ,根据等腰三角形的性质得到∠BCA=∠BAC=30°,最后根据三角形的内角和定理计算出∠B 的度数.【答案】120°【点评】:本题考查了梯形的性质:梯形的两底边平行.也考查了等腰三角形的性质和三角形内角和定理.难度较小.16.(2011四川眉山,16,3分)已知一个圆锥形的零件的母线长为3cm ,底面半径为2cm , 则这个圆锥形的零件的侧面积为 cm2.(用π表示).【解题思路】先计算出底面圆的周长,根据圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长,利用扇形的面积公式进行计算即可.【答案】6π【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长.也考查了扇形的面积公式. 难度较小.17.(2011四川眉山,17,3分)已知一元二次方程0132=+-y y 的两个实数根分别为y 1、y 2,则(y 1-1)(y 2-1)的值为 .【解题思路】先根据一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,求出y 1+y 2及y 1•y 2的值,再代入(y 1-1)(y 2-1)进行计算即可.【答案】∵一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,∴y 1+y 2=3,y 1•y 2=1, ∴(y 1-1)(y 2-1),=y 1y 2-y 1-y 2+1,=y 1y 2-(y 1+y 2)+1, =1-3+1, =-1.故答案为:-1.【点评】题考查的是一元二次方程根与系数的关系及代数式求值,若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=ab-,x 1x 2= a c ,难度中等.18.(2011四川眉山,18,3分)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是 .【解题思路】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a的取值范围,求出a 的职权范围【答案】原不等式解得x≤3a , ∵解集中只有两个正整数解, 可知是1,2, ∴2≤3a<3, 解得6≤a <9.故答案为:6≤a <9.【点评】题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.对3a的范围的把握是本题最易错的地方,也是学生最难理解之处.难度较难.19.(2011四川眉山,19,6分)计算:28)1()14.3(2011--+-+-π【解题思路】根据0指数幂,二次根式的化简,去绝对值法则分别计算,再合并同类项.【答案】2【点评】本题考查了实数的运算,0指数幂.关键是熟悉各项的运算法则,先分别计算,再合并同类项.难度较小.20.(2011四川眉山,20,6分)解方程:⎩⎨⎧=-=+②①212y x y x【解题思路】由于两方程中y 的系数互为相反数,所以可先用加减消元法,再用代入消元法求方程组的解.【答案】⎩⎨⎧-==11y x【点评】本题考查的是解二元一次方程组的加减消元法和代入消元法,熟知以上知识是解答此题的关键.难度较小. 21.(2011四川眉山,21,8分)如图,图中的小方格都是边长为1的正方形,△ABC 的顶点坐标为A (0,-2)、B (3,-1)、C (2,1).(1)请在图中画出△ABC 关于y 轴对称的图形△AB′C′; (2)写出点B′和C′的坐标.【解题思路】(1)根据对称轴为y 轴,作出△ABC 的轴对称图形△AB′C′;(2)根据所画出的图形,求点B′和C′的坐标.【答案】(1)△ABC 关于y 轴对称的图形△AB′C′如图所示;(2)由图形可知B′(-3,-1),C′(-2,1).【点评】本题考查了轴对称变换的作图.关键是明确对称轴,根据对应点的连线被对称轴垂直平分,找对应点的位置.难度较小. 22.(2011四川眉山,22,8分)在一次数学课外活动中,一位同学在教学楼的点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为15cm .求旗杆的高度.【解题思路】过A 作AE ⊥BC ,构造两个直角三角形,然后利用解直角三角形的知识解答.【答案】过A 作AE ⊥BC ,垂足为E ,由题意可知,四边形ADCE 为矩形,yxAB CO∴EC=AD=15,在Rt △AEC 中,tan ∠EAC=AECE, ∴AE=3560tan 15tan =︒=∠EAC CE (米), 在Rt △AEB 中,tan ∠BAE=AEBE,∴BE=AE•tan ∠EAB=35•tan30°=5(米),∴BC=CE+BE=20(米). 故旗杆高度为20米.【点评】此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键.难度中等. 23.(2011四川眉山,23,9分)某中学团委、学生会为了解该校学生最喜欢的球类活动的悄況,对足球、乒乓球、篮球、排球四个项目作调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息射答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢篮球的圆心角度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是最喜欢乒乓球的概率是多少?【解题思路】(1)读图可知喜欢足球的有40人,占20%,所以一共调查了40÷20%=200人,(2)喜欢篮球的占40%,所占的圆心角为360°×40%=144度,(3)喜欢乒乓球的人数为60人,总人数为200人,根据概率公式即可得出结果.【答案】(1)200,补全统计图,如图所示:(2)144°;(3) 103【点评】本题考查学生的读图能力,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,难度适中.24.(2011四川眉山,24,9分)在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已在(2)的条件下,请说明哪种方案的总费用最少?【解题思路】(1)设运往E 地x 立方米,由题意可列出关于x 的方程,求出x 的值即可;(2)由题意列出关于a 的一元一次不等式组,求出a 的取值范围,再根据a 是整数可得出a 的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可. 【答案】(1)设运往E 地x 立方米,由题意得,x+2x-10=140,解得:x=50, ∴2x-10=90,答:共运往D 地90立方米,运往E 地50立方米; (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aa , 解得:20<a≤22, ∵a 是整数, ∴a=21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米; C 地运往D 地39立方米,运往E 地11立方米;第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.难度适中.25.(2011四川眉山,25,9分)如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB=1:2,且PA ⊥BF ,求对角线BD 的长.【解题思路】(1)根据菱形的性质得CD=AD ,∠CDP=∠ADP ,证明△CDP ≌△ADP 即可;(2)由菱形的性质得CD ∥BA ,可证△CPD ∽△FPB ,利用相似比,结合已知DP :PB=1:2,CD=BA ,可证A 为BF 的中点,又PA ⊥BF ,从而得出PB=PF ,已证PA=CP ,把问题转化到Rt △PAB 中,由勾股定理,列方程求解.【答案】(1)证明:∵四边形ABCD 为菱形,∴CD=AD ,∠CDP=∠ADP ,∴△CDP ≌△ADP ,∴∠DCP=∠DAP ;(2)解:∵四边形ABCD 为菱形,∴CD ∥BA ,CD=BA ,∴△CPD ∽△FPB , ∴21===PF CP BF CD PB DP , ∴CD= 21BF ,CP= 21PF , ∴A 为BF 的中点,又∵PA ⊥BF ,∴PB=PF ,由(1)可知,PA=CP ,∴PA=21 PB , 在Rt △PAB 中,PB 2=22+(21PB )2, 解得PB=334, 则PD=332, ∴BD=PB+PD=32.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是运用方程的思想,利用相似和勾股定理,列出关于PB 的方程.难度较大.26.(2011四川眉山,26,11分)如图,在直角坐标系中,已知点A (0,1),B (-4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B .(1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.【解题思路】(1)设抛物线的解析式:y=ax 2,把B (-4,4)代入即可得到a 的值;过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,易证Rt △BAE ≌Rt △ACD ,得到AD=BE=4,CD=AE=OE-OA=4-1=3,即可得到C 点坐标(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,则有d 1=41a 2,又AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a ,在Rt △PAF 中,利用勾股定理得到PA=d 2= 41a 2+1,即有结论d 2=d 1+1; (3)△PAC 的周长=PC+PA+5,由(2)得到△PAC 的周长=PC+PH+6,要使PC+PH 最小,则C 、P 、H 三点共线,P 点坐标为(3,49),此时PC+PH=5,得到△PAC 的周长的最小值=5+6=11.【答案】(1)设抛物线的解析式:y=ax 2,∵拋物线经过点B (-4,4),∴4=a•42,解得a=41, 所以抛物线的解析式为:y=41x 2; 过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,如图,∵点B 绕点A 顺时针方向90°得到点C ,∴Rt △BAE ≌Rt △ACD ,∴AD=BE=4,CD=AE=OE-OA=4-1=3,∴OD=AD+OA=5,∴C 点坐标为(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,如图,∵点P 在抛物线y= 41x 2上, ∴b=41a 2, ∴d 1= 41a 2, ∵AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a , 在Rt △PAF 中,PA=d 2= 22222)141(a a PF AF +-=+ = 41a 2+1, ∴d 2=d 1+1;(3)由(1)得AC=5,∴△PAC 的周长=PC+PA+5=PC+PH+6,则C 、P 、H 三点共线时,PC+PH 最小,∴此时P 点的横坐标为3,把x=3代入y=41x 2,得到y=49, 即P 点坐标为(3,49),此时PC+PH=5, ∴△PAC 的周长的最小值=5+6=11.【点评】本题考查了点在抛物线上,点的横纵坐标满足二次函数的解析式和顶点在原点的二次函数的解析式为:y=ax 2;也考查了旋转的性质、勾股定理以及两点之间线段最短.本题第(3)小题的关键是将△PAC 的周长转化为PC 与PH 和的关系,从而求出三角形周长的最小值.难度较大.本题第(3)小题与2010年南通市28题的第(3)小题非常类似,如下题,供参考。
2012年四川内江中考数学试题word版有答案

内江市二0一二年高中阶段教育学校招生考试及初中毕业会考试卷 数 学(全卷160分,时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1.-6的相反数为( )A.6B.61 C.61- D.- 62.下列计算正确的是( )A.642a a a =+ B.ab b a 532=+ C.()632a a =D.236aa a =÷3.已知反比例函数xky =的图像经过点(1,-2),则K 的值为( ) A.2 B.21-C.1D.- 2 4.下列图形中,既是轴对称图形又是中心对称图形的有( )A. 4个B. 3个C. 2个D. 1个 5.如图1,=∠=∠=∠3,1402,651,//00则b a () A.0100 B.0105 C.0110 D.01156.一组数据4,3,6,9,6,5的中位数和众数分别是( ) A. 5和5.5 B. 5.5和6 C. 5和6 D. 6和67.函数x xy +=1的图像在( )A.第一象限B.第一、三象限C.第二象限D.第二、四象限8.如图2,AB 是o的直径,弦0,30,CD AB CDB CD ⊥∠==则阴影部分图形的面积为( )A.4πB.2πC.πD.23π 9.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A.304015x x =-B.304015x x =-C.304015x x =+D.304015x x=+10.如图3,在矩形ABCD 中,10,5,AB BC ==点E F 、分别在AB CD 、上,将矩形ABCD 沿EF 折叠,使点A D 、分别落在矩形ABCD 外部的点11A D 、处,则阴影部分图形的周长为( )A.15B.20C.25D.3011.如图4所示,ABC ∆的顶点是正方形网格的格点,则sin A 的值为( ) A.12图 2 图3 图412.如图5,正ABC 的边长为3cm,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间 为x (秒),2y PC =,则y 关于x 的函数的图像大致为( )图5二、填空题(每小题5分,共20分)13.分解因式:34ab ab -=14.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图6所示,那么组成该几何体所需的小正方形的个数最少为15.如图7所示,A 、B 是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使ABC 的面积为1的概率是16.如图8,四边形ABCD 是梯形,,BD AC BD AC =⊥且若2,4,AB CD ==则ABCD S =梯形图6 图7 图8 三、解答题(共44分)17.(7分)计算:01201211(1)883π-⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭18.(9分)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD .如图9所示,已知迎水坡面AB 的长为16米,060,B ∠=背水坡面CD 的长为加固后大坝的横截面积为梯形,ABED CE 的长为8米。
重庆四川2011年中考数学试题分类解析专题(1-12)

重庆四川2011年中考数学专题2:代数式和因式分解 选择题1.(重庆4分)计算(a 3)2的结果是 A 、a B 、a 5 C 、a 6 D 、a 9 【答案】C 。
【考点】幂的乘方。
【分析】根据底数不变,指数相乘的幂的乘方法则计算即可:(a 3)2=a 3×2=a 6。
故选C 。
2.(重庆江津4分)下列式子是分式的是A 、2xB 、1x x +C 、2xy+D 、xπ【答案】B 。
【考点】分式的定义。
【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式:∵2x ,2x y+,x π的分母中均不含有字母,∴它们是整式,而不是分式;1xx +分母中含有字母,因此是分式。
故选B 。
3.(重庆潼南4分)计算3 a •2 a 的结果是 A .6a B .6a 2 C. 5a D. 5a2【答案】B 。
【考点】单项式乘单项式。
【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:∵3 a •2 a =6112a a +=,故选B 。
4.(四川雅安3分)下列运算正确的是A 、3332a a a =∙B 、633a a a =+ C 、336)2(x x -=- D 、426a a a =÷ 【答案】D 。
【考点】同底数幂的乘法,合并同类项,幂的乘方与积的乘方,同底数幂的除法。
【分析】根据同底数幂的乘法,合并同类项,幂的乘方与积的乘方,同底数幂的除法运算法则,对各选项计算后利用排除法求解:A 、633a a a =∙,故本选项错误;B 、3332a a a =+,故本选项错误;C 、338)2(x x -=-,故本选项错误;D 、426a a a =÷,故本选项正确。
故选D 。
5.(四川攀枝花3分)下列运算中,正确的是 A 、532=+B 、a 2·a = a 3C 、633)(a a =D 、3273-=【答案】B 。
2011年中考数学试题及解析171套试题试卷_91
江西省2011年初中毕业暨中等学校招生考试一、选择题(本大题共8个小题,每小题3分,共24分) 1.下列各数中,最小的是( ).A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ). A. 4.456×107人 B. 4.456×106人 C. 4456×104人 D. 4.456×103人3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是( ).4.下列运算正确的是( ).A.a +b =abB. a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =15.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 26.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( ).二、填空题(本大题共8小题,每小题3分,共24分) 9.计算:-2-1=__________.10.因式分解:x 3-x =______________.11.函数y =x 的取值范围是 . 12.方程组25,7x y x y +=⎧⎨-=⎩的解是 .13.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠P AB =__________度.14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 .y (度)A.(度)B.度)C.度)D. B. C. D. A.ACBP第13题第7题图甲图乙 第3题15.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________. 16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE=4,其中正确结论的序号是 .三、(本大题共3小题,每小题6分,共18分) 17.先化简,再求值:2()11a aa a a+÷--,其中 1.a =18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0).(1)求点D 的坐标;(2)求经过点C 的反比例函数解析式.四、(本大题共2小题,每小题8分,共16分)20.有一种用来画圆的工具板(如图所示),工具板长21cm ,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm ,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm ,最小圆的右侧距工具板右侧边缘1.5cm ,相邻两圆的间距d 均相等. (1)直接写出其余四个圆的直径长; (2)求相邻两圆的间距.x y第14题ADCBEOGF 第16题第15题21.如图,已知⊙O 的半径为2,弦BC的长为A 为弦BC 所对优弧上任意一点(B ,C 两点除外). (1)求∠BAC 的度数;(2)求△ABC 面积的最大值. (参考数据:3sin 60=,3cos30=,3tan 30=.) 五、(本大题共2小题,每小题9分,共18分)22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A -B -C -D -E -F ,C -D 是CD ,其余是线段),O 是AF 的中点,桶口直径AF =34cm ,AB =FE =5cm ,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)23.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可) ③从扇形统计图中,你得出什么结论?(写出一个即可)图丙CDC 图甲DC图乙2010年全省教育发展情况统六、(本大题共2小题,每小题10分,共20分)24.将抛物线c 1:y =2x 轴翻折,得抛物线c 2,如图所示. (1)请直接写出抛物线c 2的表达式.(2)现将抛物线c 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一: 如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A 1A 2为第1根小棒) 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ=_________度;②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…), 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第一根小棒,且A 1A 2=AA 1.数学思考:(3)若已经摆放了3根小棒,则θ1 =_________,θ2=________, θ3=________;(用含θ 的式子表示) (4)若只能..摆放4根小棒,求θ的范围. yxO备用图A 1 A 2A B CA 3 A 4A 5 A 6 a 1 a 2 a 3 图甲参考答案及评分意见一、选择题(本大题共8个小题,每小题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A二、填空题(本大题共8个小题,每小题3分,共24分)9. 3- 10.()()11x x x +- 11.1x ≤ 12.4,3x y =⎧⎨=-⎩ 13. 9014.2180y x -=(或1902y x =+) 15.(0,1) 16.①②③④三、(本大题共3个小题,每小题各6分,共18分)17.解:原式=2111111aa a a a a a a a ⎛⎫-÷=⨯= ⎪----⎝⎭. ………………3分当1a =时,原式==…………6分 18.解:(1)方法一 画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16. (4)方法二列表格如下:甲乙丙 丁甲 甲、乙甲、丙甲、丁乙 乙、甲 乙、丙乙、丁丙 丙、甲 丙、乙 丙、丁 丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16. ………………4分(2)P (恰好选中乙同学)=13. ………………6分19.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =. 在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为ky x=. 把()3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x =. ……6分四、(本大题共2个小题,每小题8分,共16分) 20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分 (2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分∴41621d += ∴54d =. ………………7分甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁 甲 乙 丙 第一次 第二次图丙CD 答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E . ∵OE ⊥BC ,BC =BE EC == …1分在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==,∴60BOE ∠=, ∴120BOC ∠=,∴1602BAC BOC ∠=∠=. ……4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠=. 在Rt △DBC 中,sin BC BDC BD ∠==, ∴60BDC ∠=,∴60BAC BDC ∠=∠=.………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠=. 在Rt △ABE 中,∵30BE BAE =∠=,∴3tan 303BEAE ===,∴S △ABC=132⨯=答:△ABC 面积的最大值是………………8分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠=, ∴△ABC 是等边三角形. ………………6分在Rt △ABE 中,∵30BE BAE =∠=,∴3tan 303BE AE ===,∴S △ABC =132⨯=答:△ABC 面积的最大值是………………8分五、22.解法一 连接OB ,过点O 作OG ⊥BC 于点G .………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°,……4分 ∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°.………5分又 ∵17.72OB ==≈,……………6分 ∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>.…8分 ∴水桶提手合格. ……………9分解法二 连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°. ………………4分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分∴水桶提手合格. ………………9分23.解:(1)2010年全省教育发展情况统计表……………3分 (2) ……………6分(3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15, ∴小学学段的师生比最小. ………7分②如:小学在校学生数最多等. ………8分 ③如:高中学校所数偏少等. ………9分六、24.解:(1)2y =. ………………2分(2)①令20,得:121,1x x =-=, 则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0).同理可得:D (-1+m ,0),E (1+m ,0).当13AD AE =时,如图①,()()()()111113m m m m -+---=+---⎡⎤⎣⎦,∴12m =. ……4分 当13AB AE =时,如图②,()()()()111113m m m m ----=+---⎡⎤⎣⎦, ∴2m =. …………6分 ∴当12m =或2时,B ,D 是线段AE 的三等分点. ②存在. ………………7分 方法一理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分 要使平行四边形ANEM 为矩形,必需满足OM OA =,即()2221m m +=--, ∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分学校所数 (所) 在校学生数 (万人) 教师数(万人) 小学 12500 440 20 初中 2000 200 12 高中 450 75 5 其它 10050 280 11 合计25000 995 48全省各级各类学校所数扇形统计图方法二理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分∵222(1)4AM m m =-+++=,2222(1)444ME m m m m =+++=++, 222(11)484AE m m m m =+++=++,若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直角三角形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分25.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=AA =A 2A 3=1,A A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A5, ∴AA 3=A 3A 4,AA 5=A A∴a 2=A 3A 4=AA3=1,a 3=AA + A 3A 5=a 2+ A 3A5. ………………3分∵A 3A 52, ∴a 3=A 5A 6=AA 5=)2221a =. ………………4分方法二∵A A 1=A A =A 2A 3=1,A A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -=………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分。
2011成都中考数学试题及答案
2011成都中考数学试题及答案第一部分选择题1.在一个等边三角形中,三条高分别为2cm、3cm、4cm,那么这个三角形的边长是多少? A. 6cm B. 8cm C.10cm D. 12cm答案: B. 8cm解析: 在等边三角形中,高等于边长的一半。
所以边长为4cm*2=8cm。
2.若正方形的边长为5a,则它的周长是多少? A. 5a B. 10a C. 15a D. 20a答案: D. 20a解析: 正方形的周长等于4倍的边长,所以周长为4*5a=20a。
3.如图所示,矩形ABCD的长为10m,宽为5m,点M是AD边上一点,且AM=2.5m,连接MB,求MB的长度。
答案: 7.5m解析: 根据直角三角形的性质,可以推算出BM的长度为√(52+2.52)=7.5m。
…第二部分填空题1.一个矩形的长为5cm,宽为3cm,它的周长是________cm。
答案: 16cm2.若一个等边三角形的边长为6cm,则它的面积是________cm^2。
答案: 9√3cm^2…第三部分解答题1.下面是一道几何题,请解答。
如图所示,正方形ABCD的边长为8cm,点M、N分别是边AD和BC的中点,连接BN和AM,求三角形ABN和三角形ADM的面积比。
解答: 首先计算出三角形ABN和三角形ADM的高,由于MN是正方形的对角线,所以MN的长度为8√2cm。
则三角形ABN的高为8√2/2=4√2cm,三角形ADM的高为8/2=4cm。
那么两个三角形的面积比为(1/2)∗(4√2)^2/ [(1/2)∗4^2] = 8 / 2 = 4。
2.下面是一道代数题,请解答。
已知a+b=5,a2+b2=13,求a和b的值。
解答: 利用公式(a+b)2=a2+b^2+2ab,可以求得2ab=12,因此ab=6。
又已知a+b=5,代入ab=6的式子中可以求得a=2,b=3。
…以上是2011成都中考数学试题及答案,希望对你的学习有所帮助!。
重庆四川2011年中考数学试题分类解析汇编 专题2 代数式和因式分解
某某某某2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(某某4分)计算(a 3)2的结果是A 、aB 、a 5C 、a 6D 、a 9【答案】C 。
【考点】幂的乘方。
【分析】根据底数不变,指数相乘的幂的乘方法则计算即可:(a 3)2=a 3×2=a 6。
故选C 。
2.(某某江津4分)下列式子是分式的是A 、2xB 、1x x + C 、2x y + D 、xπ【答案】B 。
【考点】分式的定义。
【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式: ∵2x ,2x y +,x π的分母中均不含有字母,∴它们是整式,而不是分式;1xx +分母中含有字母,因此是分式。
故选B 。
3.(某某潼南4分)计算3a •2a 的结果是A .6aB .6a 2C. 5aD. 5a2【答案】B 。
【考点】单项式乘单项式。
【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:∵3a •2a =6112a a +=,故选B 。
4.(某某某某3分)下列运算正确的是A 、3332a a a =•B 、633a a a =+C 、336)2(x x -=- D 、426a a a =÷【答案】D 。
【考点】同底数幂的乘法,合并同类项,幂的乘方与积的乘方,同底数幂的除法。
【分析】根据同底数幂的乘法,合并同类项,幂的乘方与积的乘方,同底数幂的除法运算法则,对各选项计算后利用排除法求解:A 、633a a a =•,故本选项错误;B 、3332a a a =+,故本选项错误;C 、338)2(x x -=-,故本选项错误;D 、426a a a =÷,故本选项正确。
故选D 。
5.(某某某某3分)下列运算中,正确的是A 、532=+B 、a 2·a = a 3C 、633)(a a = D 、3273-=【答案】B 。
2011中考数学真题34 平面内点的坐标的性质(含答案)教程
(2012年 1月最新最细 2011全国中考真题解析 120考点汇编平面内点的坐标的性质一、选择题1. (2011• 江苏宿迁, 2, 3在平面直角坐标系中,点 M (﹣ 2, 3在(A 、第一象限B 、第二象限C 、第三象限D 、第四象限考点 :点 :解:∵﹣ 2<0, 3>0,∴(﹣ 2, 3在第二象限,故选 B .的坐标。
专题 :计算题。
分析:横坐标小于 0,纵坐标大于 0,则这点在第二象限.解答点评:本题考查了点的坐标,个象限内坐标的符号:第一象限:+, +;第二象限:﹣, +; 第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.2. (2011湖南怀化 ,8,3分如图,若在象棋盘上建立直角坐标系,使“ 帅” 位于点(﹣ 1,﹣2 . “ 馬” 位于点(2,﹣ 2 ,则“ 兵”位于点(A . (﹣ 1, 1B . (﹣ 2,﹣ 1C . (﹣ 3, 1D . (1,﹣ 2考点:坐标确定位置。
分析:根据“ 帅” 位于点(﹣ 1,﹣2 . “ 馬” 位于点(2,﹣ 2 ,得出原点的位置即可得出答案. 解答:解:∵在象棋盘上建立直角坐标系,使“ 帅” 位于点(﹣ 1,﹣2 . “ 馬” 位于点(2,﹣ 2 ,∴.可得出原点位置在棋子炮的位置,∴则“ 兵” 位于点:(﹣ 3, 1 ,故选:C .点评:此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点, 需要掌握确定原点的方法是解决问题的关键.3. (2011梧州, 2, 3分在平面直角坐标系中,下面的点在第一象限的是( A 、 (1, 2B 、 (﹣ 2, 3C 、 (0, 0D 、 (﹣ 3,﹣ 2考点 :点的坐标。
专题 :计算题。
分析 :满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数, 结合选项进行判断即可.解答 :解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有 A (1, 2 .故选 A .点评 :本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点, 四个象限的符号特点分别是:第一象限(+, + ;第二象限(﹣, + ;第三象限(﹣,﹣ ;第四象限(+, ﹣ .4. (2011• 安顺, 10, 3分一只跳蚤在第一象限及 x 轴、 y 轴上跳动,在第一秒钟,它从原点跳动到(0, 1 ,然后接着按图中箭头所示方向跳动 [即(0, 0 → (0, 1 → (1, 1 → (1, 0 →…],且每秒跳动一个单位,那么第 35秒时跳蚤所在位置的坐标是(A 、 (4, OB 、 (5, 0C 、 (0, 5D 、 (5, 5考点 :点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年四川省内江市中考数学试卷 一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、下列四个实数中,比1小的数是( ) A、2 B、0 C、1 D、2 2、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( ) A、32° B、58° C、68° D、60° 3、某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是( )
A、79.410m B、79.410m C、89.410m D、89.410m 4、在下列几何图形中,一定是轴对称图形的有( )
A、1个 B、2个 C、3个 D、4个 5、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是( ) A、32000名学生是总体 B、1600名学生的体重是总体的一个样本 C、每名学生是总体的一个个体 D、以上调査是普查 6、下列多边形中,不能够单独铺满地面的是( ) A、正三角形 B、正方形 C、正五边形 D、正六边形 7、某中学数学兴趣小组12名成员的年龄悄况如下:
年龄(岁) 12 13 14 15 16
人数 1 4 3 2 2
则这个小组成员年龄的平均数和中位数分别是( ) A、15,16 B、13,15 C、13,14 D、14,14 8、由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是( )
9、如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径0C为2,则弦BC的长为( ) A、1
B、3 C、2 D、23 10、小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( ) A、14分钟 B、17分钟 C、18分钟 D、20分钟
11、如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC的面积为( ) A、83 B、15 C、93
D、123 12、如图.在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为( )
A、412()55,
B、213()55, C、113()25, D、312()55, 二、填空题{本大题共4小题,每小题5分,共20分.请将最后答案直接写在题中横线上.) 13、“Welcomc to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字母O出现的频率是________。 14、如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是________。
15、如果分式23273xx的值为0,则x的值应为________。 16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中 点,当四边形ABCD的边至少满足________条件时,四边形EFGH是菱形. 三、解答题(本大题共5小题,共44分)
17、计算:03tan30(2011)812. 18、如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC. 试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
19、小英和小明姐弟二人准备一起去观看端午节龙舟赛.但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去看龙舟赛.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄 色的乒乓球,它们除颜色外其余都相同.游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同.则小英赢,否则小明赢. (1)请用树状图或列表的方法表示游戏中所有可能出现的结果. (2)这个游戏对游戏双方公平吗?请说明理由. 20、放风筝是大家喜爱的一种运动.星期天的上午小明在大洲广场上放风筝.如图他在A处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D处.此时风筝线AD与水平线的夹角为30°. 为了便于观察.小明迅速向前边移动边收线到达了离A处7米的B处,此时风筝线BD与水平线的夹角为45°.已知点A、B、C在冋一条直线上,∠ACD=90°.请你求出小明此吋所收回的风筝线的长度是
多少米?(本题中风筝线均视为线段,2≈1.414,3≈1.732.最后结果精确到1米)
21、如图,正比例函数11ykx与反比例函数22kyx相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且4BDOS.过点A的一次函数33ykxb与反比例函数的图象交于另一点C,与x轴交于点E(5,0). (1)求正比例函数1y、反比例函数2y和一次函数3y的解析式;
(2)结合图象,求出当231kkxbkxx时x的取值范围. 四、填空题(本大题共4小题,每小题6分,共24分.请将最简答案直接填在题中横线上.) 22、若201120121m,则54322011mmm的值是_________ 23、如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DE交于点O.若△ADE的面积为S,则四边形B0GC的面积= _________
24、已知263(5)36(3)mnmmn,则mn=
25、在直角坐标系中,正方形1111ABCO、2221ABCC、„、nnnn-1ABCC按如图所示的方式放置,其中点123AAA、、、„、nA均在一次函数ykxb的图象上,点123C、C、C、„、nC均在x轴上.若点
1B
的坐标为(1,1),点2B的坐标为(3,2),则点nA的坐标为_________
五、解答题(本大题共3小题,每小题12分,共36分.解答时必须写ii必要的文字说明、证明过程或推演步骤) 26、同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为
2222123...n.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解
决这个问题.首先,通过探究我们已经知道1011223...(1)(1)(1)3nnnnn 时,我们可以这样做: (1)观察并猜想:
2212
=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
222123=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3 =(1+2+3)+(0×1+1×2+2×3)
22221234=(1+0)×1+(1+1)×2+(l+2)×3+ ___________
=1+0×1+2+1×2+3+2×3+ ___________ =(1+2+3+4)+(___________) „ (2)归纳结论:
2222123...n
=(1+0)×1+(1+1)×2+(1+2)×3+„[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+„+n+(n-1)×n =(___________)+[ ___________] = ___________+ ___________ =16×___________ (3 )实践应用: 通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________。
27、某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元. (1)每台电脑机箱、液晶显示器的进价各是多少元? (2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少? 28、如图抛物线213yxmxn与x轴交于A、B两点,与y轴交于点C(0.1).且对称抽x=l. (1)求出抛物线的解析式及A、B两点的坐标; (2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1); (3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2). 参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B A C B C D B D D C A 二、填空题 13. 0.2 14. 30 15. 3 16. AB=CD 三、解答题
17. 解:原式= × -1+2 +(1- ), =1-1+2 +1- , = +1. 18. 数量关系为:BE=EC,位置关系是:BE⊥EC. 证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°, ∴∠EAD=∠EDA=45°, ∴AE=DE, ∵∠BAC=90°, ∴∠EAB=∠EAD+∠BAC=90°+45°=135°, ∠EDC=∠ADC-∠EDA=180°-45°=135°, ∴∠EAB=∠EDC, ∵D是AC的中点,
∴AD= AB, ∵AC=2AB, ∴AB=DC, ∴△EAB≌△EDC, ∴EB=EC,且∠AEB=∠AED=90°, ∴∠DEC+∠BED=∠AED=∠BED=90°, ∴BE⊥ED. 19. 解:(1)
(2)根据树状图可知, P(小英赢)= ,
P(小明赢)= , P(小英赢)>P(小明赢), 所以该游戏不公平. 20. 解:设CD为x米. ∵∠ACD=90°, ∴在直角△ADC中,∠DAC=30°,AC=CD•cos30°= x,AD=2x,