大学物理第六章练习答案

合集下载

大学物理A1习题册参考答案-第5-6章

大学物理A1习题册参考答案-第5-6章

A1r 2r ab1、 下列几个叙述中哪一个是正确的?A 、电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;C 、场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正可负; D 、以上说法都不正确。

[ ] 1. C解释:A 答案点电荷可能有正负;B 答案场强是矢量2、 关于高斯定理的理解有下面几种说法,其中正确的是 A 、如果高斯面内无电荷,则高斯面上E处处为零; B 、如果高斯面上E处处不为零,则该面内必无电荷;C 、如果高斯面内有净电荷,则通过该面的电通量必不为零;D 、如果高斯面上E处处为零,则该面内必无电荷。

[ ] 2. C解释:A 答案通量为零不一定场强为零;D 答案考虑等量异号电荷,可以使得处处为零。

3、 在静电场中,下列说法中哪一个是正确的?A 、带正电荷的导体,其电势一定是正值;B 、等势面上各点的场强一定相等;C 、场强为零处,电势也一定为零;D 、场强相等处,电势梯度矢量一定相等。

[ ] 3. D解释:A 答案电势是个相对值,要参考零电势的选择。

4、 如图所示,在电荷为Q -的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为1r 和2r ,则移动过程中电场力做的功为 A 、012114Q r r πε⎛⎫-- ⎪⎝⎭; B 、012114qQ r r πε⎛⎫- ⎪⎝⎭;C 、012114qQ r r πε⎛⎫-- ⎪⎝⎭; D 、()0214qQ r r πε-- [ ]4. C解释:电场力做功等于电势能差,注意正负号。

5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 5. D解释:由高斯定理依次求出各部分场强即可。

大学物理 第六章(中国农业出版社 张社奇主编)答案

大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)

0.03
cos[4
(t

9 20
)


]

0.03
cos[4
t

14
5
]m
(2) uT u 2 20 2 10m

4
O点振动比A点振动在相位上提前
2 x 2 5

10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75


0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0

波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75

大学物理学(课后答案)第5-6章

大学物理学(课后答案)第5-6章

第5章 机械振动一、选择题5-1 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A-,且向x 轴的正方向运动,代表这个简谐振动的旋转矢量图为[ ]分析与解 图中旋转矢量投影点的运动方向指向Ox 轴正向,同时矢端在x轴投影点的位移为2A-,满足题意,因而选(D)。

5-2 作简谐振动的物体,振幅为A ,由平衡位置向x 轴正方向运动,则物体由平衡位置运动到32Ax =处时,所需的最短时间为周期的几分之几[ ] (A) 1 /2 (B) 1/4 (C) 1/6 (D) 1/12分析与解 设1t 时刻物体由平衡位置向x 轴正方向运动,2t 时刻物体第一次运动到32A x =处,可通过旋转矢量图,如图5-2所示,并根据公式2t T ϕπ∆∆=得31226t T T T ϕπππ∆∆===,,因而选(C)。

5-3 两个同周期简谐振动曲线如图5-3(a)所示,1x 的相位比2x 的相位[ ]O O OO A Axxx(A) (B)(D)(C)A /2-A /2 A /2 -A /2A Aωωωωx习题5-1图习题5-2图(A) 落后2π(B) 超前2π(C) 落后π (D) 超前π分析与解 可通过振动曲线作出相应的旋转矢量图(b ),正确答案为(B )。

5-4 一弹簧振子作简谐振动,总能量为E ,若振幅增加为原来的2倍,振子的质量增加为原来的4倍,则它的总能量为[ ](A) 2E (B) 4E (C) E (D) 16E 分析与解 因为简谐振动的总能量2p k 12E E E kA =+=,因而当振幅增加为原来的2倍时,能量变为原来的4倍,因而答案选(B)。

5-5 两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个简谐振动的相位差为[ ](A) 60 (B) 90 (C) 120 (D) 180分析与解 答案(C )。

由旋转矢量图可知两个简谐振动的相位差为 120时,合成后的简谐运动的振幅仍为A 。

大学物理化学核心教程课后参考答案第6章

大学物理化学核心教程课后参考答案第6章

第六章相平衡一.基本要求1.掌握相平衡的一些基本概念,会熟练运用相律来判断系统的组分数、相数和自由度数;2.能看懂单组分系统的相图,理解相图中的点、线和面的含义及自由度,知道相图中两相平衡线的斜率是如何用Clapeyron方程和Clausius-Clapeyron方程确定的,了解三相点与凝固点的区别;3.能看懂二组分液态混合物的相图,会在两相区使用杠杆规则,了解蒸馏与精馏的原理,知道最低和最高恒沸混合物产生的原因;4.了解部分互溶双液系和完全不互溶双液系相图的特点,掌握水蒸汽蒸馏的原理;5.掌握如何用热分析法绘制相图,会分析低共熔相图上的相区、平衡线和特殊点所包含的相数、相的状态和自由度,会从相图上的任意点绘制冷却时的步冷曲线;了解二组分低共熔相图和水盐相图在湿法冶金、分离和提纯等方面的应用;6.了解生成稳定化合物、不稳定化合物和形成固溶体相图的特点,知道如何利用相图来提纯物质;二.把握学习要点的建议相律是本章的重要内容之一,不一定要详细了解相律的推导,而必须理解相律中各个物理量的意义以及如何求算组分数,并能熟练地运用相律;水的相图是最简单也是最基本的相图,要把图中的点、线、面的含义搞清楚,知道确定两相平衡线的斜率,学会进行自由度的分析,了解三相点与凝固点的区别,为以后看懂相图和分析相图打好基础;超临界流体目前是分离和反应领域中的一个研究热点,了解一些二氧化碳超临界流体在萃取方面的应用例子,可以扩展自己的知识面,提高学习兴趣;二组分理想液态混合物的相图是二组分系统中最基本的相图,要根据纵坐标是压力还是温度来确定气相区和液相区的位置,理解气相和液相组成为什么会随着压力或温度的改变而改变,了解各区的条件自由度在二组分相图上都是条件自由度,为以后看懂复杂的二组分相图打下基础;最高或最低恒沸混合物不是化合物,是混合物,这混合物与化合物的最根本的区别在于,恒沸混合物含有两种化合物的分子,恒沸点的温度会随着外压的改变而改变,而且两种分子在气相和液相中的比例也会随之而改变,即恒沸混合物的组成也会随着外压的改变而改变,这与化合物有本质的区别;杠杆规则可以在任何两相区使用,但也只能在两相区使用,在三相区和在三相平衡线上是不能使用杠杆规则的;从具有最高会溶温度的相图,要认清帽形区的特点,是两液相的平衡共存区,这对今后理解两个固溶体也会形成帽形区很有帮助;在学习用热分析法绘制二组分低共熔相图时,首先要理解在步冷曲线上为什么会出现转折点和水平线段,这一方面要从散热与释放出的凝固热进行补偿的角度理解,另一方面要从自由度的变化来理解;理解了步冷曲线上自由度的变化情况,对相图中的自由度就容易理解;要花较多的精力掌握简单的二组分低共熔相图,要进行相区、两相平衡线、三相平衡线和特殊点的自由度分析,这样今后就容易看懂和理解复杂相图,因为复杂相图一般是简单相图的组合;低共熔混合物到底有几个相这个问题初学时容易混淆,答案当然是两相,不过这是两种固体以微小的结晶均匀混合的物系,纵然在金相显微镜中看起来也很均匀,但小晶体都保留着原有固体的物理和化学性质,所以仍是两相;低共熔点的温度和组成都会随着外压的改变而改变,所以低共熔混合物也不是化合物;对于形成稳定化合物和不稳定化合物的相图,要抓住相图的特点,了解稳定化合物的熔点与不稳定化合物的转熔温度之间的差别,比较一般的三相线与不稳定化合物转熔时的三相线有何不同要注意表示液相组成点的位置有什么不同,这样在分析复杂相图时,很容易将稳定化合物和不稳定化合物区别开来;固溶体是固体溶液的简称,固溶体中的“溶”是溶液的“溶”,所以不要把“溶”字误写为“熔”字;既然固溶体是溶液的一种,实际是混合物的一种即固体混合物,所以固溶体是单相,它的组成线与液态溶液的组成线一样,组成会随着温度的改变而改变;在相图上,固溶体总是处在由两根曲线封闭的两相区的下面;在分析复杂相图,首先要能正确认出固溶体或帽形区的位置,则其他相区的分析就变得简单了;三.思考题参考答案1.硫氢化铵NH HS(s)的分解反应:①在真空容器中分解;②在充有一定4NH(g)的容器中分解,两种情况的独立组分数是否一样3答:两种独立组分数不一样;在①中,C =1;因为物种数S 为3,但有一个独立的化学平衡和一个浓度限制条件,所以组分数等于1;在②中,物种数S 仍为3,有一个独立的化学平衡,但是浓度限制条件被破坏了,两个生成物之间没有量的限制条件,所以独立组分数C =2;2.纯的碳酸钙固体在真空容器中分解,这时独立组分数为多少答: 碳酸钙固体的分解反应为 32CaCO (s)CaO(s)CO (g)+物种数为3,有一个平衡限制条件,但没有浓度限制条件;因为氧化钙与二氧化碳不处在同一个相,没有摩尔分数的加和等于1的限制条件,所以独立组分数为2;3.制水煤气时有三个平衡反应,求独立组分数C1 H 2Og+ Cs= H 2g+ COg2 CO 2g+ H 2g= H 2Og+ COg3 CO 2g+ Cs= 2COg答: 三个反应中共有5个物种,5S =;方程1可以用方程3减去2得到,因而只有2个独立的化学平衡,2R =;没有明确的浓度限制条件,所以独立组分数3C =;4.在抽空容器中,氯化铵的分解平衡,43NH Cl(s)NH (g)HCl(g)+;指出该系统的独立组分数、相数和自由度数答:反应中有三个物种,一个平衡限制条件,一个浓度限制条件,所以独立组分数为1,相数为2;根据相律,自由度为1;即分解温度和分解压力两者之中只有一个可以发生变化;5.在含有氨的容器中氯化铵固体分解达平衡,43NH Cl(s)NH (g)HCl(g)+;指出该系统的独立组分数、相数和自由度答: 反应中有三个物种,一个平衡限制条件,没有浓度限制条件;所以独立组分数为2,相数为2,自由度为2;6.碳和氧在一定条件下达成两种平衡,指出该系统的独立组分数、相数和自由度数;答:物种数为4,碳,氧,一氧化碳和二氧化碳,有两个化学平衡,无浓度限制条件,所以独立组分数为2,相数为2,自由度为2;7.水的三相点与冰点是否相同答:不相同;纯水的三相点是气-液-固三相共存,其温度和压力由水本身性质决定,这时的压力为 Pa,温度为 K ;热力学温标1 K就是取水的三相点温度的1/ K ;水的冰点是指在大气压力下,冰与水共存时的温度;由于冰点受外界压力影响,在 kPa压力下,冰点下降 K,由于水中溶解了空气,冰点又下降 K,所以在大气压力为 kPa 时,水的冰点为 K ;虽然两者之间只相差 K,但三相点与冰点的物理意义完全不同;8.沸点和恒沸点有何不同答:沸点是对纯液体而言的;在大气压力下,纯物质的液-气两相达到平衡,当液体的饱和蒸气压等于大气压力时,液体沸腾,这时的温度称为沸点;恒沸点是对二组分液相混合系统而言的,是指两个液相能完全互溶,但对Raoult定律发生偏差,当偏差很大,在p x-图上出现极大值或极小值时,则在T x-图上出现极小值或极大值,这时气相的组成与液相组成相同,这个温度称为最低或最高恒沸点,用简单蒸馏的方法不可能把二组分完全分开;这时,所对应的双液系统称为最低或最高恒沸混合物;在恒沸点时自由度为1,改变外压,恒沸点的数值也改变,恒沸混合物的组成也随之改变;当压力固定时,条件自由度为零,恒沸点的温度有定值;9.恒沸混合物是不是化合物答:不是;它是完全互溶的两个组分的混合物,是由两种不同的分子组成;在外压固定时,它有一定的沸点,这时气相的组成和液相组成完全相同;但是,当外部压力改变时,恒沸混合物的沸点和组成都会随之而改变;化合物的沸点虽然也会随着外压的改变而改变,但它的组成是不会改变的;10.在汞面上加了一层水能减少汞的蒸气压吗答:不能;因为水和汞是完全不互溶的两种液体,两者共存时,各组分的蒸气压与单独存在时的蒸气压一样,液面上的总压力等于纯水和纯汞的饱和蒸气压之和;如果要蒸馏汞的话,加了水可以使混合系统的沸点降低,这就是蒸气蒸馏的原理;所以,仅仅在汞面上加一层水,是不可能减少汞的蒸气压的,但是可以降低汞的蒸发速度;11.单组分系统的三相点与低共熔点有何异同点答:共同点:两者都是气-液-固三相共存;不同点:单组分系统的三相点是该组分纯的气、液、固三种相态平衡共存,这时的自由度等于零,它的压力、温度由系统自身的性质决定,不受外界因素的影响;而二组分系统在低共熔点如T-x图上的E点温度时,是纯的A固体、B固体和组成为E的熔液三相平衡共存,这时的自由度为1,在等压下的条件自由度等于零;E点的组成由A和B的性质决定,但E点的温度受压力影响,当外压改变时,E点的温度和组成也会随之而改变;12.低共熔混合物能不能看作是化合物答:不能;低共熔混合物不是化合物,它没有确定的熔点,当压力改变时,低共熔物的熔化温度和组成都会改变;虽然低共熔混合物在金相显微镜下看起来非常均匀,但它仍是两个固相微晶的混合物,由两个相组成;13.在实验中,常用冰与盐的混合物作为致冷剂;试解释,当把食盐放入0℃的冰-水平衡系统中时,为什么会自动降温降温的程度有否限制,为什么这种致冷系统最多有几相解: 当把食盐放入0℃的冰-水平衡系统中时,由于食盐与冰有一个低共熔点,使水的冰点降低,因此破坏了冰-水平衡,冰就要融化;融化过程中要吸热,系统的温度下降;降温有一定的限度,因为它是属于二组分系统的低共熔混合物,当温度降到低共熔点时,冰、食盐与溶液达到了平衡,系统的温度就不再下降;根据相律:2f C P =+-,组分数为2H O(l)和NaCl(s),2C =;当0f =时,最多相数4P =,即气相,溶液,冰和NaCls 四相共存;如果指定压力,则条件自由度等于零时,最多相数3P =,溶液,冰和NaCls 三相平衡共存;四.概念题参考答案1.4NH HS(s)与任意量的3NH (g)及2H S(g)达平衡时,有A C = 2,P = 2,f = 2BC = 1,P = 2,f = 1C C = 2,P = 3,f = 2D C = 3,P = 2,f = 3答:A;系统中有三个物种,一个平衡条件,由于已存在3NH (g)及2H S(g),就不存在浓度限制条件,所以组分数2C =;平衡共存时有固相和气相两个相,根据相律,自由度2f =;2.在大气压力下,3FeCl (s)与2H O(l)可以生成32FeCl 2H O(s),32FeCl 5H O(s),32FeCl 6H O(s)和32FeCl 7H O(s)四种固体水合物,则该平衡系统的组分数C 和能够平衡共存的最大相数P 为A 3, 3C P ==B 3, 4C P == C 2, 3C P ==D 3, 5C P == 答:C;这是二组分系统生成稳定化合物或稳定水合物的一个例子,3FeCl (s)与2H O(l)可以生成多种水合物,但它还是二组分系统,所以组分数必定等于2;不能把生成的稳定水合物也看作是组分;如果要写出生成水合物的多个平衡方程式,则多一个水合物物种,也多一个化学平衡方程,所以组分数是不会改变的;根据组分数等于2这一点,就可以决定选C;根据相律,当自由度等于零时,能得到平衡共存的最大相数;则20f C P =+-=,理论上最大相数似乎应等于4,但是题目已标明是在大气压力下,用*13f C P P =+-=-,所以能见到的平衡共存的最大相数只有3个;如果题目不标明是在大气压力下,由于凝聚相系统受压力影响极小,也应该看作是在等压条件下进行的,能见到的平衡共存的最大相数只能是3个;3.在 100 kPa 的压力下,2I (s)在2H O(l)和4CCl (l)两个完全不互溶的液相系统中达分配平衡;设平衡时2I (s)已不存在,则该系统的组分数和自由度数分别为A *2, 1C f ==B *2, 2C f == C *3, 2C f ==D *3, 3C f == 答:C;该系统中显然有2I (s),2H O(l)和4CCl (l)三个物种,3S =,但无化学平衡,0R =,也无浓度限制条件,'0R =不要把2I 在两相中的分配平衡看作是浓度关系式,因为在推导分配常数时已用到了2I 在两相中化学势相等的条件,所以组分数3C =;由于是两相平衡,又指定了压力,所以条件自由度*13122f C P =+-=+-=;4.4CuSO 与水可生成42CuSO H O ⋅,42CuSO 3H O ⋅和42CuSO 5H O ⋅三种水合物,则在一定温度下与水蒸气达平衡的含水盐最多为A 3种B 2种C 1种D 不可能有共存的含水盐答:B;系统的组分数为2,已指定温度,根据相律,条件自由度等于零时,可得最多可以共存的相数,*1210f C P P =+-=+-=,最多可以三相共存;现在已指定有水蒸气存在,所以,可以共存的含水盐只可能有2种;5.某一物质X,在三相点时的温度是20℃,压力是200 kPa;下列哪一种说法是不正确的A 在20℃以上,X 能以液体存在B 在20℃以下,X 能以固体存在C 在25℃和100 kPa 下,液体X 是稳定的D 在20℃时,液体X 和固体X 具有相同的蒸气压答:C;可以画一张单组分系统相图的草图,C 所描述的条件只能落在气相区,所以这种说法是不正确的;6.2N 的临界温度是124 K,如果想要液化2N (g),就必须A 在恒温下增加压力B 在恒温下降低压力C 在恒压下升高温度D 在恒压下降低温度答:D;临界温度是指在这个温度之上,不能用加压的方法使气体液化,所以只有在恒压下用降低温度的方法使之液化;7.当Clausius-Clapeyron 方程应用于凝聚相转变为蒸气时,则A p 必随T 之升高而降低B p 必不随T 而变C p必随T之升高而变大D p随T之升高可变大也可减少答:C; 因为凝聚相转变为蒸气时总是吸热的,根据Clausius-Clapeyron方程,等式右方为正值,等式左方也必定为正值,所以p随T之升高而变大;8.对于恒沸混合物的描述,下列各种叙述中不正确的是A 与化合物一样,具有确定的组成B 不具有确定的组成C 平衡时,气相和液相的组成相同D 恒沸点随外压的改变而改变答:A;恒沸混合物不是化合物,不具有确定的组成,其恒沸点和组成都会随着外压的改变而改变;9.对于二组分气—液平衡系统,哪一个可以用蒸馏或精馏的方法将两个组分分离成纯组分A接近于理想的液体混合物B对Raoult定律产生最大正偏差的双液系C对Raoult定律产生最大负偏差的双液系 D部分互溶的双液系答:A;完全互溶的理想双液系,或对Raoult定律发生较小正负偏差的都可以用蒸馏或精馏的方法将其分开,两者的沸点差别越大,分离越容易;而对Raoult定律产生最大正负偏差的双液系,气-液两相区分成两个分支,形成了最低或最高恒沸混合物,用蒸馏方法只能得到一个纯组分和一个恒沸混合物;部分互溶的双液系首先要将两个液层分离,然后视具体情况而决定分离两个互溶部分的液相,或采用萃取的方法,单用蒸馏方法是不行的;10.某一固体,在25℃和大气压力下升华,这意味着A 固体比液体密度大些B 三相点的压力大于大气压力C 固体比液体密度小些D 三相点的压力小于大气压力答:B;画一单组分系统相图的草图,当三相点的压力大于大气压力时,在25℃和大气压力下处于气相区,所以固体会升华;2CO 的相图就属于这一类型;11.在相图上,当系统处于下列哪一点时,只存在一个相A 恒沸点B 熔点C 临界点D 低共熔点答:C;在临界点时,气-液界面消失,只有一个相;其余三个点是两相或三相共存;12.在水的三相点附近,其摩尔气化焓和摩尔熔化焓分别为144.82 kJ mol -⋅和15.99 kJ mol -⋅;则在三相点附近,冰的摩尔升华焓为 A 138.83 kJ mol -⋅ B 150.81 kJ mol -⋅C 138.83 kJ mol --⋅D 150.81 kJ mol --⋅答:B;摩尔升华焓等于摩尔气化焓与摩尔熔化焓之和;13.某反应系统中共有的物种为Ni(s),NiO(s),2H O(l),2H (g),CO(g)和2CO (g),它们之间可以达成如下三个化学平衡1 ,12NiO(s)CO(g)Ni(s)CO (g)p K ++ 2 ,2222H O(l)CO(g)H (g)CO (g)p K ++ 3 ,322NiO(s)H (g)Ni(s)H O(l)p K ++该反应的组分数C 和平衡常数之间的关系为A ,1,2,33, p p p C K K K ==B ,3,1,24, /p p pC K K K == C ,3,1,23, /p p p C K K K ==D ,3,2,14, /p p p C K K K ==答:B;这个系统有6个物种,在三个化学平衡中只有2个是独立的,没有其他限制条件,所以组分数4C =;因为(1)(2)(3)-=,方程式的加减关系,反应的Gibbs 自由能也是加减关系,而平衡常数之间则是乘除关系,所以,3,1,2/p p p K K K =;14.将纯的2H O(l)放入抽空、密闭的石英容器中,不断加热容器,可以观察到哪种现象A 沸腾现象B 三相共存现象C 升华现象D 临界现象 答:D;在单组分系统的相图上,是该系统自身的压力和温度,就象该实验所示;实验不是在外压下进行的,系统中也没有空气,所以不可能有沸腾现象出现;在加热过程中,水的气、液两种相态一直处于平衡状态,即22H O(l)H O(g);随着温度的升高,2H O(l)的密度不断降低,而水的蒸气压不断升高,致使2H O(g)的密度变大,当2H O(l)和2H O(g)的两种相态的密度相等时,气-液界面消失,这就是临界状态;15.Na 2CO 3和水可形成三种水合盐:Na 2CO 3·H 2O 、Na 2CO 3·7H 2O 和NaCO 3·10H 2O;在常压下,将Na 2CO 3投入冰-水混合物中达三相平衡时,若一相是冰,一相是Na 2CO 3水溶液,则另一相是A Na 2CO 3B Na 2CO 3·H 2OC Na 2CO 3·7H 2OD Na 2CO 3·10H 2O答:D;画一张草图,NaCO 3·10H 2O 的含水量最多,一定最靠近表示纯水的坐标一边;五.习题解析1.将2N (g),2H (g)和3NH (g)三种气体,输入773 K,73.210 kPa ⨯的放有催化剂的合成塔中;指出下列三种情况系统的独立组分数设催化剂不属于组分数1 2N (g),2H (g)和3NH (g)三种气体在输入合成塔之前;2 三种气体在塔内反应达平衡时;3 开始只输入3NH (g),合成塔中无其它气体,待其反应达平衡后;解: 1 进入合成塔之前,三种气体没有发生反应,故组分数3C =;2在塔内反应达平衡时,系统的物种数3S =,但有一个化学平衡条件,故2C =; 3开始只输入3NH (g),3NH (g)分解达平衡,系统的物种数3S =,但有一个化学平衡条件和一个浓度限制条件,故1C =;2.指出下列平衡系统中的物种数,组分数,相数和自由度数;1 CaSO 4的饱和水溶液;2 将5g3NH (g)通入1 dm 3水中,在常温下与蒸气平衡共存;解:1物种数2S =,4CaSO (s)和2H O(l);组分数2C =,相数2P =;根据相律,22f C P =+-=;这两个自由度是指温度和压力,即在一定的温度和压力的范围内,能保持固、液两相平衡不发生变化;2 因为3NH (g)与水会发生相互作用,生成32NH H O ⋅,所以物种数3S =,3NH (g),2H O(l)和32NH H O ⋅;有一个形成一水合氨的平衡,故1R =,所以2C =;有气、液两相,2P =;根据相律,22f C P =+-=;这两个自由度是指温度和压力,即在一定的温度和压力的范围内,能维持固、气两相平衡的状态不发生变化;3.3CaCO (s)在高温下分解为CaO(s)和2CO (g),根据相律解释下述实验事实; 1 在一定压力的2CO (g)中,将3CaCO (s)加热,实验证明在加热过程中,在一定的温度范围内3CaCO (s)不会分解;2 在3CaCO (s)的分解过程中,若保持2CO (g)的压力恒定,实验证明达分解平衡时,温度有定值;解:1 该系统中有两个物种,2CO (g)和3CaCO (s),所以物种数2S =;在没有发生反应时,组分数2C =;现在是一个固相和一个气相两相共存,2P =;当2CO (g)的压力有定值时,根据相律,条件自由度*12121f C P =+-=+-=;这个自由度就是温度,即在一定的温度范围内,可维持两相平衡共存不变,所以3CaCO (s)不会分解; 2该系统有三个物种,2CO (g),3CaCO (s)和CaO(s),所以物种数3S =;有一个化学平衡,1R =;没有浓度限制条件,因为产物不在同一个相,故2C =;现在有三相共存两个固相和一个气相,3P =;若保持2CO (g)的压力恒定,条件自由度*12130f C P =+-=+-=;也就是说,在保持2CO (g)的压力恒定时,温度不能发生变化,即3CaCO (s)的分解温度有定值;4.已知固体苯的蒸气压在273 K 时为 k Pa,293 K 时为 k Pa ;液体苯的蒸气压在293 K 时为 k Pa,液体苯的摩尔气化焓为1vap m 34.17 kJ mol H -∆=⋅;试计算1 在303 K 时液体苯的蒸气压,设摩尔气化焓在这个温度区间内是常数;2 苯的摩尔升华焓;3 苯的摩尔熔化焓;解:1 用Clausius-Clapeyron 方程,求出液态苯在303 K 时的蒸气压 解得液体苯在303 K 时的蒸气压2用Clausius-Clapeyron 方程,求出固体苯的摩尔升华焓解得固体苯的摩尔升华焓3苯的摩尔熔化焓等于摩尔升华焓减去摩尔气化焓5.结霜后的早晨冷而干燥,在-5℃,当大气中的水蒸气分压降至 Pa 时,霜会升华变为水蒸气吗 若要使霜不升华,空气中水蒸气的分压要有多大已知水的三相点的温度和压力分别为 K 和611 Pa,水的摩尔气化焓1vap m 45.05 kJ mol H -∆=⋅,冰的摩尔融化焓1fus m 6.01 kJ mol H -∆=⋅;设相变时的摩尔焓变在这个温度区间内是常数;解:冰的摩尔升华焓等于摩尔熔化焓与摩尔气化焓的加和,用Clausius-Clapeyron 方程,计算 K-5℃时冰的饱和蒸气压解得 (268.15K)401.4 Pa p =而 K-5℃时,水蒸气的分压为 Pa,低于霜的水蒸气分压,所以这时霜要升华;当水蒸气分压等于或大于401.4 Pa 时,霜可以存在;6.在平均海拔为4 500 m 的高原上,大气压力只有 kPa;已知压力与温度的关系式为 5 216 K ln(/Pa)25.567p T=-;试计算在这高原上水的沸点; 解:沸点是指水的蒸气压等于外界压力时的温度;现根据压力与温度的关系式,代入压力的数据,计算蒸气压等于 kPa 时的温度,解得: 357 K T =即在海拔为4 500 m 的高原上,水的沸点只有357 K,即84 ℃,这时煮水做饭都要用压力锅才行;7.将3NH (g)加压,然后在冷凝器中用水冷却,即可得液氨,即3NH (l);已知某地区一年中最低水温为2℃,最高水温为37℃,问若要保证该地区的氮肥厂终年都能生产液氨,则所选氨气压缩机的最低压力是多少已知:氨的正常沸点为-33℃,蒸发焓为11 368 J g -⋅,设蒸发焓是与温度无关的常数;解: 氨在正常沸点-33℃240 K 时,它的蒸气压等于大气压力,为 kPa;水温为2℃275 K 时,氨的蒸气压较低,得到液氨没有问题;主要是计算在37℃310K 时氨的蒸气压,这就是压缩机所需的最低压力;已知氨的摩尔蒸发焓为:根据Clausius-Clapeyron 方程,计算310 K 时 氨的蒸气压,;解得: (310K) 1 408.3 kPa p =即在37℃时,压缩机的最低压力必须大于1 408.3 kPa ,才能终年都能生产液氨;8.CO 2的固态和液态的蒸气压与温度的关系式,分别由以下两个方程给出:试计算: 1 二氧化碳三相点的温度和压力;2 二氧化碳在三相点时的熔化焓和熔化熵;解: 1 在三相点时,固态和液态的蒸气压相等,s l p p =,即解得三相点的温度 215.3 K T =代入任意一个蒸气压与温度的方程式,计算三相点时的压力两个结果稍有不同 解得 ()466.7 kPa p =三相点2 根据Clausius-Clapeyron 方程的一般积分式式中'C 是积分常数;对照题中所给的方程,从固体的蒸气压与温度的关系式,可计算得到二氧化碳的摩尔升华焓,从液体的蒸气压与温度的关系式,可计算得到二氧化碳的摩尔蒸发焓,摩尔熔化焓等于摩尔升华焓减去摩尔蒸发焓,9.根据2CO 的相图,回答如下问题;1说出OA ,OB 和OC 三条曲线以及特殊点O 点与A 点的含义;2在常温、常压下,将2CO 高压钢瓶的阀门慢慢打开一点,喷出的2CO 呈什么相态为什么3在常温、常压下,将2CO 高压钢瓶的阀门迅速开大,喷出的2CO 呈什么相态为什么4为什么将2CO (s)称为“干冰”2CO (l)在怎样的温度和压力范围内能存在 解:1OA 线是2CO (l)的饱和蒸气压曲线;OB 线是2CO (s)的饱和蒸气压曲线,也就是升华曲线;OC 线是2CO (s)与2CO (l)的两相平衡曲线;O 点是2CO 的三相平衡共存的点,简称三相点,这时的自由度等于零,温度和压力由系统自定;A 点是2CO 的临界点,这时气-液界面消失,只有一个相;在A 点温度以上,不能用加压的方法将。

大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答

习 题 六6-1 一平面简谐波沿x 轴负向传播,波长λ=1.0 m ,原点处质元的振动频率为ν=2.0 Hz ,振幅A =0.1m ,且在t =0时恰好通过平衡位置向y 轴负向运动,求此平面波的波函数. 解: 由题知0=t 时原点处质点的振动状态为0,000<=v y ,故知原点的振动初相为2π,取波动方程为])(2cos[0φλπ++=xT t A y 则有 ]2)12(2cos[1.0ππ++=x t y)224cos(1.0πππ++=x t m6-2 已知波源在原点的一列平面简谐波,波函数为y =A cos(Cx Bt -),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程; (3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B=, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.6-3 沿绳子传播的平面简谐波的波函数为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求: (1)波的波速、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;(3)求x =0.2m 处质元在t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点?解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ.设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m6-4 如题6-4图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.(1)若波沿x 轴正向传播,该时刻O ,A ,B ,C 各点的振动位相是多少?(2)若波沿x 轴负向传播,上述各点的振动位相又是多少?题6-4图解: (1)波沿x 轴正向传播,则在t 时刻,有 对于O 点:∵0,0<=O O v y ,∴2πφ=O对于A 点:∵0,=+=A A v A y ,∴0=A φ对于B 点:∵0,0>=B B v y ,∴2πφ-=B对于C 点:∵0,0<=C C v y ,∴23πφ-=C(取负值:表示C B A 、、点位相,应落后于O 点的位相)(2)波沿x 轴负向传播,则在t 时刻,有对于O 点:∵0,0>'='O Ov y ,∴2πφ-='O对于A 点:∵0,='+='A A v A y ,∴0='A φ对于B 点:∵0,0<'='B B v y ,∴2πφ=B 对于C 点:∵0,0>'='C C v y ,∴23πφ='C(此处取正值表示C B A 、、点位相超前于O 点的位相)6-5 一列平面余弦波沿x 轴正向传播,波速为5m·s -1,波长为2m ,原点处质元的振动曲线如题6-5图所示.(1)写出波函数;(2)作出t =0时的波形图及距离波源0.5m 处质元的振动曲线.题6-5图(a)解: (1)由题6-5(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴230πφ=, 又5.225===λυuHz ,则ππυω52== 取 ])(cos[0φω+-=uxt A y ,则波动方程为)]235(5cos[1.0ππ+-=x t y m (2) 0=t 时的波形如题6-5(b)图题6-5图(b) 题6-5图(c) 将5.0=x m 代入波动方程,得该点处的振动方程为)5cos(1.0)235.05.055cos(1.0πππππ+=+⨯-=t t y m 如题6-5(c)图所示.6-6 一列机械波沿x 轴正向传播,t =0时的波形如题6-6图所示,已知波速为10 m·s -1,波长为2m ,求: (1)波函数;(2)P 点的振动方程及振动曲线; (3)P 点的坐标;(4)P 点回到平衡位置所需的最短时间.题6-6图(a)解: 由题6-6图(a)可知1.0=A m ,0=t 时,0,200<=v A y ,∴30πφ=,由题知2=λm , 10=u 1s m -⋅,则5210===λυuHz∴ ππυω102==(1)波动方程为]3)10(10cos[.01ππ+-=x t y m (2)由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值)∴P 点振动方程为)3410cos(1.0ππ-=t y p(3)∵ πππ34|3)10(100-=+-=t x t∴解得 67.135==x m(4)根据(2)的结果可作出旋转矢量图如题6-6图(b),则由P 点回到平衡位置应经历的位相角题6-6图(b)πππφ6523=+=∆ ∴所属最短时间为121106/5==∆=∆ππωφt s6-7 如题6-7图所示,已知t=0的波形曲线(实线所示),波沿OX 方向传播。

(完整版)大学物理学(课后答案)第5-6章

(完整版)大学物理学(课后答案)第5-6章

第5章 机械振动一、选择题5-1 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A-,且向x 轴的正方向运动,代表这个简谐振动的旋转矢量图为[ ]分析与解 图中旋转矢量投影点的运动方向指向Ox 轴正向,同时矢端在x 轴投影点的位移为2A-,满足题意,因而选(D)。

5-2 作简谐振动的物体,振幅为A ,由平衡位置向x 轴正方向运动,则物体由平衡位置运动到32Ax =处时,所需的最短时间为周期的几分之几[ ] (A) 1 /2 (B) 1/4 (C) 1/6 (D) 1/12分析与解 设1t 时刻物体由平衡位置向x 轴正方向运动,2t 时刻物体第一次运动到32A x =处,可通过旋转矢量图,如图5-2所示,并根据公式2t T ϕπ∆∆=得31226t T T T ϕπππ∆∆===,,因而选(C)。

5-3 两个同周期简谐振动曲线如图5-3(a)所示,1x 的相位比2x 的相位[ ] O O OO A Axxx(A) (B)(D)(C)A /2-A /2 A /2 -A /2A Aωωωωx习题5-1图习题5-2图(A) 落后2π (B) 超前2π(C) 落后π (D) 超前π分析与解 可通过振动曲线作出相应的旋转矢量图(b ),正确答案为(B )。

5-4 一弹簧振子作简谐振动,总能量为E ,若振幅增加为原来的2倍,振子的质量增加为原来的4倍,则它的总能量为[ ](A) 2E (B) 4E (C) E (D) 16E 分析与解 因为简谐振动的总能量2p k 12E E E kA =+=,因而当振幅增加为原来的2倍时,能量变为原来的4倍,因而答案选(B)。

5-5 两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个简谐振动的相位差为[ ](A) 60 (B) 90 (C) 120 (D) 180分析与解 答案(C )。

由旋转矢量图可知两个简谐振动的相位差为120时,合成后的简谐运动的振幅仍为A 。

大学物理第五章和第六章习题答案

大学物理第五章和第六章习题答案

( B) 刚体受力越大,此力对刚体转轴的力矩也越大; (C)刚体绕定轴转动,则一定受到力矩的作用; (D)刚体绕定轴的转动定律表述了作用于刚体上的外力对转轴的合外力矩与角加速度两者之间的瞬 时关系。 解答 转动定律 M Ja 表述了作用于给定刚体上的外力对定轴的合外力矩与角加速度之间的瞬 时关系,即某时刻对定轴的合外力矩将引起该时刻刚体转动状态的改变,使刚体获得角加速度,可类比 于牛顿第二定律 F ma 表示的合外力与加速度之间的瞬时关系。 刚体受外力 F 作用,如果力的作用线通过刚体的转轴 0,力臂为零,这时力矩 M 为零,因此虽然刚体受 力作用,但对刚体不一定有力矩作用。即使刚体受力大,若此力对定轴的力臂甚小,则力矩仍也可能很
——————1——————
大学物理习题集(上)
解答
如图 5-4(a)所示,设滑轮半径为 R,转动惯量为 J。当绳下滑挂一质量为 m 的物体时,受
绳的张力 FT 和重力 W=mg 作用,加速度 a 铅直向下。由牛顿第二定律知, mg FT ma ,又按滑轮的 转动定律知 FT R J ,已知 a aR ,解之得
1 2 ml ,则棒在竖直位置时的角加速度大小 3
;若将棒拉到水平位置,然后由静止释放,此时棒的角加速 。 棒在竖直位置时,受重力 mg 和轴的支承力 FN 作用,此两
力的作用线通过棒轴 O ,力臂为零,所以力矩为零,所以力矩为零,按转动定律,角加速度 a 为零。 棒被拉到水平位置,自静止释放,重力的力矩 M mg 律,可求得角加速度为
1 mL2 。开始时细杆静止,有一个质量为 m 的小球沿桌面正对着杆的 的竖直轴自由转动,其转动惯量为 3

2L
; (B)
2 3 4 ; (C) ; (D) 。 3L 4L 5L

同济大学物理大作业解答4至6章答案

同济大学物理大作业解答4至6章答案

第四章(一) 振动学基础解答一、选择题1.D 2.B 3.C 4.C 5.B 6.B 7.D 8.B二、填空题1.振动系统自身的性质;π2秒内的的振动次数;振动系统运动的初始条件;表示振动的幅度或振动的强度;表征计时零点的振动状态。

2.;cm 2 ;4s ;1-s 2π ;π23 )232cos(02.0ππ+t ;m )232s i n (01.0πππ+-t -1s m ⋅;)232cos(201.02πππ+-t -2s m ⋅; ππ或33.0.158 m ; 0.5 s ; 2π4.)41cos(02.0ππ+t m ; )43c o s (02.0ππ+t m5.π326.8T , T 83 7.ππ232或-8.合力的大小与位移成正比,方向与位移方向相反; 0d d 222=+x tx ω三、计算题1.解:(1) s 638.084.922,s84.9258.0251-======πωπωT mk(2) m/s 17.03sin02.084.9sin ,30-=⨯⨯-=-==πϕωπϕA v (3) )384.9cos(02.0)cos(πϕω+=+=t t A x m2.解:(1))32cos(3πππϕ-=-=t T A x (2)0=a ϕ,2πϕ=b(3)作振幅矢量图,得到: 6233T Tt a ===ππωπ125223T Tt b =⎪⎭⎫⎝⎛=πππ+3.解:木块下移时,恢复力 )1(22xgL gxLf -=-=水ρmk =ω , 由(1)式知 2gL k =所以,木块做简谐运动。

在水中的木块未受压而处于平衡时 a gL mg 2水ρ= ,于是可求得ag aL gLm k ===22水ρω ga T πωπ22==振幅:a b A -=4.解:(1)两个同方向、同频率简谐运动的合振动仍为简谐运动,且合振动的频率与分振动的频率相同,即121s 3-===ωωω合振动振幅A 和初相0ϕ为 ()cm 52cos 43243cos 22221212221=⨯⨯++=++=πϕϕ-A A A A A︒==+︒+︒=++=--13.5334tg 24cos 3cos024sin 3sin0tgcos cos sin sin tg11-2211221110ππϕϕϕϕϕA A A A即0ϕ在第一象限内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后 A (A) 温度不变,熵增加; B 温度升高,熵增加;C 温度降低,熵增加;D 温度不变,熵不变; 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值; C A 等容降压过程; B 等温膨胀过程; C 等压压缩过程; D 绝热膨胀过程; 3. 一定量的理想气体,分别经历如图11所示的abc 过程图中虚线ac 为等温线和图12所示的def 过程图中虚线df 为绝热线 ; 判断这两过程是吸热还是放热: A A abc 过程吸热,def 过程放热; B abc 过程放热,def 过程吸热; C abc 过程def 过程都吸热; D abc 过程def 过程都放热;4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B A p =B p ,则无论经过的是什么过程,系统必然 B(A) 对外做正功; B 内能增加; C 从外界吸热; D 向外界放热; 二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量; 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J,则该过程中需吸热__-200__ ___J;3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J,气体向外界放热620J,则气体的内能 减少,填增加或减少,21E E = -380 J;4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B,将从外界吸热416 J,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C,将从外界吸热582 J,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J ;图.2图1图3三.计算题1. 一定量氢气在保持压强为×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了×104J 的热量;1 求氢气的摩尔数2 氢气内能变化多少3 氢气对外做了多少功4 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: 1由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ 24,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯ 344(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ 444.2910Q E J =∆=⨯2. 一定量的理想气体,其体积和压强依照V =aP 的规律变化,其中a 为常数,试求:1 气体从体积1V 膨胀到2V 所做的功;2体积为1V 时的温度1T 与体积为2V 时的温度2T 之比;1:⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV Va PdV W 2: 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功;1 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量2 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量 是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+1∵a 沿acb 过程达到状态b,系统的内能变化是:560356204ab acb acb E Q W J J J =-=-=由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J =系统吸收的热量是:204220424ab acb Q E W J J J =+=+=2系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-[]204(282)486ba ba Q W J J ∴+=-+-=-即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程, A →C 等温过程,A →D 绝热过程;其中吸热最多的过程 AA 是A →B ; B 是A →C ; C 是A →D ; D 既是A →B,也是A → C,两者一样多;2. 用公式V E C T ∆=μ∆ 式中V C 为定容摩尔热容量,μ为气体摩尔数,计算理想气体内能增量时,此式 D(A) 只适用于准静态的等容过程; B 只适用于一切等容过程; C 只适用于一切准静态过程; D 适用于一切始末态为平衡态的过程;3. 用下列两种方法: 1 使高温热源的温度1T 升高T ∆, 2 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: BA 1∆η> 2∆η;B 2∆η>1∆η;C 1∆η= 2∆η;D 无法确定哪个大; 二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 ;1 2图1图32. 常温常压下,一定量的某种理想气体视为刚性分子,自由度为i ,在等压过程中吸热为Q,对外做功为A ,内能增加为E ∆, 则A/Q =i +22, ∆E/Q = ii +2; 3.一卡诺热机可逆的,低温热源的温度为27℃,热机效率40%,其高温热源温度为C 127T 1=;今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加C 200T =∆;4.如图2所示,一定量的理想气体经历a →b →c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化∆E , 请在以下空格内填上>0或<0或=0; Q >0 , ∆E >0 ; 三. 计算题1. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞忽略摩擦,使左室气体的体积膨胀为右室的2倍,问外力必须做多少功 解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰2. 比热容比γ = 的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K; 1求状态B 、C 的温度;2计算各过程中气体吸收的热量、气体所做的功和气体内能的增量;RT MmPV =得:KT C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,EJ T i R m M Q W ∆-==∆==15002图2图4图5JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程JE W Q J T R i m M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线;该循环的工质是一定质量的理想气体;其,V m C 和γ均已知且为常量;已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程;求:1 c 点的温度;2 循环的效率;解: 1c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭2a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r c V m b c V m V m T V Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小图1中阴影部分分别为S 1和S 2 ,则二者的大小关系是 BA S 1 > S 2 ;B S 1 = S 2 ;C S 1 < S 2 ;D 无法确定; 2. 在下列说法中,哪些是正确的 C1 可逆过程一定是平衡过程;2 平衡过程一定是可逆的;3 不可逆过程一定是非平衡过程;4 非平衡过程一定是不可逆的;A 1、4 ;B 2、3 ;C 1、2、3、4 ;D 1、3 ; 3. 根据热力学第二定律可知 DA 功可以全部转换为热,但热不能全部转换为功;B 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C 不可逆过程就是不能向相反方向进行的过程;D 一切自发过程都是不可逆的;4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”;对此说法,有以下几种评论,哪种是正确的 CA 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律; 二. 填空题1. 如图2的卡诺循环:1abcda,2dcefd,3abefa ,其效率分别为:1η= 1/3 , 2η= 1/2 ,3η= 2/3 ;2. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/T 1-T 2 式中A 为外界对系统做的功,则每一循环中外界必须做功A= 200J ;3. 1 mol 理想气体设γ = C p / C V 为已知的循环过程如图3的T —V 图所示,其中CA 为绝热过程,A 点状态参量T 1,V 1和B 点的状态参量T 1,V 2为已知,试求C 点的状态量:V c =2V ,T c =1121T VV r -⎪⎪⎭⎫ ⎝⎛,P c =r r V V RT 2111-;三. 计算题1. 一热机在1000K 和300K 的两热源之间工作,如果 1 高温热源提高为1100K ;2 低温热源降低为200K,从理论上说,热机效率各可增加多少为了提高热机效率哪一种方案为好 热机在1000K 和300K 的两热源之间工作,121T T T -=η,%7010003001000=-=η 解: 高温热源提高为1100K :%73.72110030011001=-=η,效率提高:%73.2=η∆低温热源降低为200K : %80100020010002=-=η,效率提高:%10=η∆提高热机效率降低低温热源的温度的方案为好;2. 1 mol 单原子分子理想气体的循环过程如图4的T —V 图所示, 其中c 点的温度为T c =600K,试求: 1ab 、bc 、ca 各个过程系统吸收的热量;2经一循环系统所做的净功;3循环的效率;注: 循环效率η=A/Q 1,A 为循环过程系统对外做的净功,Q 1为循环过程系统从外界吸收的热量,1n2=解: 由b b b a a a T VP T V P =,得K T b 300=J V V RT Q baca 0.34562ln 60031.8ln=⨯⨯== 等温过程 ()()J T T C Q b c v bc 5.373930060031.823=-⨯=-= 等容过程 ()()J T T C Q a b b ab 5.623260030031.825-=-⨯=-= 等压过程图2图3图4()6232.524932ab ab b a iW Q E R T T J=-∆=---=-J Q W ca ca 0.3456==%38.132********=+-==bcca Q Q Q A η。

相关文档
最新文档