c语言经典算法回溯法

c语言经典算法回溯法
c语言经典算法回溯法

c语言经典算法

五、回溯法

回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。

1、回溯法的一般描述

可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si 是分量xi的定义域,且|Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。

解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。

我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2, (xi)

满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(jj。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造:

设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T 的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T 的根。

因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I 元组(x1,x2,…,xi),…,直到i=n为止。

在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P

的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。

【问题】组合问题

问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。

例如n=5,r=3的所有组合为:

(1)1、2、3 (2)1、2、4 (3)1、2、5

(4)1、3、4 (5)1、3、5 (6)1、4、5

(7)2、3、4 (8)2、3、5 (9)2、4、5

(10)3、4、5

则该问题的状态空间为:

E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5}

约束集为:x1

显然该约束集具有完备性。

问题的状态空间树T:

RE:c语言经典算法

2、回溯法的方法

对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为:

从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。

在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。由于在回溯法求解问题时,一般要求出问题的所有解,因此在得到回答结点后,同时也要进行回溯,以便得到问题的其他解,直至回溯到T的根且根的所有儿子结点均已被搜索过为止。

例如在组合问题中,从T的根出发深度优先遍历该树。当遍历到结点(1,2)时,虽然它满足约束条件,但还不是回答结点,则应继续深度遍历;当遍历到叶子结点(1,2,5)时,由于它已是一个回答结点,则保存(或输出)该结点,并回溯到其双亲结点,继续深度遍历;当遍历到结点(1,5)时,由于它已是叶子结点,但不满足约束条件,故也需回溯。

3、回溯法的一般流程和技术

在用回溯法求解有关问题的过程中,一般是一边建树,一边遍历该树。在回溯法中我们一般采用非递归方法。下面,我们给出回溯法的非递归算法的一般流程:

在用回溯法求解问题,也即在遍历状态空间树的过程中,如果采用非递归方法,则我们一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。

例如在组合问题中,我们用一个一维数组Stack[ ]表示栈。开始栈空,则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1)结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断它满足所有约束条件,是问题的一个解,输出(或保存)。这时只要栈顶元素(3)出栈,

即表示从结点(1,2,3)回溯到结点(1,2)。

【问题】组合问题

问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。

采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质:

(1)a[i+1]>a[i],后一个数字比前一个大;

(2)a[i]-i<=n-r+1。

按回溯法的思想,找解过程可以叙述如下:

首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下:

【程序】

# define MAXN 100

int a[MAXN];

void comb(int m,int r)

{ int i,j;

i=0;

a[i]=1;

do {

if (a[i]-i<=m-r+1

{ if (i==r-1)

{ for (j=0;j

printf(“%4d”,a[j]);

printf(“\n”);

}

a[i]++;

continue;

}

else

{ if (i==0)

return;

a[--i]++;

}

} while (1)

}

main()

{ comb(5,3);

}

【问题】填字游戏

问题描述:在3×3个方格的方阵中要填入数字1到N(N≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。试求出所有满足这个要求的各种数字填法。

可用试探发找到问题的解,即从第一个方格开始,为当前方格寻找一个合理的整数填入,并在当前位置正确填入后,为下一方格寻找可填入的合理整数。如不能为当前方格找到一个合理的可填证书,就要回退到前一方格,调整前一方格的填入数。当第九个方格也填入合理的整数后,就找到了一个解,将该解输出,并调整第九个的填入的整数,寻找下一个解。

为找到一个满足要求的9个数的填法,从还未填一个数开始,按某种顺序(如从小到大的顺序)每次在当前位置填入一个整数,然后检查当前填入的整数是否能满足要求。在满足要求的情况下,继续用同样的方法为下一方格填入整数。如果最近填入的整数不能满足要求,就改变填入的整数。如对当前方格试尽所有可能的整数,都不能满足要求,就得回退到前一方格,并调整前一方格填入的整数。如此重复执行扩展、检查或调整、检查,直到找到一个满足问题要求的解,将解输出。

回溯法找一个解的算法:

{ int m=0,ok=1;

int n=8;

do{

if (ok) 扩展;

else 调整;

ok=检查前m个整数填放的合理性;

} while ((!ok||m!=n)&&(m!=0))

if (m!=0) 输出解;

else 输出无解报告;

}

如果程序要找全部解,则在将找到的解输出后,应继续调整最后位置上填放的整数,试图去找下一个解。相应的算法如下:

回溯法找全部解的算法:

{ int m=0,ok=1;

int n=8;

do{

if (ok)

{ if (m==n)

{ 输出解;

调整;

}

else 扩展;

}

else 调整;

ok=检查前m个整数填放的合理性;

} while (m!=0);

}

为了确保程序能够终止,调整时必须保证曾被放弃过的填数序列不会再次实验,即要求按某

种有许模型生成填数序列。给解的候选者设定一个被检验的顺序,按这个顺序逐一形成候选者并检验。从小到大或从大到小,都是可以采用的方法。如扩展时,先在新位置填入整数1,调整时,找当前候选解中下一个还未被使用过的整数。将上述扩展、调整、检验都编写成程序,细节见以下找全部解的程序。

【程序】

# include

# define N 12

void write(int a[ ])

{ int i,j;

for (i=0;i<3;i++)

{ for (j=0;j<3;j++)

printf(“%3d”,a[3*i+j]);

printf(“\n”);

}

scanf(“%*c”);

}

int b[N+1];

int a[10];

int isprime(int m)

{ int i;

int primes[ ]={2,3,5,7,11,17,19,23,29,-1};

if (m==1||m%2=0) return 0;

for (i=0;primes[i]>0;i++)

if (m==primes[i]) return 1;

for (i=3;i*i<=m;)

{ if (m%i==0) return 0;

i+=2;

}

return 1;

}

int checkmatrix[ ][3]={ {-1},{0,-1},{1,-1},{0,-1},{1,3,-1},

{2,4,-1},{3,-1},{4,6,-1},{5,7,-1}};

int selectnum(int start)

{ int j;

for (j=start;j<=N;j++)

if (b[j]) return j

return 0;

}

int check(int pos)

{ int i,j;

if (pos<0) return 0;

for (i=0;(j=checkmatrix[pos][i])>=0;i++)

if (!isprime(a[pos]+a[j])

return 0;

return 1;

}

int extend(int pos)

{ a[++pos]=selectnum(1);

b[a][pos]]=0;

return pos;

}

int change(int pos)

{ int j;

while (pos>=0&&(j=selectnum(a[pos]+1))==0) b[a[pos--]]=1;

if (pos<0) return –1

b[a[pos]]=1;

a[pos]=j;

b[j]=0;

return pos;

}

void find()

{ int ok=0,pos=0;

a[pos]=1;

b[a[pos]]=0;

do {

if (ok)

if (pos==8)

{ write(a);

pos=change(pos);

}

else pos=extend(pos);

else pos=change(pos);

ok=check(pos);

} while (pos>=0)

}

void main()

{ int i;

for (i=1;i<=N;i++)

b[i]=1;

find();

}

【问题】n皇后问题

问题描述:求出在一个n×n的棋盘上,放置n个不能互相捕捉的国际象棋“皇后”的所有布局。

这是来源于国际象棋的一个问题。皇后可以沿着纵横和两条斜线4个方向相互捕捉。如图所示,一个皇后放在棋盘的第4行第3列位置上,则棋盘上凡打“×”的位置上的皇后就能与这个皇后相互捕捉。

1 2 3 4 5 6 7 8

× ×

× × ×

× × ×

× × Q × × × × ×

× × ×

× × ×

× ×

× ×

从图中可以得到以下启示:一个合适的解应是在每列、每行上只有一个皇后,且一条斜线上也只有一个皇后。

求解过程从空配置开始。在第1列至第m列为合理配置的基础上,再配置第m+1列,直至第n列配置也是合理时,就找到了一个解。接着改变第n列配置,希望获得下一个解。另外,在任一列上,可能有n种配置。开始时配置在第1行,以后改变时,顺次选择第2行、第3行、…、直到第n行。当第n行配置也找不到一个合理的配置时,就要回溯,去改变前一列的配置。得到求解皇后问题的算法如下:

{ 输入棋盘大小值n;

m=0;

good=1;

do {

if (good)

if (m==n)

{ 输出解;

改变之,形成下一个候选解;

}

else 扩展当前候选接至下一列;

else 改变之,形成下一个候选解;

good=检查当前候选解的合理性;

} while (m!=0);

}

在编写程序之前,先确定边式棋盘的数据结构。比较直观的方法是采用一个二维数组,但仔细观察就会发现,这种表示方法给调整候选解及检查其合理性带来困难。更好的方法乃是尽可能直接表示那些常用的信息。对于本题来说,“常用信息”并不是皇后的具体位置,而是“一个皇后是否已经在某行和某条斜线合理地安置好了”。因在某一列上恰好放一个皇后,引入一个一维数组(col[ ]),值col[i]表示在棋盘第i列、col[i]行有一个皇后。例如:col[3]=4,就表示在棋盘的第3列、第4行上有一个皇后。另外,为了使程序在找完了全部解后回溯

到最初位置,设定col[0]的初值为0当回溯到第0列时,说明程序已求得全部解,结束程序运行。

为使程序在检查皇后配置的合理性方面简易方便,引入以下三个工作数组:

(1)数组a[ ],a[k]表示第k行上还没有皇后;

(2)数组b[ ],b[k]表示第k列右高左低斜线上没有皇后;

(3)数组c[ ],c[k]表示第k列左高右低斜线上没有皇后;

棋盘中同一右高左低斜线上的方格,他们的行号与列号之和相同;同一左高右低斜线上的方格,他们的行号与列号之差均相同。

初始时,所有行和斜线上均没有皇后,从第1列的第1行配置第一个皇后开始,在第m列col[m]行放置了一个合理的皇后后,准备考察第m+1列时,在数组a[ ]、b[ ]和c[ ]中为第m列,col[m]行的位置设定有皇后标志;当从第m列回溯到第m-1列,并准备调整第m-1列的皇后配置时,清除在数组a[ ]、b[ ]和c[ ]中设置的关于第m-1列,col[m-1]行有皇后的标志。一个皇后在m列,col[m]行方格内配置是合理的,由数组a[ ]、b[ ]和c[ ]对应位置的值都为1来确定。细节见以下程序:

【程序】

# include

# include

# define MAXN 20

int n,m,good;

int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];

void main()

{ int j;

char awn;

printf(“Enter n: “); scanf(“%d”,&n);

for (j=0;j<=n;j++) a[j]=1;

for (j=0;j<=2*n;j++) cb[j]=c[j]=1;

m=1; col[1]=1; good=1; col[0]=0;

do {

if (good)

if (m==n)

{ printf(“列\t行”);

for (j=1;j<=n;j++)

printf(“%3d\t%d\n”,j,col[j]);

printf(“Enter a character (Q/q for exit)!\n”);

scanf(“%c”,&awn);

if (awn==’Q’||awn==’q’) exit(0);

while (col[m]==n)

{ m--;

a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;

}

col[m]++;

}

else

{ a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=0;

col[++m]=1;

}

else

{ while (col[m]==n)

{ m--;

a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;

}

col[m]++;

}

good=a[col[m]]&&b[m+col[m]]&&c[n+m-col[m]];

} while (m!=0);

}

试探法找解算法也常常被编写成递归函数,下面两程序中的函数queen_all()和函数queen_one()能分别用来解皇后问题的全部解和一个解。

【程序】

# include

# include

# define MAXN 20

int n;

int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];

void main()

{ int j;

printf(“Enter n: “); scanf(“%d”,&n);

for (j=0;j<=n;j++) a[j]=1;

for (j=0;j<=2*n;j++) cb[j]=c[j]=1;

queen_all(1,n);

}

void queen_all(int k,int n)

{ int i,j;

char awn;

for (i=1;i<=n;i++)

if (a[i]&&b[k+i]&&c[n+k-i])

{ col[k]=i;

a[i]=b[k+i]=c[n+k-i]=0;

if (k==n)

{ printf(“列\t行”);

for (j=1;j<=n;j++)

printf(“%3d\t%d\n”,j,col[j]);

printf(“Enter a character (Q/q for exit)!\n”);

scanf(“%c”,&awn);

if (awn==’Q’||awn==’q’) exit(0);

}

queen_all(k+1,n);

a[i]=b[k+i]=c[n+k-i];

}

}

采用递归方法找一个解与找全部解稍有不同,在找一个解的算法中,递归算法要对当前候选解最终是否能成为解要有回答。当它成为最终解时,递归函数就不再递归试探,立即返回;若不能成为解,就得继续试探。设函数queen_one()返回1表示找到解,返回0表示当前候选解不能成为解。细节见以下函数。

【程序】

# define MAXN 20

int n;

int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];

int queen_one(int k,int n)

{ int i,found;

i=found=0;

While (!found&&i

{ i++;

if (a[i]&&b[k+i]&&c[n+k-i])

{ col[k]=i;

a[i]=b[k+i]=c[n+k-i]=0;

if (k==n) return 1;

else

found=queen_one(k+1,n);

a[i]=b[k+i]=c[n+k-i]=1;

}

}

return found;

}

六、贪婪法

贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。

例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。

【问题】装箱问题

问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱

问题要求使装尽这n种物品的箱子数要少。

若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:

{ 输入箱子的容积;

输入物品种数n;

按体积从大到小顺序,输入各物品的体积;

预置已用箱子链为空;

预置已用箱子计数器box_count为0;

for (i=0;i

{ 从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j;

if (已用箱子都不能再放物品i)

{ 另用一个箱子,并将物品i放入该箱子;

box_count++;

}

else

将物品i放入箱子j;

}

}

上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。

若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。

【程序】

# include

# include

typedef struct ele

{ int vno;

struct ele *link;

} ELE;

typedef struct hnode

{ int remainder;

ELE *head;

Struct hnode *next;

} HNODE;

void main()

{ int n, i, box_count, box_volume, *a;

HNODE *box_h, *box_t, *j;

ELE *p, *q;

Printf(“输入箱子容积\n”);

Scanf(“%d”,&box_volume);

Printf(“输入物品种数\n”);

Scanf(“%d”,&n);

A=(int *)malloc(sizeof(int)*n);

Printf(“请按体积从大到小顺序输入各物品的体积:”);

For (i=0;i

Box_h=box_t=NULL;

Box_count=0;

For (i=0;i

{ p=(ELE *)malloc(sizeof(ELE));

p->vno=i;

for (j=box_h;j!=NULL;j=j->next)

if (j->remainder>=a[i]) break;

if (j==NULL)

{ j=(HNODE *)malloc(sizeof(HNODE));

j->remainder=box_volume-a[i];

j->head=NULL;

if (box_h==NULL) box_h=box_t=j;

else box_t=boix_t->next=j;

j->next=NULL;

box_count++;

}

else j->remainder-=a[i];

for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link);

if (q==NULL)

{ p->link=j->head;

j->head=p;

}

else

{ p->link=NULL;

q->link=p;

}

}

printf(“共使用了%d只箱子”,box_count);

printf(“各箱子装物品情况如下:”);

for (j=box_h,i=1;j!=NULL;j=j->next,i++)

{ printf(“第%2d只箱子,还剩余容积%4d,所装物品有;\n”,I,j->remainder); for (p=j->head;p!=NULL;p=p->link)

printf(“%4d”,p->vno+1);

printf(“\n”);

}

}

【问题】马的遍历

问题描述:在8×8方格的棋盘上,从任意指定的方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。

马在某个方格,可以在一步内到达的不同位置最多有8个,如图所示。如用二维数组board[ ][ ]表示棋盘,其元素记录马经过该位置时的步骤号。另对马的8种可能走法(称为着法)设定一个顺序,如当前位置在棋盘的(i,j)方格,下一个可能的位置依次为(i+2,j+1)、(i+1,j+2)、(i-1,j+2)、(i-2,j+1)、(i-2,j-1)、(i-1,j-2)、(i+1,j-2)、(i+2,j-1),实际可以走的位置尽限于还未走过的和不越出边界的那些位置。为便于程序的同意处理,可以引入两个数组,分别存储各种可能走法对当前位置的纵横增量。

4 3

5 2

6 1

7 0

对于本题,一般可以采用回溯法,这里采用Warnsdoff策略求解,这也是一种贪婪法,其选择下一出口的贪婪标准是在那些允许走的位置中,选择出口最少的那个位置。如马的当前位置(i,j)只有三个出口,他们是位置(i+2,j+1)、(i-2,j+1)和(i-1,j-2),如分别走到这些位置,这三个位置又分别会有不同的出口,假定这三个位置的出口个数分别为4、2、3,则程序就选择让马走向(i-2,j+1)位置。

由于程序采用的是一种贪婪法,整个找解过程是一直向前,没有回溯,所以能非常快地找到解。但是,对于某些开始位置,实际上有解,而该算法不能找到解。对于找不到解的情况,程序只要改变8种可能出口的选择顺序,就能找到解。改变出口选择顺序,就是改变有相同出口时的选择标准。以下程序考虑到这种情况,引入变量start,用于控制8种可能着法的选择顺序。开始时为0,当不能找到解时,就让start增1,重新找解。细节以下程序。【程序】

# include

int delta_i[ ]={2,1,-1,-2,-2,-1,1,2};

int delta_j[ ]={1,2,2,1,-1,-2,-2,-1};

int board[8][8];

int exitn(int i,int j,int s,int a[ ])

{ int i1,j1,k,count;

for (count=k=0;k<8;k++)

{ i1=i+delta_i[(s+k)%8];

j1=i+delta_j[(s+k)%8];

if (i1>=0&&i1<8&&j1>=0&&j1<8&&board[I1][j1]==0)

a[count++]=(s+k)%8;

}

return count;

}

int next(int i,int j,int s)

{ int m,k,mm,min,a[8],b[8],temp;

m=exitn(i,j,s,a);

if (m==0) return –1;

for (min=9,k=0;k

{ temp=exitn(I+delta_i[a[k]],j+delta_j[a[k]],s,b); if (temp

{ min=temp;

kk=a[k];

}

}

return kk;

}

void main()

{ int sx,sy,i,j,step,no,start;

for (sx=0;sx<8;sx++)

for (sy=0;sy<8;sy++)

{ start=0;

do {

for (i=0;i<8;i++)

for (j=0;j<8;j++)

board[i][j]=0;

board[sx][sy]=1;

I=sx; j=sy;

For (step=2;step<64;step++)

{ if ((no=next(i,j,start))==-1) break;

I+=delta_i[no];

j+=delta_j[no];

board[i][j]=step;

}

if (step>64) break;

start++;

} while(step<=64)

for (i=0;i<8;i++)

{ for (j=0;j<8;j++)

printf(“%4d”,board[i][j]);

printf(“\n\n”);

}

scanf(“%*c”);

}

}

c语言经典算法

C语言的学习要从基础,100个经典的算法 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? ________________________________________________________________ 程序分析:兔子的规律为数列1,1,2,3,5,8,13,21.... __________________________________________________________________ 程序源代码: main() { long f1,f2; int i; f1=f2=1; for(i=1;i<=20;i++) { printf("%12ld %12ld",f1,f2); if(i%2==0) printf("\n");/*控制输出,每行四个*/ f1=f1+f2;/*前两个月加起来赋值给第三个月*/ f2=f1+f2;/*前两个月加起来赋值给第三个月*/ } } 上题还可用一维数组处理,you try! 题目:判断101-200之间有多少个素数,并输出所有素数。 _________________________________________________________________ 程序分析:判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能被整除,则表明此数不是素数,反之是素数。 ___________________________________________________________________ 程序源代码: #include "math.h" main() { int m,i,k,h=0,leap=1; printf("\n"); for(m=101;m<=200;m++) { k=sqrt(m+1); for(i=2;i<=k;i++) if(m%i==0) {leap=0;break;} if(leap) {printf("%-4d",m);h++; if(h%10==0) printf("\n"); } leap=1; } printf("\nThe total is %d",h); } 题目:打印出所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字立方和等于该数本身。例如:153是一个“水仙花数”,因为153=1的三次方+5的三次方+3的三次方。 __________________________________________________________________ 程序分析:利用for循环控制100-999个数,每个数分解出个位,十位,百位。 ___________________________________________________________________ 程序源代码:

C语言经典算法100例题目

看懂一个程序,分三步:1、流程;2、每个语句的功能;3、试数; 小程序:1、尝试编程去解决他;2、看答案;3、修改程序,不同的输出结果; 4、照答案去敲; 5、调试错误; 6、不看答案,自己把答案敲出来; 7、实在不会就背会。。。。。周而复始,反复的敲。。。。。 【程序1】 题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? ============================================================== 【程序2】 题目:企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高 于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提 成7.5%;20万到40万之间时,高于20万元的部分,可提成5%;40万到60万之间时高于 40万元的部分,可提成3%;60万到100万之间时,高于60万元的部分,可提成1.5%,高于 100万元时,超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数? ============================================================== 【程序3】 题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?============================================================== 【程序4】 题目:输入某年某月某日,判断这一天是这一年的第几天? ============================================================== 【程序5】 题目:输入三个整数x,y,z,请把这三个数由小到大输出。 ============================================================== 【程序6】 题目:用*号输出字母C的图案。 ============================================================== 【程序7】 题目:输出特殊图案,请在c环境中运行,看一看,Very Beautiful! ============================================================== 【程序8】 题目:输出9*9口诀。 ============================================================== 【程序9】 题目:要求输出国际象棋棋盘。 ============================================================== 【程序10】 题目:打印楼梯,同时在楼梯上方打印两个笑脸。 -------------------------------------------------------------------------------- 【程序11】 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月 后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? ==============================================================

C语言经典算法100例(1---30)

2008-02-18 18:48 【程序1】 题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 1.程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列。 2.程序源代码: main() { int i,j,k; printf("\n"); for(i=1;i<5;i++) /*以下为三重循环*/ for(j=1;j<5;j++) for (k=1;k<5;k++) { if (i!=k&&i!=j&&j!=k) /*确保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k); } } ============================================================== 【程序2】 题目:企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高 于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提 成7.5%;20万到40万之间时,高于20万元的部分,可提成5%;40万到60万之间时高于 40万元的部分,可提成3%;60万到100万之间时,高于60万元的部分,可提成1.5%,高于 100万元时,超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数? 1.程序分析:请利用数轴来分界,定位。注意定义时需把奖金定义成长整型。 2.程序源代码: main() { long int i; int bonus1,bonus2,bonus4,bonus6,bonus10,bonus; scanf("%ld",&i); bonus1=100000*0.1;bonus2=bonus1+100000*0.75; bonus4=bonus2+200000*0.5; bonus6=bonus4+200000*0.3; bonus10=bonus6+400000*0.15; if(i<=100000)

线性方程组的数值算法C语言实现(附代码)

线性方程组AX=B 的数值计算方法实验 一、 实验描述: 随着科学技术的发展,线性代数作为高等数学的一个重要组成部分, 在科学实践中得到广泛的应用。本实验的通过C 语言的算法设计以及编程,来实现高斯消元法、三角分解法和解线性方程组的迭代法(雅可比迭代法和高斯-赛德尔迭代法),对指定方程组进行求解。 二、 实验原理: 1、高斯消去法: 运用高斯消去法解方程组,通常会用到初等变换,以此来得到与原系数矩阵等价的系数矩阵,达到消元的目的。初等变换有三种:(a)、(交换变换)对调方程组两行;(b)、用非零常数乘以方程组的某一行;(c)、将方程组的某一行乘以一个非零常数,再加到另一行。 通常利用(c),即用一个方程乘以一个常数,再减去另一个方程来置换另一个方程。在方程组的增广矩阵中用类似的变换,可以化简系数矩阵,求出其中一个解,然后利用回代法,就可以解出所有的解。 2、选主元: 若在解方程组过程中,系数矩阵上的对角元素为零的话,会导致解出的结果不正确。所以在解方程组过程中要避免此种情况的出现,这就需要选择行的判定条件。经过行变换,使矩阵对角元素均不为零。这个过程称为选主元。选主元分平凡选主元和偏序选主元两种。平凡选主元: 如果()0p pp a ≠,不交换行;如果()0p pp a =,寻找第p 行下满足() 0p pp a ≠的第一 行,设行数为k ,然后交换第k 行和第p 行。这样新主元就是非零主元。偏序选主元:为了减小误差的传播,偏序选主元策略首先检查位于主对角线或主对角线下方第p 列的所有元素,确定行k ,它的元素绝对值最大。然后如果k p >,则交换第k 行和第p 行。通常用偏序选主元,可以减小计算误差。 3、三角分解法: 由于求解上三角或下三角线性方程组很容易所以在解线性方程组时,可将系数矩阵分解为下三角矩阵和上三角矩阵。其中下三角矩阵的主对角线为1,上三角矩阵的对角线元素非零。有如下定理: 如果非奇异矩阵A 可表示为下三角矩阵L 和上三角矩阵U 的乘积: A LU = (1) 则A 存在一个三角分解。而且,L 的对角线元素为1,U 的对角线元素非零。得到L 和U 后,可通过以下步骤得到X : (1)、利用前向替换法对方程组LY B =求解Y 。 (2)、利用回代法对方程组UX Y =求解X 。 4、雅可比迭代:

C语言经典算法大全

C语言经典算法大全 老掉牙 河内塔 费式数列 巴斯卡三角形 三色棋 老鼠走迷官(一) 老鼠走迷官(二) 骑士走棋盘 八个皇后 八枚银币 生命游戏 字串核对 双色、三色河内塔 背包问题(Knapsack Problem) 数、运算 蒙地卡罗法求PI Eratosthenes筛选求质数 超长整数运算(大数运算) 长PI 最大公因数、最小公倍数、因式分解 完美数 阿姆斯壮数 最大访客数 中序式转后序式(前序式) 后序式的运算 关于赌博 洗扑克牌(乱数排列) Craps赌博游戏 约瑟夫问题(Josephus Problem) 集合问题 排列组合 格雷码(Gray Code) 产生可能的集合

m元素集合的n个元素子集 数字拆解 排序 得分排行 选择、插入、气泡排序 Shell 排序法- 改良的插入排序Shaker 排序法- 改良的气泡排序Heap 排序法- 改良的选择排序快速排序法(一) 快速排序法(二) 快速排序法(三) 合并排序法 基数排序法 搜寻 循序搜寻法(使用卫兵) 二分搜寻法(搜寻原则的代表)插补搜寻法 费氏搜寻法 矩阵 稀疏矩阵 多维矩阵转一维矩阵 上三角、下三角、对称矩阵 奇数魔方阵 4N 魔方阵 2(2N+1) 魔方阵

1.河内之塔 说明河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越 战时北越的首都,即现在的胡志明市;1883年法国数学家Edouard Lucas曾提及这个故事,据说创世纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损,而也就是世界末日来临之时。 解法如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘 子,就将B当作辅助柱。如果盘数超过2个,将第三个以下的盘子遮起来,就很简单了,每次处理两个盘子,也就是:A->B、A ->C、B->C这三个步骤,而被遮住的部份,其实就是进入程式的递回处理。事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则所需次数为:264- 1 = 18446744073709551615为5.05390248594782e+16年,也就是约5000世纪,如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。 #include void hanoi(int n, char A, char B, char C) { if(n == 1) { printf("Move sheet %d from %c to %c\n", n, A, C); } else { hanoi(n-1, A, C, B); printf("Move sheet %d from %c to %c\n", n, A, C); hanoi(n-1, B, A, C); } } int main() { int n; printf("请输入盘数:"); scanf("%d", &n); hanoi(n, 'A', 'B', 'C'); return 0; }

c语言经典算法100例

60.题目:古典问题:有一对兔子,从出生后第3个月 起每个月都生一对兔子,小兔 子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总 数 为多少? _________________________________________________________________ _ 程序分析:兔子的规律为数列1,1,2,3,5,8,13,21.... _________________________________________________________________ __ 程序源代码: main() { long f1,f2; int i; f1=f2=1; for(i=1;i<=20;i++) { printf("%12ld %12ld",f1,f2); if(i%2==0) printf("\n");/*控制输出,每行四个*/

f1=f1+f2;/*前两个月加起来赋值给第三个月*/ f2=f1+f2;/*前两个月加起来赋值给第三个月*/ } } 上题还可用一维数组处理,you try! 61.题目:判断101-200之间有多少个素数,并输出所有素数。 _________________________________________________________________ _ 1 程序分析:判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能被 整 除,则表明此数不是素数,反之是素数。 _________________________________________________________________ __ 程序源代码: #include "math.h" main() { int m,i,k,h=0,leap=1;

C语言经典算法题目及答案

题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 1.程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列。 2.程序源代码: main() { int i,j,k; printf("\n"); for(i=1;i<5;i++) /*以下为三重循环*/ for(j=1;j<5;j++) for (k=1;k<5;k++) { if (i!=k&&i!=j&&j!=k) printf("%d,%d,%d\n",i,j,k); } } ============================================================== 【程序2】 题目:企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高 于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提成7.5%;20万到40万之间时,高于20万元的部分,可提成5%;40万到60万之间时高于40万元的部分,可提成3%;60万到100万之间时,高于60万元的部分,可提成1.5%,高于 100万元时,超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数? 1.程序分析:请利用数轴来分界,定位。注意定义时需把奖金定义成长整型。 2.程序源代码: main() { long int i; int bonus1,bonus2,bonus4,bonus6,bonus10,bonus; scanf("%ld",&i); bonus1=100000*0.1;bonus2=bonus1+100000*0.75; bonus4=bonus2+200000*0.5; bonus6=bonus4+200000*0.3; bonus10=bonus6+400000*0.15; if(i<=100000) bonus=i*0.1; else if(i<=200000) bonus=bonus1+(i-100000)*0.075; else if(i<=400000) bonus=bonus2+(i-200000)*0.05; else if(i<=600000) bonus=bonus4+(i-400000)*0.03;

经典滤波算法及C语言程序

经典的滤波算法(转) 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM

递推平均滤波法对偶然出现的脉冲性干扰的抑制作用较差 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM

C语言经典算法详解

一分而治之算法 分而治之方法与软件设计的模块化方法非常相似。为了解决一个大的问题,可以: 1) 把它分成两个或多个更小的问题; 2) 分别解决每个小问题; 3) 把各小问题的解答组合起来,即可得到原问题的解答。小问题通常与原问题相似,可以递归地使用分而治之策略来解决。下列通过实例加以说明。 例:利用分而治之算法求一个整数数组中的最大值。

练习:[找出伪币] 给你一个装有1 6个硬币的袋子。1 6个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。你的任务是找出这个伪造的硬币。

二贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 贪心算法(Greedy algorithm)是一种对某些求最优解问题的更简单、更迅速的设计技术。用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。 贪心算法是一种改进了的分级处理方法。其核心是根据题意选取一种量度标准。然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。 对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪

查找算法的实现(C语言版)

实验五查找的实现 一、实验目的 1.通过实验掌握查找的基本概念; 2.掌握顺序查找算法与实现; 3.掌握折半查找算法与实现。 二、实验要求 1.认真阅读和掌握本实验的参考程序。 2.保存程序的运行结果,并结合程序进行分析。 三、实验内容 1、建立一个线性表,对表中数据元素存放的先后次序没有任何要求。输入待查数据元素的关键字进行查找。为了简化算法,数据元素只含一个整型关键字字段,数据元素的其余数据部分忽略不考虑。建议采用前哨的作用,以提高查找效率。 2、查找表的存储结构为有序表,输入待查数据元素的关键字利用折半查找方法进行查找。此程序中要求对整型量关键字数据的输入按从小到大排序输入。 一、顺序查找 顺序查找代码:

#include"stdio.h" #include"stdlib.h" typedef struct node{ int key; }keynode; typedef struct Node{ keynode r[50]; int length; }list,*sqlist; int Createsqlist(sqlist s) { int i; printf("请输入您要输入的数据的个数:\n"); scanf("%d",&(s->length)); printf("请输入您想输入的%d个数据;\n\n",s->length);

for(i=0;ilength;i++) scanf("%d",&(s->r[i].key)); printf("\n"); printf("您所输入的数据为:\n\n"); for(i=0;ilength;i++) printf("%-5d",s->r[i].key); printf("\n\n"); return 1; } int searchsqlist(sqlist s,int k) { int i=0; s->r[s->length].key=k; while(s->r[i].key!=k) {

c语言经典算法设计方法

c语言经典算法设计方法 经典算法设计方法 一、什么是算法 算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入, 在有限时间内获得所要求的输出。算法常常含有重复的步骤和一些比较或逻辑 判断。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决 这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一 个算法的优劣可以用空间复杂度与时间复杂度来衡量。 算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法 是问题规模n的函数f(n),算法执行的时间的增长率与f(n)的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。时间复杂度用"O(数量级)"来表示,称为"阶"。常见的时间复杂度有:O(1)常数阶;O(log2n)对数阶;O(n)线性阶;O(n2)平方阶。 算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时 间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复 杂度的分析要简单得多。 二、算法设计的方法 1.递推法 递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要 求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采 用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为1,2,…,i-1的一系列解,构造出 问题规模为I的解。这样,程序可从i=0或i=1出发,重复地,由已知至i-1 规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。 【问题】阶乘计算

问题描述:编写程序,对给定的n(n≦ 100),计算并输出k的阶乘k! (k=1,2,…,n)的全部有效数字。 由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。如有m位成整数N 用数组a[]存储: N=a[m]×10m-1+a[m-1]×10m-2+…+a[2]×101+a[1]×100 并用a[0]存储长整数N的位数m,即a[0]=m。按上述约定,数组的每个元 素存储k的阶乘k!的一位数字,并从低位到高位依次存于数组的第二个元素、第三个元素…。例如,5!=120,在数组中的存储形式为: 3 02 1… 首元素3表示长整数是一个3位数,接着是低位到高位依次是0、2、1, 表示成整数120。计算阶乘k!可采用对已求得的阶乘(k-1)!连续累加k-1次 后求得。例如,已知4!=24,计算5!,可对原来的24累加4次24后得到120。细节见以下程序。 #include stdio.h #include malloc.h #define MAXN 1000 void pnext(int a[],int k) { int*b,m=a[0],i,j,r,carry; b=(int*)malloc(sizeof(int)*(m+1)); for(i=1;i=m;i++) b[i]=a[i]; for(j=1;j=k;j++)

C语言经典算法100例(1)

C语言经典算法100例(1)(2007-08-15 15:09:22) C 语言编程经典 100 例 A:【程序1】 题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 1.程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列。 2.程序源代码: main() { int i,j,k; printf(“\n“); for(i=1;i〈5;i++) /*以下为三重循环*/ for(j=1;j〈5;j++) for (k=1;k〈5;k++) { if (i!=k&&i!=j&&j!=k) /*确保i、j、k三位互不相同*/ printf(“%d,%d,%d\n“,i,j,k); } } ============================================================== 【程序2】 题目:企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提成7.5%;20万到40万之间时,高于20万元的部分,可提成5%;40万到60万之间时高于40万元的部分,可提成3%;60万到100万之间时,高于60万元的部分,可提成1.5%,高于100万元时,超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数? 1.程序分析:请利用数轴来分界,定位。注意定义时需把奖金定义成长整型。 2.程序源代码: main() { long int i; int bonus1,bonus2,bonus4,bonus6,bonus10,bonus; scanf(“%ld“,&i); bonus1=100000*0.1;bonus2=bonus1+100000*0.75; bonus4=bonus2+200000*0.5; bonus6=bonus4+200000*0.3; bonus10=bonus6+400000*0.15; if(i〈=100000) bonus=i*0.1; else if(i〈=200000) bonus=bonus1+(i-100000)*0.075; else if(i〈=400000) bonus=bonus2+(i-200000)*0.05;

非常全的C语言常用算法

一、基本算法 1.交换(两量交换借助第三者) 例1、任意读入两个整数,将二者的值交换后输出。 main() {int a,b,t; scanf("%d%d",&a,&b); printf("%d,%d\n",a,b); t=a; a=b; b=t; printf("%d,%d\n",a,b);} 【解析】程序中加粗部分为算法的核心,如同交换两个杯子里的饮料,必须借助第三个空杯子。 假设输入的值分别为3、7,则第一行输出为3,7;第二行输出为7,3。 其中t为中间变量,起到“空杯子”的作用。 注意:三句赋值语句赋值号左右的各量之间的关系! 【应用】 例2、任意读入三个整数,然后按从小到大的顺序输出。 main() {int a,b,c,t; scanf("%d%d%d",&a,&b,&c); /*以下两个if语句使得a中存放的数最小*/ if(a>b){ t=a; a=b; b=t; } if(a>c){ t=a; a=c; c=t; } /*以下if语句使得b中存放的数次小*/ if(b>c) { t=b; b=c; c=t; } printf("%d,%d,%d\n",a,b,c);} 2.累加 累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。例1、求1+2+3+……+100的和。 main() {int i,s; s=0; i=1; while(i<=100) {s=s+i; /*累加式*/ i=i+1; /*特殊的累加式*/ } printf("1+2+3+...+100=%d\n",s);} 【解析】程序中加粗部分为累加式的典型形式,赋值号左右都出现的变量称为累加器,其中“i = i + 1”为特殊的累加式,每次累加的值为1,这样的累加器又称为计数器。

C语言经典算法汇总

C语言经典算法汇总 一.冒泡法: 排序过程: (1)比较第一个数与第二个数,若为逆序a[0]>a[1],则交换;然 后比较第二个数与第三个数;依次类推,直至第n-1个数和第 n个数比较为止——第一趟冒泡排序,结果最大的数被安置在 最后一个元素位置上 (2)对前n-1个数进行第二趟冒泡排序,结果使次大的数被安置在 第n-1个元素位置 (3)重复上述过程,共经过n-1趟冒泡排序后,排序结束。 例题:#include main() { int a[11],i,j,t; printf("Input 10 numbers: "); for(i=1;i<11;i++) scanf("%d",&a[i]); printf(" "); for(j=1;j<=9;j++) for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;} printf("The sorted numbers: ");

for(i=1;i<11;i++) printf("%d ",a[i]); } 二.选择法: 排序过程: (1)首先通过n-1次比较,从n个数中找出最小的,将它与第一个数 交换—第一趟选择排序,结果最小的数被安置在第一个元素位置上(2)再通过n-2次比较,从剩余的n-1个数中找出关键字次小的记录, 将它与第二个数交换—第二趟选择排序 (3)重复上述过程,共经过n-1趟排序后,排序结束。 例题:传统方法:#include main() { int a[11],i,j,k,x; printf("Input 10 numbers: "); for(i=1;i<=10;i++) scanf("%d",&a[i]); printf(" "); for(i=1;i<=10;i++) { k=i; for(j=i+1;j<=10;j++) if(a[j]

c语言经典排序算法(8种-含源代码)

天行健,君子以自强不息 常见经典排序算法 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法 */ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp=v[j]; v[j]=v[j+gap]; v[j+gap]=temp; } } } } 二.二分插入法

/* 二分插入法 */ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */ { high = mid-1; } else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧 */ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间 */ for (j=i-1; j>high; j--)/* 元素后移 */ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入 */ } } 三.直接插入法 /*直接插入法*/ void InsertionSort(int input[],int len) { int i,j,temp; for (i = 1; i < len; i++) { temp = input[i]; /* 操作当前元素,先保存在其它变量中 */

C语言经典算法大全精选

7.Algorithm Gossip: 骑士走棋盘 说明骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位 置? 解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路 就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个 方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。#include int board[8][8] = {0}; int main(void) { int startx, starty; int i, j; printf("输入起始点:"); scanf("%d %d", &startx, &starty); if(travel(startx, starty)) { printf("游历完成!\n"); } else { printf("游历失败!\n"); } for(i = 0; i < 8; i++) { for(j = 0; j < 8; j++) { printf("%2d ", board[i][j]); } putchar('\n'); } return 0; } int travel(int x, int y) { // 对应骑士可走的八个方向 int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2}; int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1}; // 测试下一步的出路 int nexti[8] = {0}; int nextj[8] = {0}; // 记录出路的个数 int exists[8] = {0}; int i, j, k, m, l; int tmpi, tmpj; int count, min, tmp;

C语言经典算法题目及答案

题目:有1、2、3、4 个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 1.程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列。 2.程序源代码:main() { int i,j,k; printf("\n"); for(i=1;i<5;i++) /* 以下为三重循环*/ for(j=1;j<5;j++) for (k=1;k<5;k++) { if (i!=k&&i!=j&&j!=k) printf("%d,%d,%d\n",i,j,k); } } 【程序2】 题目:企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润 高 于10万元,低于20 万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提成7.5%; 20 万到40 万之间时,高于20 万元的部分,可提成5%; 40 万到60 万之间时高于 40 万元的部分,可提成3%; 60万到100 万之间时,高于60 万元的部分,可提成 1.5%,高于 100万元时,超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数? 1.程序分析:请利用数轴来分界,定位。注意定义时需把奖金定义成长整型。 2.程序源代码: main() { long int i; int bonus1,bonus2,bonus4,bonus6,bonus10,bonus; scanf("%ld",&i); bonus1=100000*0.1;bonus2=bonus1+100000*0.75; bonus4=bonus2+200000*0.5; bonus6=bonus4+200000*0.3; bonus10=bonus6+400000*0.15; if(i<=100000) bonus=i*0.1; else if(i<=200000) bonus=bonus1+(i-100000)*0.075; else if(i<=400000) bonus=bonus2+(i-200000)*0.05; else if(i<=600000) bonus=bonus4+(i-400000)*0.03;

二叉树的先中相关常用算法c语言版

#include #include typedef char T; typedef struct btnode //结点定义 { T Element; struct btnode *LChild,*RChild; }BTNode; typedef struct btree //头结点定义 { struct btnode *Root; }BTree; BTNode* NewNode() //创建空间 { BTNode *p=(BTNode*)malloc(sizeof(BTNode)); return p; } BTNode * DGCreateBT() //递归创建一棵二叉树{ char c; BTNode *s; //s=(BTNode *)malloc(sizeof(BTNode)); // c=getchar(); scanf("%c",&c); getchar() ; if(c=='.') { s=NULL; } else { //s=NewNode(); s=(BTNode *)malloc(sizeof(BTNode)); s->Element=c; s->LChild=DGCreateBT(); s->RChild=DGCreateBT(); } return s; }

printf("%3c",p->Element); } void PreOrd(BTNode *t) //先序遍历递归函数 { if(t) { (*Visit)(t); PreOrd(t->LChild); PreOrd(t->RChild); } } void InOrd(BTNode *t) //中序遍历递归函数 { if(t) { InOrd(t->LChild); (*Visit)(t); InOrd(t->RChild); } } void PostOrd(BTNode *t) //后序遍历递归函数 { if(t) { PostOrd(t->LChild); PostOrd(t->RChild); (*Visit)(t); } } /*void PreOrder(BTree Bt,void (*Visit)(BTNode *u)) //先序遍历{ PreOrd(Visit,Bt.Root); } void InOrder(BTree Bt,void (*Visit)(BTNode *u)) //中序遍历{ InOrd(Visit,Bt.Root); } void PostOrder(BTree Bt,void (*Visit)(BTNode *u)) //后序遍历{ PostOrd(Visit,Bt.Root);

相关主题
相关文档
最新文档