第一节重力沉降
化工原理第三章--重力沉降

0.44
u0 1.74 d s g
——牛顿公式
此处是标题
2
-刘宇-
3)影响沉降速度的因素
①颗粒的体积浓度 在前面介绍的各种沉降速度关系式中,当颗粒的体积浓 度小于0.2%时,理论计算值的偏差在1%以内,但当颗粒浓 度较高时,由于颗粒间相互作用明显,便发生干扰沉降, 自由沉降的公式不再适用。 ②器壁效应 当器壁尺寸远远大于颗粒尺寸时,(例如在100倍以上) 容器效应可忽略,否则需加以考虑。
假设沉降属于层流区
u0
艾伦公式(牛顿公式)
u0
Re0>2 u0为所求 Re0<2
d 2 s g 18
由已知条件:空气的密度为1.2kg/m3,黏度为0.0185mPa·s du0 若原假设滞流区正确,求得的沉降 核算流型 Re 0 速度有效。 具体解题步骤见例3-2
一降尘室气固体系1降尘室内的颗粒运动以速度u随气体流动以速度u作沉降运动二重力沉降分离设备气体气体进口出口工作原理2沉降运动时间气体停留时间分离降尘室使颗粒沉降的条件hblhbhb说明含尘气体的最大处理量与某一粒径对应的是指这一粒径及大于该粒径的颗粒都能100被除去时的最大气体最大的气体处理量还与降尘室底面积和颗粒的沉降速度有关底面积越大处理量越大但处理量与高度无关
此处是标题
4
-刘宇-
分析:
L H (1)降尘室使颗粒沉降的条件 u u0
u 0 Hu L
(3)降尘室的生产能力
Vs BLu0 A0u0
Vs变为原来的两倍
1)变为两层→沉降室面积变为2A0 u0不变 2)变为两层→沉降室面积变为2A0 Vs不变
u0的求取 试差法 (2)层流区
u0
沉 降

ut——颗粒终端沉降速度(terminal velocity)
(1)层流区:ReP2 CD=24/ReP
1 P 2 ut gdP 18
斯托克斯(Stokes)公式
第二节 重力沉降
(2)过渡区:2<ReP<103
18.5 CD 0.6 Re P
ut 0.27 ( P ) gd P Re P
h t沉 ut l V t停 ui qv
Fg
6
d P P g
3
du Fg Fb m dt
FD CD AP
(6.2.3)
u 2
2
第二节 重力沉降
达到平衡时:
Fg Fb FD 0
6 d P P g
3
6
d P g CD
3
4
dP (( P ) d P g 3 C D
• 流体阻力的方向与颗粒物在流体中运动的方向相反,其大小与
流体和颗粒物之间的相对运动速度u、流体的密度、黏度以 及颗粒物的大小、形状有关。 • 对于非球形颗粒物,这种关系非常复杂。
第一节 沉降分离的基本概念
对于球形颗粒,流体阻力的计算方程:
FD CD AP
u
2
2
(6.1.10)
CD:阻力系数,是雷诺数的函数。 AP:颗粒的投影面积
CD f (ReP )
Re P udP
(6.1.11) …颗粒的雷诺数
第二节 重力沉降
一、重力场中颗粒的沉降过程
假设球形颗粒粒径为dP、质量为m。沉速如何计算?
浮力Fb
Fb
6
d P g
重力沉降的原理及应用

重力沉降的原理及应用1. 什么是重力沉降?重力沉降是一种固体颗粒物料在液体中沉降的现象,也被称为沉降法或离心法。
这个过程是利用重力作用使颗粒物料在液体中自由沉降,并通过沉降速度的差异来实现颗粒物料的分离。
重力沉降常被应用于颗粒物料的固液分离、液固分离以及固固分离等方面。
2. 重力沉降的原理重力沉降的原理基于斯托克斯定律,即颗粒物料在液体中的沉降速度与颗粒大小、密度、液体粘度和重力加速度等因素有关。
根据斯托克斯定律可知,颗粒物料的沉降速度与颗粒直径的平方成正比,与颗粒与液体密度差和液体粘度成反比。
因此,较大直径和密度较大的颗粒沉降速度较快,而较小直径和密度较小的颗粒沉降速度较慢。
3. 重力沉降的应用重力沉降在各个领域有着广泛的应用,包括但不限于以下几个方面:3.1 固液分离重力沉降常用于固液分离过程中,例如在水处理、废水处理、生物制药、食品加工和矿业等行业。
通过调整悬浮液中颗粒物料的沉降速度,可以实现固体颗粒与液体的分离。
在水处理中,可以通过重力沉降的方法将悬浮在水中的固体颗粒从水中分离出来,提高水的净化效果。
3.2 液固分离除了固液分离,重力沉降也广泛应用于液固分离过程中。
在石油工业中,通过重力沉降可以实现原油与水、沉淀物的分离。
在制药工业中,重力沉降常用于将可溶性化合物从其溶液中分离出来,从而获得纯净的药物成分。
3.3 固固分离重力沉降还可以应用于固固分离过程中。
例如,利用重力沉降可以将不同颗粒大小的颗粒物料进行分级,从而实现颗粒的分类和分离。
在矿石选矿过程中,重力沉降可以将矿物颗粒按照密度的大小进行分类,从而达到分离和提纯的效果。
3.4 离心分离离心分离是重力沉降的一个衍生应用。
它利用离心力的作用,通过离心机来加速颗粒物料的沉降过程,从而实现更快速、更高效的分离过程。
离心分离广泛应用于生物工程、制药和化学工业中,可以用于细胞分离、蛋白质纯化和大规模物料的分离等。
4. 结语重力沉降作为一种重要的物料分离技术,具有简单、高效、经济的优点,被广泛应用于各行各业。
重力沉降原理

重力沉降原理
重力沉降原理是指地球或其他物体上的物体受到重力作用而向下沉降的现象。
根据牛顿的万有引力定律,任何两个物体之间的引力都是与它们的质量成正比,与它们之间的距离的平方成反比。
因此,一个物体在重力作用下向下沉降的速度取决于其质量和受力面积。
在地球上,当一个物体静止在地面上时,它受到的重力与支持力相等,这种状态称为平衡状态。
然而,当一个物体的支持力小于其重力时,它将开始下沉。
这种沉降的速度取决于物体的质量,较重的物体下降得更快。
另一方面,对于细粒土壤和淤泥等松软材料,重力沉降效应更为显著。
当一块土壤或淤泥受到外加应力时,其中的水分被挤压出来,导致土壤颗粒之间的接触面积增加,从而使土壤体积逐渐减小。
在这个过程中,土壤会产生沉降,使地面下沉。
重力沉降不仅在自然界中普遍存在,也会对工程建设产生影响。
例如,在厚度较大的沉积物层中建筑物的基础会随时间而发生沉降,这可能导致建筑物的不稳定。
因此,在工程设计中需要对重力沉降进行充分考虑,并采取相应的措施来保证建筑物的稳定性。
总之,重力沉降原理是由物体受到重力作用而向下沉降的现象。
它在地球和工程中都起着重要的作用,需要被深入研究和理解。
概述、重力沉降

形体曳力和表面曳力的影响因素各是什么?
答:组成总曳力Biblioteka 两部分力中,为压力改变所导致的曳力,主要取决于颗粒的形状和位向,称为形体曳
力;而
则是由于流体和颗粒表面的摩擦所导致的
曳力,主要由颗粒表面积的大小决定,称为表面曳力。
工程上大都将形体曳力和表面曳力合在一起,即研究总曳
力(总曳力FD与流体的μ、ρ、u有关) ,经因次分析用 下式表示:
[沉降条件] τr ≥ τ t
或 AH/ qV ≥H/ut 或qV≤A ut
为什么降尘室多做成扁平状?
理论上降尘室的生产能力只与降尘室的长度、 宽度及沉降速度ut有关,与降尘室高度无关。 因此不必将设备做得太高。所以降尘室一般采 用扁平的几何形状,也可在室内加多层隔板, 形成多层降尘室。常用的隔板间距为40-100mm
一、非均相物系的分离
在非均相混合物中,处于分散状态的物质(如 分散于流体中的固体颗粒液滴或气泡)称为分 散相或分散物质,包围着分散物质而处于连续 状态的流体称为连续相或分散介质。
悬浮在空气中的粉尘:分散相粉尘 连续相空 气
由于分散相和连续相具有不同的物理性质(如: 尺寸不同、密度不同),可用机械方法分离。 例如:气体中所含的灰尘可以用重力、离心力 或在电场中将其除去,悬浮液可以通过过滤的 方式分离成液体和滤渣两部分,大小不等及密 度不同的颗粒构成的混合物可以用分级沉降的 方法分开,大小不同的颗粒用筛子亦可分开。
过滤的基本原理,过滤的基本方程式及恒压、恒 速计算。
第一节 概述
化工生产中,需要将混合物加以分离的情况非 常多,概括有以下三方面: 原料需经过分离提纯或净化后才符合加工要求。 从反应器送出的反应产物一般都与尚未反应的 原料及副产物混在一起,也要从其中分离出纯 度合格的产品及将未反应的原料送回反应器或 另行处理。 生产中的废气、废液在排放前,应将其中所含 的有害物尽量除去,以减轻环境污染,并有可 能将其变为有用之物。
重力沉降的原理

重力沉降的原理
重力沉降是指地面上或结构中由于重力作用而导致的土壤沉降现象。
其原理是由于土壤颗粒之间存在一定的空隙,当土壤受到外部荷载作用时,土壤颗粒会重新排列,空隙随之变小,从而使土壤体积减小,产生沉降现象。
重力沉降的主要原因包括土壤质量差异、地下水位变化、地下开挖和填筑等。
不同地层的土壤具有不同的密度、压缩性和可变性,因此在不同地层下沉的速度也会有所差异。
地下水位变化会影响土壤中的孔隙水压力分布,进而影响土壤的压实程度和沉降速度。
地下开挖和填筑活动也是造成重力沉降的重要原因。
在地下开挖过程中,土壤体会受到边坡支护或挖掘机械施加的荷载作用,引起土壤应力状态的改变,进而引发沉降。
而填筑活动中的土壤改良、加固或填土,也会改变土壤结构和物理特性,导致重力沉降的发生。
重力沉降的影响范围取决于土壤类型、厚度和荷载大小等因素。
一般来说,较松散的土壤容易发生较大的沉降,而较坚实的土壤则沉降较小。
重力沉降对工程结构的影响主要表现为地表沉降、建筑物倾斜、管道断裂等,严重时甚至会引发地面破裂和沉降区域的塌陷。
为了减缓和控制重力沉降的影响,工程中常采取一些措施,如通过土壤改良、预压处理、加固支护等方式来提高土壤的承载力和稳定性。
此外,在规划和设计阶段,需要对地质和水文条
件进行详细的调查和分析,合理选择建筑物位置和土壤处理方法,以避免重力沉降对工程造成损失。
第03章重力沉降详解

旋风除尘器
旋风除尘器的压力损失
相对尺寸对压力损失影响较大,除尘器结构型式相同时, 几何相似放大或缩小,压力损失基本不变
含尘浓度增高,压力降明显下降 操作运行中可以接受的压力损失一般低于2kPa
旋风除尘器
旋风除尘器的除尘效率
计算分割直径是确定除尘效率的基础 在交界面上,离心力FC,向心运动气流作用于尘粒上 的阻力FD
轴向速度
外涡旋的轴向速度向下 内涡旋的轴向速度向上 在内涡旋,轴向速度向上逐渐增大,在排出管底部达到 最大值
旋风除尘器
旋风除尘器的压力损失
P 1 V in 2 2
A d e2
:局部阻力系数
16
A:旋风除尘器进口面积 局部阻力系数
旋风除尘器型式 ξ XLT XLT⁄A XLP⁄A XLP⁄B 5.3 6.5 8.0 5.8
层流式和湍流式两种
层流式重力沉降室
假定沉降室内气流为柱塞流;颗粒均匀分布于烟气中 忽略气体浮力,粒子仅受重力和阻力的作用
纵剖面示意图
层流式重力沉降室
沉降室的长宽高分别为L、W、H,处理烟气量为Q 气流在沉降室内的停留时间
t L / v0 LWH Q
us
v0
在t时间内粒子的沉降距离
沉降室内的气流速度一般为0.3~2.0m/s
不同粉尘的最高允许气流速度
层流式重力沉降室
多层沉降室:使沉降高度 减少为原来的1/(n+1), 其中n为水平隔板层数
i
us LW (n 1) Q
考虑清灰的问题,一般隔板数 在3以下
多层沉降室
《沉降与过滤》PPT课件

—与真空 管相连
15 不工作区 16-17吹松区、卸料 区 18 不工作区
—h槽 —压缩空气
第4节 膜过滤 一、膜过滤原理与膜组件 〔一〕膜过滤原理
原料液
小分子的 A物质
大分子的 B物质
溢流
膜
A物质
渗透液
?化工原理?课件——第3章 沉降与过滤
第4节 膜过滤
一、膜过滤原理与膜组件
〔二〕膜组件
渗透液
?化工原理?课件——第3章 沉降与过滤
第1节 重力沉降
一、重力沉降速度
球形颗粒: ——Stokes定律
层流区 1 4 0 R e 2区
24
Re
d2()g
ut
s
18
过渡区 2R e50—0—Allen定律区
10
Re0.5
ut d
4g2()2 s 225
?化工原理?课件——第3章 沉降与过滤
40um的颗粒的回收百分率?(4)如欲回收直径为
15um的尘粒,降尘室应各成多少层?
解:(1) VbLu
s
tc
4
utcV s (b)L250.4ms
?化工原理?课件——第3章 沉降与过滤
第1节 重力沉降
二、降尘室
设为层流沉降: utcdc2(1s8)g
dc
18utc (s )g
18 0.0261 030.4 (300 00.7)59.81
(L L e ) W 2 (L L e ) E
〔二〕转筒真空过滤机
转筒及分配头:
?化工原理?课件——第3章 沉降与过滤
第3节 过滤
二、过滤设备
工 作 原
1-7 过滤区 8-10 吸干 区11 不工作区