2018-2019学年高中数学人教A版选修1-1教学案:第三章3.2导数的计算-含答案
高中数学 第三章 导数及其应用 3.2 导数的计算 第1课时 几个常用函数的导数与基本初等函数的导数

高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1的全部内容。
几个常用函数的导数与基本初等函数的导数公式(25分钟60分)一、选择题(每小题5分,共25分)1.下列各式中正确的是( )A。
(lnx)′=x B。
(cosx)′=sinxC。
(sinx)′=cosx D.(x-8)′=-x—9【解析】选C。
因为(lnx)′=,(cosx)′=—sinx,(x-8)′=-8x-9=—,所以A,B,D均不正确,C正确。
2.若y=lnx,则其图象在x=2处的切线斜率是()A.1 B。
0 C。
2 D.【解析】选D。
因为y′=,所以当x=2时,y′=,故图象在x=2处的切线斜率为.3.(2015·西安高二检测)运动物体的位移s=3t2—2t+1,则此物体在t=10时的瞬时速度为( )A.281B.58 C。
85 D.10【解析】选B。
因为s=3t2-2t+1,所以s′=6t-2.当t=10时,s′=6×10—2=58.即此物体在t=10时的瞬时速度为58。
4。
正弦曲线y=sinx上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是()A.∪B。
高二人教版数学选修1-1练习:3.3.2函数的极值与导数 Word版含答案

►基础梳理1.极值的概念.如果函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则把点a叫做y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;如果函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则把点b叫做y =f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.求函数y=f(x)的极值的一般方法.解方程f′(x)=0.当f′(x)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.,►自测自评1.下面说法正确的是(B)A.可导函数必有极值B.函数在极值点一定有定义C.函数的极小值不会超过极大值D.函数在极值点处导数一定存在2.函数f(x)的定义域为开区间(a,b),导数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极小值有(A)A.1个B.2个C.3个D.4个3.函数y=1+3x-x3有极小值________,极大值__________.解析:∵y=1+3x-x3,∴y′=3-3x2,令y′=0,得x=±1,且y′在区间(-∞,-1),(-1,1),(1,+∞)上的正负性依次为-,+,-.∴当x=-1时,y=-1是极小值;当x=1时,y=3是极大值.答案:-1 31.函数y =2x 3-x 2的极大值为(A )A .0B .-9C .0,2716 D.2716解析:y ′=6x 2-2x ,令y ′>0,解得x <0,x >13, 令y ′<0,解得0<x <13, ∴当x =0时,取得极大值0,故选A.2.若函数y =x 3-2mx 2+m 2x, 当x =13时, 函数取得极大值, 则m 的值为(C ) A.13或1 B.13C .1D .都不对3.若函数y =13x 3+x 2+ax 在R 上没有极值点,则实数a 的取值范围是________. 解析:f ′(x )=x 2+2x +a ,∵f (x )在R 上没有极值点,∴Δ=4-4a ≤0,∴a ≥1.答案:a ≥14.求函数f (x )=-x (x -2)2的极值.解析:函数f (x )的定义域为R .f (x )=-x (x 2-4x +4)=-x 3+4x 2-4x ,∴f ′(x )=-3x 2+8x -4=-(x -2)(3x -2),令f ′(x )=0得x =23或x =2. 列表:从表中可以看出,当x =23时,函数有极小值, 且f ⎝⎛⎭⎫23=-23⎝⎛⎭⎫23-22=-3227. 当x =2时,函数有极大值,且f (2)=-2(2-2)2=0. 5.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值.求a 、b 的值与函数f (x )的单调区间.解析:因为f (x )=x 3+ax 2+bx +c ,则f ′(x )=3x 2+2ax +b .依题意得,⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫-23=129-43a +b =0,f ′(1)=3+2a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =-2.即f ′(x )=3x 2-x -2=(3x +2)(x -1).函数f ′(x ),f (x )的变化情况见下表:所以函数f (x )的递增区间是⎝⎛⎭⎫-∞,-23与(1,+∞),递减区间是⎝⎛⎭⎫-23,1.1.f ′(x 0)=0是函数y =f (x )在x =x 0处有极值点的(C )A .充分不必要条件B .充要条件C .必要不充分条件D .即不充分也不必要条件解析:y =f (x )在x =x 0处有极值点时不仅要f ′(x 0)=0,而且还要x 0左右的增减性相异.故f (x 0)=0是y =f (x )在x =x 0处有极值的必要不充分条件.2.已知函数y =f (x )(x ∈R )有唯一的极值,并且当x =1时,f (x )存在极小值,则(C )A .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0B .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )>0C .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0D .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )<0解析:考查函数极小值的概念,只不过换成了符号语言,抓住极小值的定义即可得出答案C.3.函数y =1+3x -x 3(D)A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值3解析:y ′=3-3x 2,令y ′=0,得x =±1,易判断当x =1时,有极大值y =3,当x =-1时,有极小值y =-1.故选D.4.已知函数y =2x 3-ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是(B )A .(2,3)B .(3,+∞)C .(2,+∞)D .(-∞,3)解析:y ′=6x 2-2ax +36,∵x =2为极值点,∴当x =2时,y ′=6×4-2a ×2+36=0,解得a =15,∴y ′=6x 2-30x +36,令y '=0,得x =2,x =3,∴y ′>0时,x <2或x >3,故选B.5.函数f (x )=x 3-3bx +3b 在区间(0,1)内有极小值,则(A )A .0<b <1B .b <1C .b >0D .b <12解析:问题等价于方程f ′(x )=3x 2-3b =0在区间(0,1)内有解,并且其较大的解必须在区间(0,1)内.于是得到0<b <1,即0<b <1.故选A.6.设函数f (x )=x 3-mx 2-nx 的图象与x 轴切于点(1,0),则f (x )的极值为(A )A .极大值为427,极小值为0 B .极大值为0,极小值为427C .极大值为0,极小值为-427D .极大值为-427,极小值0 解析:根据导数的几何意义,得到f (1)=0,且f ′(1)=0,即⎩⎪⎨⎪⎧f (1)=1-m -n =0,f ′(1)=3-2m -n =0,解得m =2,n =-1,此时f ′(x )=3x 2-4x +1=(3x -1)(x -1),再依据求极值的方法,可以得到极大值为f ⎝⎛⎭⎫13=427,极小值为f (1)=0.故选A.7.若函数f (x )=x 2+a x +1在x =1处取极值,则a =________. 解析:本题考查对极值定义的理解.依题意有f ′(x )=2x ()x +1-(x 2+a )()x +12, f ′(1)=0,解得a =3.答案:38.已知三次函数f (x )的图象经过原点,并且当x =1时有极大值4,当x =3时有极小值0,则函数f (x )的解析式为________________________________________________________________________.解析:依题意,可设f (x )=ax 3+bx 2+cx (a ≠0),则f ′(x )=3ax 2+2bx +c ,于是⎩⎪⎨⎪⎧f ′(1)=3a +2b +c =0,f ′(3)=27a +6b +c =0,f (1)=a +b +c =4,f (3)=27a +9b +3c =0,解得⎩⎪⎨⎪⎧a =1,b =-6,c =9.∴f (x )=x 3-6x 2+9x .答案:f (x )=x 3-6x 2+9x点评:典型的待定系数法解题,本题的条件有多余,所以要注意验根.9.若函数f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________.解析:f (x )=x 3-2cx 2+c 2xf ′(x )=3x 2-4cx +c 2,∴f ′(2)=c 2-8c +12=0,c =2或c =6.当c =2,f ′(x )=3x 2-8x +4=(3x -2)(x -2),当23<x <2,f ′(x )<0,当x >2,f ′(x )>0, ∴当x =2时有极小值.当c =6时,f ′(x )=3x 2-24x +36=3(x -2)(x -6),当2<x <6时,f ′(x )<0,当x <2时,f ′(x )>0,∴当x =2时有极大值.∴c =6符合题意.答案:610.(·惠州三模)已知函数f (x )=x 3-3ax (a ∈R ).(1)当a =1时,求f (x )的极小值;(2)若直线x +y +m =0对任意的m ∈R 都不是曲线y =f (x )的切线,求a 的取值范围. 解析:(1)∵当a =1时,f ′(x )=3x 2-3,令f ′(x )=0,得x =-1或x =1.当x ∈(-1,1)时,f ′(x )<0.当x ∈(-∞,-1]∪[1,+∞)时,f ′(x )>0.∴f (x )在(-1,1)上单调递减,在(-∞,-1]和[1,+∞)上单调递增.∴f (x )的极小值是f (1)=-2.(2)f ′(x )=3x 2-3a ,直线x +y +m =0,即y =-x -m ,依题意得,切线斜率k =f ′(x )=3x 2-3a ≠-1,即3x 2-3a +1=0无解.∴Δ=0-4×3(-3a +1)<0,∴a <13. 11.(·惠州一模)已知f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线与函数f (x )、g (x )的图象都相切于点(1,0).(1)求直线的方程及g (x )的解析式;(2)若h (x )=f (x )-g ′(x )[其中g ′(x )是g (x )的导函数],求函数h (x )的极大值.解析:(1)∵直线是函数f (x )=ln x 在点(1,0)处的切线,∴其斜率k =f ′(1)=1.∴直线的方程y =x -1.又∵直线与g (x )的图象相切,且切于点(1,0),∴g (x )=13x 3+12x 2+mx +n 在点(1,0)的导函数值为1. ⎩⎪⎨⎪⎧g (1)=0,g ′(1)=1⇒⎩⎪⎨⎪⎧m =-1,n =16.∴g (x )=13x 3+12x 2-x +16. (2)∵h (x )=f (x )-g ′(x )=ln x -x 2-x +1(x >0).∴h ′(x )=1x -2x -1=1-2x 2-x x =-(2x -1)(x +1)x. 令h ′(x )=0,得x =12或x =-1(舍去). 当0<x <12时,h ′(x )>0,h (x )单调递增; 当x >12时,h ′(x )<0,h (x )单调递减. 因此,当x =12时,h (x )取得极大值. ∴[h (x )]极大值=h ⎝⎛⎭⎫12=ln 12+14. ►体验高考1(·新课标全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p ∶f ′(x 0)=0;q ∶x =x 0是f (x )的极值点,则(C )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 即不是q 的充分条件,也不是q 的必要条件解析:当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0.综上知,p 是q 的必要条件,但不是充分条件.2.(·重庆卷)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于y =12x . (1)求a 得值;(2)求函数f (x )的单调区间和极值.解析:(1)对f (x )求导数得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处切线垂直于直线y =12x , 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=14-54x 2-1x =x 2-4x -54x 2, 令f ′(x )=0,解得x =-1或x =5.因x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数;由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.3.(·新课标全国卷Ⅰ)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.解析:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12. 令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).4.(·新课标全国卷Ⅱ)已知函数f (x )=x 2e -x .(1)求f (x )的极小值和极大值;(2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解析:(1)f (x )的定义域为(-∞,+∞).f ′(x )=-e -x x (x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0;当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2.(2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ).所以l 在x 轴上的截距为m (t )=t -f (t )f ′(t )=t +t t -2=t -2+2t -2+3. 由已知和①式得t ∈(-∞,0)∪(2,+∞).令h (x )=x +2x(x ≠0),则当x ∈(0,+∞)时, h (x )的取值范围为[22,+∞);当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪ [22+3,+∞).综上,l 在x 轴的截距的取值范围是(-∞,0)∪ [22+3,+∞).。
2019年高中数学人教版选修1-1习题:第3章 导数及其应用3.1.3 Word版含解析

高中数学选修精品教学资料选修1-1 第三章 3.1 3.1.3一、选择题1.函数y =f (x )在x =x 0处的导数f ′(x 0)的几何意义是导学号 92600557( ) A .在点x 0处的斜率B .在点(x 0,f (x 0))处的切线与x 轴所夹的锐角的正切值C .曲线y =f (x )在点(x 0,f (x 0))处切线的斜率D .点(x 0,f (x 0))与点(0,0)连线的斜率 [答案] C[解析] 由导数的几何意义可知函数y =f (x )在x =x 0的导数f ′(x 0),即为曲线在点(x 0,f (x 0))处的切线的斜率.2.曲线y =x 3在点P 处的切线斜率为3,则点P 的坐标为导学号 92600558( ) A .(-2,-8) B .(1,1),(-1,-1) C .(2,8) D .(-12,-18)[答案] B [解析] ∵y =x 3,∴y ′=lim Δx →0 (x +Δx )3-x 3Δx =lim Δx →0 Δx 3+3x ·Δx 2+3x 2·ΔxΔx=lim Δx →(Δx 2+3x ·Δx +3x 2)=3x 2. 令3x 2=3,得x =±1,∴点P 的坐标为(1,1),(-1,-1).3.(2016·重庆一中高二月考)已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则f (5)及f ′(5)分别为导学号 92600559( )A .3,3B .3,-1C .-1,3D .-1,-1[答案] B[解析] 由已知得f (5)=-5+8=3,f ′(5)=-1,故选B.4.曲线y =x 3-2x +1在点(1,0)处的切线方程为导学号 92600560( ) A .y =x -1 B .y =-x +1 C .y =2x -2 D .y =-2x +2[答案] A [解析]∵f ′(x )=lim Δx →0 (Δx +x )3-2(Δx +x )+1-x 3+2x -1Δx=lim Δx →0 Δx 3+3x ·Δx 2+3x 2·Δx -2ΔxΔx=lim Δx →(Δx 2+3x ·Δx +3x 2-2) =3x 2-2,∴f ′(1)=3-2=1,∴切线的方程为y =x -1.5.已知曲线f (x )=12x 2+2x 的一条切线斜率是4,则切点的横坐标为导学号 92600561( )A .-2B .-1C .1D .2[答案] D[解析] Δy =f (x +Δx )-f (x )=12(x +Δx )2+2(x +Δx )-12x 2-2x =x ·Δx +12(Δx )2+2Δx ,∴Δy Δx =x +12Δx +2,∴f ′(x )=lim Δx →0 ΔyΔx=x +2. 设切点坐标为(x 0,y 0),则f ′(x 0)=x 0+2. 由已知x 0+2=4,∴x 0=2,故选D.6.(2016·山东临沂一中高二检测)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是导学号 92600562( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)[答案] B[解析] 从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),此两点处的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的切线的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.二、填空题7.已知函数f (x )=x 3+2,则f ′(2)=________.导学号 92600563 [答案] 12[解析] f ′(2)=lim Δx →0 (2+Δx )3+2-23-2Δx=lim Δx →0 (2+Δx -2)[(2+Δx )2+(2+Δx )·2+22]Δx=lim Δx →[4+4Δx +(Δx )2+4+2Δx +4] =lim Δx →[12+6Δx +(Δx )2]=12. 8.设函数y =f (x ),f ′(x 0)>0,则曲线y =f (x )在点(x 0,f (x 0))处切线的倾斜角的范围是________.导学号 92600564[答案] (0,π2)[解析] 由于f ′(x 0)>0,说明y =f (x )在点(x 0,f (x 0))处的切线的斜率大于0,故倾斜角为锐角.9.若抛物线y =x 2与直线2x +y +m =0相切,则m =________.导学号 92600565 [答案] 1[解析] 设切点为P (x 0,y 0),易知,y ′|x =x 0=2x 0.由⎩⎪⎨⎪⎧ 2x 0=-2y 0=x 20,得⎩⎪⎨⎪⎧x 0=-1y 0=1,即P (-1,1),又P (-1,1)在直线2x +y +m =0上, 故2×(-1)+1+m =0,即m =1. 三、解答题10.已知曲线方程为y =x 2,求过点A(2,4)且与曲线相切的直线方程.导学号 92600566 [解析] ∵f ′(x )=lim Δx →0 (x +Δx )2-x 2Δx=lim Δx →0 2Δx ·x +Δx 2Δx =lim Δx →0 (2x +Δx )=2x ,又点A(2,4)在曲线y =x 2上,∴f ′(2)=4,∴所求切线的斜率k =4, 故所求切线的方程为y -4=4(x -2), 即4x -y -4=0.一、选择题1.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于导学号 92600567( )A .1B .12C .-12D .-1[答案] A[解析] ∵y ′|x =1=lim Δx →1 a (1+Δx )2-a ×12Δx=lim Δx →0 2aΔx +a (Δx )2Δx =lim Δx →0 (2a +aΔx )=2a ,∴2a =2,∴a =1.2.(2016·天津南开中学检测)已知抛物线y =f (x )=x 2与直线y =2x +b 相切,若f ′(x 0)=2,则x 0=导学号 92600568( )A .-1B .2C .-12D .1 [答案] D[解析] 由⎩⎪⎨⎪⎧y =2x +by =x 2消去y ,得x 2-2x -b =0,①∵抛物线y =x 2与直线y =2x +b 相切,∴Δ=4+4b =0,解得b =-1.此时,方程①的根为x =1,∴切点坐标为(1,1).由导数的几何意义得f ′(1)=2,∴x 0=1.3.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则ab 为导学号 92600569( )A.23 B .-23C.13 D .-13[答案] D[解析] 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x =1=3, 由条件知,3×a b =-1,∴a b =-13.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处切线平行于直线y =4x -1,则P 0点的坐标为导学号 92600570( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4) [答案] C [解析]f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0(3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4,设P 0(x 0,y 0),有f ′(x 0)=3x 20+1=4.解得x 0=±1,这时P 0点的坐标为(1,0)或(-1,-4). 二、填空题5.(2016·山东青岛期末)曲线f (x )=x 2+1在点P (1,2)处的切线方程为________.导学号 92600571[答案] y =2x[解析] 设曲线f (x )=x 2+1在点P (1,2)处的切线的斜率为k ,则k =lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0 (1+Δx )2+1-(12+1)Δx=lim Δx →02Δx +(Δx )2Δx =2.所以切线方程为y -2=2(x -1),即y =2x .6.曲线y =x 3在点(1,1)处的切线与x 轴、x =2所围成的三角形的面积为________.导学号 92600572[答案] 83[解析] y ′=lim Δx →0(x +Δx )3-x 3Δx =3x 2,所以k =y ′|x =1=3×1=3,所以在点(1,1)处的切线方程为y =3x -2,它与x 轴的交点为⎝⎛⎭⎫23,0,与x =2的交点为(2,4),所以S =12×⎝⎛⎭⎫2-23×4=83. 三、解答题7.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切. (1)求切点的坐标;(2)求a 的值.导学号 92600573[解析] (1)设直线l 与曲线C 相切于P (x 0,y 0)点. f ′(x )=lim Δx →f (x +Δx )-f (x )Δx=lim Δx →0 (x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx=3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1. 当x 0=1时,y 0=1,此时a =0(舍去) 于是切点的坐标为⎝⎛⎭⎫-13,2327. (2)当切点为⎝⎛⎭⎫-13,2327时,2327=-13+a ,a =3227. ∴a 的值为3227.8.已知曲线C :y =1t -x 经过点P (2,-1),求(1)曲线在点P 处的切线的斜率.导学号 92600574(2)曲线在点P 处的切线的方程. (3)过点O (0,0)的曲线C 的切线方程. [解析] (1)将P (2,-1)代入y =1t -x 中得t =1,∴y =11-x.∴Δy Δx =f (x +Δx )-f (x )Δx =11-(x +Δx )-11-x Δx =1(1-x -Δx )(1-x ),∴lim Δx →Δy Δx =1(1-x )2, ∴曲线在点P 处切线的斜率为k =y ′|x =2=1(1-2)2=1. (2)曲线在点P 处的切线方程为y +1=1×(x -2), 即x -y -3=0.(3)∵点O (0,0)不在曲线C 上,设过点O 的曲线C 的切线与曲线C 相切于点M (x 0,y 0),则切线斜率k =y 0x 0=1(1-x 0)2,由于y 0=11-x 0,∴x 0=12,∴切点M (12,2),切线斜率k =4,切线方程为y -2=4(x -12),即y =4x .。
人教A版高中数学选修1-1 第三章 导数及其应用复习课说课教学课件 (共32张PPT)

2.6【畅所欲言------说反思】
出题者的意图想考我们求导知识,极值与零点概念、分 类讨论思想,数形结合思想等,所以我们平时要加强这 方面知识,同时它也反应出用导数知识解决函数问题的 基本题型与基本步骤,其它的可根据个人依不同角度总
结。你体会到了吗?比如:
2.3【各抒己见------说解法】(1)
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。
(1)求函数f(x)的单调区间与极值;
2.3【各抒己见------说解法】(2)
例1:已知函数f(x)=(x2 +ax+a)gex, (a R)。
(2)设g(x)=f (x) t, (t R, a 2), 若函数g(x)在
x [3, )有三个零点,求实数t的取值范围。
分类讨论是否重复或遗漏? 定义域优先考虑了吗? 隐含条件注意了吗? 分类讨论后“综上所述”了吗? 计算过程都正确吗? 有谁可以把错解拿来辨析吗? 有没有其他方法?
2.5【引申拓展------说变式】 例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在
f(-a)
f(-3)
-2 -3 -a
f(-2)
a2 (3) 3 a 解得a ? 至多两个零点,不合题意
f(-a)
f(-3)
-2 -a -3
f(-2)
2.3【各抒己见------说解法】(3)
2.4【精益求精------说检验】
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在
河北省高中数学第三章导数及其应用3.2.1几个常用函数的导数导学案新人教A版选修

二、填空题
7.曲线y=xn在x=2处的导数为12,则n等于________.
8.质点沿直线运动的路程与时间的关系是s= ,则质点在t=32时的速度等于____________.
9.在曲线y= 上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为________.
3.已知直线y=kx是y=lnx的切线,则k的值为( )
A. B.- C. D.-
4.正弦曲线y=sinx上切线的斜率等于 的点为( )
A.( , )B.(- ,- )或( , )
C.(2kπ+ , )D.(2kπ+ , )或(2kπ- ,- )
二、填空题
5.(2015·陕西理)设曲线y=ex在点(0,1)处的切线与曲线y= (x>0)上点P处的切线垂直,则P的坐标为________.
基础题
cbbadd
7.3
8.
9.(2,1)
10设双曲线上任意一点P(x0,y0),
∵y′=- ,
∴点P处的切线方程y-y0=- (x-x0).
令x=0,得y=y0+ = ;
令y=0,得x=x0+x y0=2x0.
∴S△= |x|·|y|=2.
∴三角形面积为定值2.
提高题
Cdcd
5.(1,1)
6.4x-y-5=0
练习:曲线y=ex在点(0,1)处的切线斜率为()
A.1B.2C .eD.
例4若曲线y=x- 在点(a,a- )处的切线与两坐标轴围成的三角形的面积为18,求a的值.
练习:已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,求曲线y=f(x)在点(2,f(2))处的切线方程.
例5求函数y=2x在x=1处的切线方程.
人教A版高中数学选修1-1 二十一 3.2 导数的计算 第2课时 导数的运算法则 精讲优练课型

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业二十一导数的运算法则一、选择题(每小题5分,共25分)1.关于x的函数f(x)=cosx+sina,则f′(0)等于( )A.0B.-1C.1D.±1【解析】选A.f′(x)=-sinx,f′(0)=0.2.(2016·临沂高二检测)若曲线f(x)=xsinx+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于( )A.-2B.-1C.1D.2【解析】选D.f′(x)=sinx+xcosx,f′=1,由题意得-=-1,即a=2.3.(2016·德州高二检测)函数y=(a>0)在x=x0处的导数为0,那么x0等于( )A.aB.±aC.-aD.a2【解析】选B.y′===.由=0,得x0=±a.4.已知直线y=kx+1与曲线y=x3+ax+b相切于点(1,3),则b的值为( )A.3B.-3C.5D.-5【解析】选A.由点(1,3)在直线y=kx+1上,得k=2,由点(1,3)在曲线y=x3+ax+b上,得1+a+b=3,即a+b=2,y′=3x2+a,由题意得3×12+a=2.所以a=-1.所以b=3.5.(2016·武汉高二检测)正弦曲线y=sinx上一点P,以点P为切点的切线为直线l,则直线l 的倾斜角的范围是( )A.∪B.[0,π)C. D.∪【解析】选A.因为(sinx)′=cosx,因为k l=cosx,所以-1≤k l≤1,所以αl∈∪.二、填空题(每小题5分,共15分)6.(2016·滨州高二检测)在曲线y=上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为.【解析】设点P(x0,y0),y′=′=(4x-2)′=-8x-3,所以tan135°=-1=-8,所以x0=2.所以y0=1.所以P点坐标为(2,1).答案:(2,1)7.(2016·天津高考)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.【解题指南】求出f′(x),代入x=0即可.【解析】因为f′(x)=(2x+3)e x,所以f′(0)=3.答案:38.曲线y=xlnx在点(e,e)处的切线方程为.【解析】因为y′=lnx+1,y′=2,所以切线方程为y-e=2(x-e),即2x-y-e=0.答案:2x-y-e=0三、解答题(每小题10分,共20分)9.已知函数f(x)=ax3+bx2+cx过点(1,5),其导函数y=f′(x)的图象如图所示,求f(x)的解析式.【解题指南】本题主要考查利用导数求解参数问题,观察y=f′(x)的图象可知y=f′(x)过点(1,0),(2,0),即f′(1)=0,f′(2)=0.【解析】f′(x)=3ax2+2bx+c,又f′(1)=0,f′(2)=0,f(1)=5,故解得a=2,b=-9,c=12.故f(x)的解析式是f(x)=2x3-9x2+12x.10.已知函数f(x)=的图象在点M(-1,f(-1))处的切线的方程为x+2y+5=0,求函数的解析式.【解析】由于(-1,f(-1))在切线上,所以-1+2f(-1)+5=0,所以f(-1)=-2.因为f′(x)=,所以解得a=2,b=3(因为b+1≠0,所以b=-1舍去).故f(x)=.一、选择题(每小题5分,共10分)1.(2016·临沂高二检测)已知函数f(x)=x3+(b-|a|)x2+ (a2-4b)x是奇函数,则f′(0)的最小值是( )A.-4B.0C.1D.4【解析】选A.由f(x)是奇函数,得b-|a|=0,即b=|a|,所以f(x)=x3+(b2-4b)x(b≥0),f′(x)=3x2+(b2-4b),f′(0)=b2-4b=(b-2)2-4,当b=2时,f′(0)取最小值-4.2.(2016·广州高二检测)已知f(x)=x2+cosx,f′(x)为f(x)的导函数,则f′(x)的大致图象是( )【解析】选A.因为f(x)=x2+cosx,所以f′(x)=-sinx.又因为f′(-x)= -sin(-x)=-=-f′(x),故f′(x)为奇函数,故函数f′(x)的图象关于原点对称,排除B、D,又因为f′=×-sin=-<0,排除C.二、填空题(每小题5分,共10分)3.(2015·全国卷Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .【解析】y′=1+,则曲线y=x+lnx在点(1,1)处的切线斜率为k=f′(1)=1+1=2,故切线方程为y=2x-1.因为y=2x-1与曲线y=ax2+(a+2)x+1相切,联立得ax2+ax+2=0,显然a≠0,所以由Δ=a2-8a=0⇒a=8.答案:8【补偿训练】若f(x)=(2x+a)2,且f′ (2)=20,则a= .【解析】f(x)=(2x+a)2=4x2+4ax+a2,f′(x)=8x+4a,所以f′(2)=16+4a=20,所以a=1.答案:14.(2015·太原高二检测)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx则f′(e)= .【解析】因为f(x)=2xf′(e)+lnx,所以f′(x)=2f′(e)+,所以f′(e)=2f′(e)+,解得f′(e)=-.答案:-三、解答题(每小题10分,共20分)5.(2016·烟台高二检测)已知二次函数f(x)=ax2+bx+3(a≠0),其导函数f′(x)=2x-8.(1)求a,b的值.(2)设函数g(x)=e x sinx+f(x),求曲线g(x)在x=0处的切线方程.【解析】(1)因为f(x)=ax2+bx+3(a≠0),所以f′(x)=2ax+b,又知f′(x)=2x-8,所以a=1,b=-8.(2)由(1)可知g(x)=e x sinx+x2-8x+3,所以g′(x)=e x sinx+e x cosx+2x-8,所以g′(0)=e0sin0+e0cos0+2×0-8=-7,又知g(0)=3.所以曲线g(x)在x=0处的切线方程为y-3=-7(x-0),即7x+y-3=0.6.(2016·重庆高二检测)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.求曲线y=f(x)在点(1,f(1))处的切线方程.【解题指南】求出导函数,根据f′(1)=2a,f′(2)=-b求出a,b,最后将x=1分别代入原函数及导函数求出f(1)及切线斜率.【解析】因为f(x)=x3+ax2+bx+1,所以f′(x)=3x2+2ax+b.令x=1,得f′(1)=3+2a+b,又f′(1)=2a,因此3+2a+b=2a,解得b=-3.又令x=2,得f′(2)=12+4a+b,又f′(2)=-b,因此12+4a+b=-b,解得a=-.因此f(x)=x3-x2-3x+1,从而f(1)=-.又f′(1)=2×=-3,故曲线y=f(x)在点(1,f(1))处的切线方程为y-=-3(x-1),即6x+2y-1=0.关闭Word文档返回原板块小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
高中数学人教版选修1-1 第三章 导数及其应用 导数的计算
3.2导数的计算[教材研读]预习课本P81~85,思考以下问题1.幂函数f(x)=x2,f(x)=x 12的导数是什么?2.根据导数的运算法则,积f(x)g(x)的导数与f′(x),g′(x)有何关系?[要点梳理]1.基本初等函数的导数公式2.导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );当g (x )=c 时,[cf (x )]′=cf ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [自我诊断]判断(正确的打“√”,错误的打“×”)1.y =1x ,y =x ,y =x 2等求导函数,都可以看成y =x α(α∈Q *),并用其导数公式求导.( )2.y =ln x 在x =2处的切线的斜率为12.( )3.f (x )=e x 在点(0,1)处的切线的方程为x -y +1=0.( )[答案] 1.√ 2.√ 3.√题型一 利用导数公式求函数的导数思考:如何充分利用基本初等函数的导数公式?提示:若函数解析式不能直接使用导数公式,则化成能应用导数公式的形式.求下列函数的导数:(1)y =10x ;(2)y =lg x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1. [思路导引] 把解析式化简成能应用公式的形式.[解] (1)y ′=(10x )′=10x ln10.(2)y ′=(lg x )′=1x ln10.(5)∵y =⎝⎛⎭⎪⎫sin x 2+cos x 22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .(1)若给出的函数解析式符合基本初等函数的导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.[跟踪训练]求下列函数的导数:(1)y =⎝ ⎛⎭⎪⎫1e x ; (2)y =⎝ ⎛⎭⎪⎫110x ; (3)y =lg5;(4)y =3lg 3x ;(5)y =2cos 2x 2-1.[解] (1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x ln 1e =-1e x =-e -x . (2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x ln 110=-ln1010x =-10-x ln10. (3)∵y =lg5是常数函数,∴y ′=(lg5)′=0.(4)∵y =3lg 3x =lg x ,∴y ′=(lg x )′=1x ln10.(5)∵y =2cos 2x 2-1=cos x ,∴y ′=(cos x )′=-sin x .题型二 利用导数的运算法则求导数(链接教材P 84例2)求下列函数的导数:(1)y =x 3·e x ;(2)y =x -sin x 2cos x 2;(3)y =x 2+log 3x ;(4)y =e x +1e x -1.[思路导引] 尽量把解析式转化为能用和差的求导法则,减少求导法则的应用的烦索性.[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x .(2)∵y =x -12sin x ,∴y ′=x ′-12(sin x )′=1-12cos x .(3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2.(1)分析求导式符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.[跟踪训练]求下列函数的导数:(1)y =cos x x ;(2)y =x sin x +x ;(3)y =1+x 1-x +1-x 1+x ; (4)y =lg x -1x 2.[解] (1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos x x 2. (2)y ′=(x sin x )′+(x )′=sin x +x cos x +12x .(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln10+2x 3. 题型三 利用导数公式研究曲线的切线问题点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.[思路导引] 分析知,与曲线相切且与y =x 平行的直线与曲线的切点到直线y =x 的距离最小.[解]如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.(1)本例中的问题涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.[跟踪训练]求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.[解] ∵y =cos x ,∴y ′=(cos x )′=-sin x ,1.本节课的重点是基本初等函数的导数公式及导数运算法则,难点是灵活运用导数公式和运算法则解决相关问题.2.本节课要重点掌握的规律方法 (1)利用导数公式求导数. (2)利用导数运算法则求导数. (3)利用导数运算研究曲线的切线问题.3.本节课的易错点是导数公式(a x )′=a x ln a 和(log a x )′=1x ln a 以及运算法则[f (x )·g (x )]′与⎣⎢⎡⎦⎥⎤f (x )g (x )′的区别.1.已知f (x )=1x ,则f ′(3)=( ) A .-13 B .-19 C.19D.13[解析] ∵f (x )=1x ,∴f ′(x )=-1x 2,∴f ′(3)=-132=-19,故选B.[答案] B2.函数y =3x 2的导数为( ) A .y ′=3x2B .y ′=32xC .y ′=23x3D .y ′=233x[解析][答案] D3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e[解析][答案] D4.已知f (x )=e x ln x ,则f ′(x )=( ) A.e x x B .e x+1xC.e x (x ln x +1)xD.1x +ln x[解析] f ′(x )=(e x)′·ln x +e x·(ln x )′=e x·ln x +e x·1x =e x (x ln x +1)x,所以选C.[答案] C5.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为( )A .0或±3B .0C .±3D .非以上答案[解析] y ′=3x 2+2ax ,令y ′=0,即3x 2+2ax =0,∴x =0或x =-2a 3.分别代入y =x 3+ax 2-43a ,得0=-43a ,即a =0;-8a 327+4a 39-43a =0,即a =±3,∴a =0或a =±3.[答案] A6.曲线y =ln x 在点M (e,1)处的切线的斜率是__________,切线的方程为__________________.[解析] y ′=1x ,则k =y ′|x =e =1e ,切线方程y -1=1e (x -e),即x -e y =0.[答案] 1e x -e y =0。
高中数学 选修1-1 专题3.3.2 函数的极值与导数-高二数学(文)人教版
1.函数极值的概念若函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,()0f a '=;而且在点x a =附近的左侧________,右侧________,就把点a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值.若函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其他点的函数值都大,()0f b '=;而且在点x b =附近的左侧________,右侧________,就把点b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.极大值点和极小值点统称为极值点,极大值和极小值统称为极值.2.可导函数在某点处取得极值的必要条件和充分条件必要条件:可导函数()y f x =在0x x =处取得极值的必要条件是________.充分条件:可导函数()y f x =在0x x =处取得极值的充分条件是()f x '在0x x =两侧异号.3.函数极值的求法一般地,求函数()y f x =的极值的方法是: 解方程()0f x '=.当0()0f x '=时:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是________; (2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是_________.K 知识参考答案:1.()0f x '< ()0f x '> ()0f x '> ()0f x '< 2.0()0f x '= 3.极大值 极小值K —重点 利用导数求函数极值的方法 K —难点 函数极值的应用K —易错 对函数取得极值的充要条件理解不到位求函数的极值(1)求函数的极值首先要求函数的定义域,然后求()0f x '=的实数根,当实数根较多时,要充分利用表格,使极值点的确定一目了然.(2)利用导数求极值时,一定要讨论函数的单调性,涉及参数时,必须对参数的取值情况进行讨论(可从导数值为0的几个x 值的大小入手). 已知函数323()31f x ax x a=-+-(a ∈R 且0a ≠),求函数()f x 的极大值与极小值. 【答案】见解析.【解析】由题设知0a ≠,22()363()f x ax x ax x a'=-=-. 令()0f x '=得0x =或2x a=. 当0a >时,随x 的变化,()f x '与()f x 的变化如下:x (,0)-∞0 2(0,)a2a2(,)a+∞ ()f x ' + 0 – 0 + ()f x极大值极小值则3()(0)1f x f a ==-极大值,2243()()1f x f a a a==--+极小值. 当0a <时,随x 的变化,()f x '与()f x 的变化如下:x 2(,)a-∞2a2(,0)a0 (0,)+∞()f x ' – 0 + 0 – ()f x极小值极大值则3()(0)1f x f a ==-极大值,2243()()1f x f a a a==--+极小值.故3()1f x a =-极大值,243()1f x a a=--+极小值. 【名师点睛】函数的极大值不一定大于函数的极小值,极值刻画的是函数的局部性质,反映了函数在某一点附近的大小情况,极大值也可能比极小值小.函数极值的应用解决利用函数的极值确定函数解析式中参数的值的问题时,通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数的值进行检验,看是否符合函数取得极值的条件.已知函数21()ln (,)2f x a x x bx a b =++∈R 在12x =,23x =处取得极值. (1)求a ,b 的值;(2)求()f x 在点(1,(1))P f 处的切线方程.【答案】(1)6a =,5b =-;(2)42130x y --=.(2)21()6ln 52f x x x x =+-,则19(1)522f =-=-,得9(1,)2P -. 又由256()x x f x x-+'=,得(1)1562f '=-+=.从而,得所求切线方程为92(1)2y x +=-,即42130x y --=.已知2()ln (21),f x x x ax a x a =-+-∈R .(1)令()()f g 'x x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 的取值范围. 【答案】(1)见解析;(2)1(,)2+∞.(2)由(1)知,()01f '=. ①当0a ≤时,()f x '单调递增.所以当(0,1)x ∈时,()0f 'x <,()f x 单调递减. 当(1,)x ∈+∞时,()0f 'x >,()f x 单调递增. 所以()f x 在x =1处取得极小值,不合题意.②当102a <<时,112a >,由(Ⅰ)知()f 'x 在1(0,)2a内单调递增, 可得当(0,1)x ∈时,()0f x '<,1(1,)2x a ∈时,()0f 'x >, 所以()f x 在(0,1)内单调递减,在(11,2)a内单调递增, 所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,112a=,()f x '在(0,1)内单调递增,在(1,)+∞内单调递减, 所以当(0,)x ∈+∞时,()0f 'x ≤,()f x 单调递减,不合题意.④当12a >时,1012a <<,当1,12x a∈()时,()0f 'x >,()f x 单调递增,当,()1x ∈+∞时,()0f 'x <,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为1(,)2+∞.1.函数()ln f a x x x =+在1x =处取得极值,则实数a 的值为 A .0B .1-C .12-D .122.函数2n 2)3l (f x x x x =+-的极值点的个数是 A .0 B .1 C .2D .无数个3.如图是()y f x =的导函数的图象,现有四种说法: ①()f x 在(3,1)-上是增函数; ②1x =-是()f x 的极小值点;③()f x 在(2,4)上是减函数,在(1,2)-上是增函数; ④2x =是()f x 的极小值点.以上说法正确的序号为 A .①② B .②③ C .③④D .④4.函数()2cos f x x x =+在[0,π]上的极小值点为 A .0B .π6C .5π6D .π5.设a ∈R ,若函数e ,x y ax x =+∈R 有大于零的极值点,则 A .1a <- B .1a >- C .1e a >-D .1ea <-6.设a ∈R ,若函数e 2,x y ax x =-∈R 有大于0的极值点,则A .1e a <B .1e a >C .12a >D .12a <7.函数3()3f x x x =-的极小值为________________.8.已知函数32()(6)1f x ax x a x =++++有极大值和极小值,则实数a 的取值范围是________________. 9.已知函数2()2ln f x x x =-,则函数()f x 的极大值为________________. 10.已知函数2()e (3)x f x x =-.(1)求曲线()y f x =在点(0,()0)f 处的切线方程; (2)求函数()y f x =的极值.11.已知函数()e 1x f x x a =--(a 为实数),()ln x g x x =-.(1)讨论函数()f x 的单调区间; (2)求函数()g x 的极值.12.已知函数2()ln f x ax b x =+在1x =处有极值12. (1)求实数,a b 的值;(2)判断函数()y f x =的单调性并求出单调区间.13.已知函数21()ln 2f x bx x x =--+存在极小值,则实数b 的取值范围为 A .(2,)+∞ B .[2,)+∞ C .(0,2)D .(0,2]14.设函数()f x 满足2e ()2()x xf xf x x x '+=,2(2e )8f =,则当0x >时函数()f xA .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值15.已知a ∈R ,若()()e xaf x xx =+在区间(0,1)上只有一个极值点,则实数a 的取值范围为A .(0,)+∞B .(,1]-∞C .(1,)+∞D .(,0]-∞16.已知函数3221()3f x x a x ax b =+++,当1x =-时,函数()f x 的极值为712-,则(2)f =________________.17212()()2ln (0)2ax f x a x x a =-++>1(,1)2a 的取值范围是________________.18.已知函数()(1)e x f x k x =--(e 为自然对数的底数,e 2.71828≈,k ∈R ).(1)当0x >时,求函数()f x 的单调区间和极值;(2)若对于任意[1,2]x ∈,都有()4f x x <成立,求实数k 的取值范围.19.已知函数23()ln 42f x m x x x =+-. (1)若曲线()y f x =在1x =处的切线与y 轴垂直,求函数()f x 的极值;(2)设3()4g x x =-,若()()()h x f x g x =-在(1,)+∞上单调递减,求实数m 的取值范围.20.已知函数3211(),32f x ax a x =-∈R . (1)当2a =时,求曲线()y f x =在点(3,()3)f 处的切线方程;(2)设函数()()()cos sin g f x a x x x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.21.(2017新课标全国II )若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .1 22.(2018北京文)设函数.(1)若曲线在点处的切线斜率为0,求a ;(2)若在处取得极小值,求a 的取值范围.23.(2018新课标全国Ⅰ文)已知函数e ln 1x a x --.(1)设是的极值点.求,并求的单调区间;(2)证明:当1e a ≥时,.24.(2018新课标全国Ⅰ)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2f x f x a x x -<--.25.(2018新课标全国Ⅲ)已知函数2()(2)ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .26.(2017江苏)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.1.【答案】B 【解析】()1,(0,)af 'x xx =+∈+∞,函数在1x =处取得极值,则()01f '=,可得1a =-.故选B . 2.【答案】A【解析】21621()62x x f 'x x xx -+=+-=,由()0f 'x =可得26210x x -+=,该方程无解,因此函数2n 2)3l (f x x x x =+-无极值点.故选A .3.【答案】B4.【答案】C【解析】因为()2cos f x x x =+,所以()12sin f x x '=-,令()0f x '=,得π6x =或5π6x =,由()0f x '<可得π5π66x <<;由()0f x '>可得π06x ≤<或5ππ6x ≥>,所以函数()2cos f x x x =+在区间π5π(,)66上为减函数,在区间π[0,)6和区间5π(,π]6上均为增函数,所以函数()2cos f x x x =+的极小值点为5π6.故选C .5.【答案】A【解析】因为e ,xy ax x =+∈R ,所以e xy a '=+,由题意知,e 0x a +=有大于0的实根,可得e x a =-,因为0x >,所以e 1x >,所以1a <-,故选A . 6.【答案】C【解析】函数e 2,xy ax x =-∈R 的导数为e 2xy a '=-,函数e 2,xy ax x =-∈R 有大于0的极值点,即e 20x a -=有大于0的实根,所以函数e xy =与函数2y a =的图象在y 轴右侧有交点,所以1212a a >⇒>,故选C . 7.【答案】2-【解析】2()33x f 'x =-,令()0f 'x =,得1x =±,当1x <-或1x >时,()0f 'x >,当11x -<<时,()0f 'x <,所以当1x =时,函数()f x 取极小值,且极小值是3()11213f =-⨯=-.8.【答案】(,3)(6,)-∞-+∞【解析】因为32()(6)1f x ax x a x =++++,所以2()326f 'x a x ax =+++, 又因为函数()f x 有两个极值,所以()0f 'x =有两个不等的实数根,所以0∆>, 即2443(6)0a a -⨯+>,解得3a <-或6a >.故实数a 的取值范围是(,3)(6,)-∞-+∞.9.【答案】1-10.【答案】(1)033=++y x ;(2)3()6e x f -=极大值,()2e x f =-极小值.【解析】(1)由题意可得2()e (23)e (3)(1)x xf 'x x x x x =+-=+-,故()30f '=-.又(30)f =-,故曲线()y f x =在点(0,()0)f 处的切线方程为x y 33-=+,即033=++y x .(2)由()0f 'x =可得1=x 或3-=x ,()f 'x ,()f x 随x 的变化情况如下表所示,x(,3)-∞-3- (3,1)-1(1,)+∞()f 'x +-+()f 'x↗极大值↘极小值↗3()(3)6e x f f -=-=极大值,()(1)2e f f x ==-极小值.11.【答案】(1)()f x 在(ln ,)a +∞上单调递增,在(,ln )a -∞上单调递减;(2)极大值为1-,无极小值.【解析】(1)由题意得()e x'a x f =-,当0a ≤时,()0f x'>恒成立,函数()f x 在R 上单调递增; 当0a >时,由()0f x '>可得ln x a >,由()0f x '<可得ln x a <, 故函数()f x 在(ln ,)a +∞上单调递增,在(,ln )a -∞上单调递减.12.【答案】(1)1,12a b ==-;(2)()f x 的递减区间是(0,1),递增区间是(1,)+∞. 【解析】(1)由题可得()2b f x ax x '=+,则22011ln12a b a b +=⎧⎪⎨⋅+=⎪⎩,所以121a b ⎧=⎪⎨⎪=-⎩. (2)由(1)可知21()ln 2f x x x =-,则函数()f x 的定义域为(0,)+∞,211()x f x x x x--'=+=, 令()0f x '=,即210x x-=,解得1x =或1x =-(舍去), 当01x <<时,()0f x '<,()f x 单调递减,当1x >时,()0f x '>,()f x 单调递增. 所以函数()f x 的单调递减区间是(0,1),单调递增区间是(1,)+∞. 13.【答案】A【解析】211()x bx f 'x x b x x -+-=--+=,因为()f x 存在极小值,所以方程210x bx -+-=有两个不等的正根,设为1x ,2x .故1212210240x x b x x b b ∆⎧+=>⎪=>⇒>⎨⎪=->⎩,所以b 的取值范围为(2,)+∞,故选A .14.【答案】D【解析】由题意得23e 2()()x xf f xx x '-=,令2()e 2()x h x x f x =-, 则22e e (2)()e 2[()2()]e x x xxx h x f xf x x x x x-''=-+=-=,因此当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>, 故2222e ()(2)e 22(2)e 2408h h f x ==-⨯=-⨯⨯=极小值,因此当0x >时,()0f 'x ≥恒成立,所以当0x >时函数()f x 既无极大值也无极小值,故选D . 15.【答案】A16.【答案】53【解析】3221()3f x x a x ax b =+++,22()2f 'x a x a x ∴=++,)01(f '-=,12a ∴=-或1a =,当1a =时,2()210f 'x x x =++≥,此时函数()f x 没有极值,12a ∴=-,又7(1)12f -=-,1b ∴=-,32111()1342f x x x x ∴=+--,5(32)f ∴=.17.【答案】(1,2)【解析】由212()()2ln (0)2ax f x a x x a =-++>可得2(1()2)x x f 'ax a =-++,因为函数()f x 在区间1(,1)2内有极值,且0a >,所以方程0()f 'x =在在区间1(,1)2内有解,即方程2(12)ax a x-++0=在区间1(,1)2内有解,解得1x a =或2x =(舍去).构造函数(12)x y a a =-+和2y x=-,由0a >数形结合可得1x a =为函数()f x 的极大值点,故11(,1)2a ∈,即12a <<,则实数a 的取值范围是(1,2).18.【答案】(1)当0k ≤时,()f x 的单调递增区间是(0,)+∞,无单调递减区间,无极值;当0k >时,()f x 的单调递减区间是(0,)k ,单调递増区间是(,)k +∞,极小值为e k-,无极大值;(2)22e 8(,)e-+∞.(2)由()4f x x <,可得(1)e 40xx k x ---<,因为e 0x >,所以41e x x x k --<,即41exxk x >--对任意[1,2]x ∈恒成立, 记()1g x x =-4e x x -,则4(1)e 4(1)()1e ex x xx x x g -+-'=-=, 因为[1,2]x ∈,所以()0g x '>,即()g x 在[1,2]上单调递增,故2228e 8()()12e e x g g -≤=-=,所以实数k 的取值范围为22e 8(,)e-+∞. 19.【答案】(1)极大值为7ln 36--,极小值为52-;(2)(,4]-∞. 【解析】(1)由23()ln 42f x m x x x =+-可得()34mf x x x'=+-,由题意知(1)340f m '=+-=,解得1m =,所以23()ln 42f x x x x =+-,21341(31)(1)()34(0)x x x x f x x x x x x -+--'=+-==>.当()0f x '>时,103x <<或1x >;当()0f x '<时,113x <<. 所以()f x 的单调递增区间为1(0,),(1,)3+∞,单调递减区间为1(,1)3,所以()f x 的极大值为113117()ln 4ln 3332936f =+⨯-⨯=--,极小值为35(1)0422f =+-=-. (2)由233()()()ln 442h x f x g x m x x x x =-=+--+可得2()343mh x x x x '=+--, 由()h x 在(1,)+∞上单调递减可得2()3430m h x x x x'=+--≤在(1,)+∞上恒成立,即32334m x x x ≤-+在(1,)+∞上恒成立,令32()334x x x x ϕ=-+,则22()964(31)30x x x x ϕ'=-+=-+>, 所以32()334x x x x ϕ=-+在(1,)+∞上单调递增. 故()3344x ϕ>-+=,所以4m ≤, 故实数m 的取值范围是(,4]-∞.20.【答案】(1)390x y --=;(2)见解析.【分析】(1)根据导数的几何意义,求出切线的斜率,再用点斜式写出切线方程;(2)由()()(sin )g x a x x x '=--,通过讨论确定()g x 的单调性,再由单调性确定极值.(2)因为()()()cos sin g x f x x a x x =+--,所以()()cos ()sin cos g x f x x x a x x ''=+---()()sin x x a x a x =---()(sin )x a x x =--, 令()sin h x x x =-,则()1cos 0h x x '=-≥,所以()h x 在R 上单调递增, 因为(0)0h =,所以当0x >时,()0h x >;当0x <时,()0h x <. ①当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-. ②当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值.【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. 21.【答案】A【解析】由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e 11f -=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.22.【答案】(1);(2).23.【答案】(1)212ea =;f (x )在(0,2)单调递减,在(2,+∞)单调递增;(2)证明见解析. 【分析】(1)先确定函数的定义域,对函数求导,利用f′(2)=0,求得212ea =,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a ≥时,f (x )≥e e x ,之后构造新函数g (x )=e ex,利用导数研究函数的单调性,从而求得g (x )≥g (1)=0,利用不等式的传递性,证得结果. 【解析】(1)f (x )的定义域为,f′(x )=a e x –.由题设知,f′(2)=0,所以212ea =. 从而21e 2e ()xf x =,21()e 2e xf x '=.当0<x <2时,()f x ' <0;当x >2时,()f x '>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥时,f (x )≥e e x.设g (x )=e ex,则e 1e x x-, 当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点.故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,.24.【答案】(1)当时,在上单调递减,当时在上单调递减,在单调递增;(2)证明见解析.【分析】(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.(2)若2a >,令()0f x '=得,24a a x --=或24a a x +-=.当2244)()a a a a x --+-∈+∞时,()0f x '<;当2244a a a a x --+-∈时,()0f x '>,所以()f x 在2244(0,),()22a a a a -+-+∞单调递减,在2244(22a a a a -+-单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减, 又(1)0g =,从而当(1,)x ∈+∞时,()0g x <,所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 25.【答案】(1)证明见解析;(2).(2)若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=, 这与0x =是()f x 的极大值点矛盾. 若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++. 由于当1||min{}||x a <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>, 故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点. 如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<, 所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 26.【答案】(1)2239a b a=+,3a >;(2)证明见解析;(3)(3,6]. 【思路分析】(1)先求导函数的极值:3a x =-,再代入原函数得33()1032793a a a abf -=-+-+=,化简可得2239a b a =+,根据极值存在条件可得3a >;(2)由(1+,构造函数23()=9t g t t+,利用导数研究函数单调性,可得(g g 即2>3b a ;(3)先求证()f x 的两个极值之和为零,利用根与系数关系代入化简即得,再研究导函数极值不小于72-,构造差函数213()=9h a a a -+,利用导数研究其单调性,()h a 在(3,)+∞上单调递减.而7(6)=2h -,故可得a 的取值范围.【解析】(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3a x =-时,()f x '有极小值23ab -因为()f x '的极值点是()f x 的零点,所以33()1032793a a a abf -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27)039a b a a-=-≤,即3a ≥.当3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;当3a >时,()=0f x '有两个相异的实根213=3a a b x ---,223=3a ab x -+-.列表如下:x1(,)x -∞1x12(,)x x2x2(,)x +∞()f x ' + 0 – 0 + ()f x极大值极小值故()f x 的极值点是12,x x .从而3a >.因此2239a b a=+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420.279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以213()=9h a a a -+,3a >. 因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤,因此a 的取值范围为(3,6].。
高二人教A版数学选修1-1同步练习3-2-2导数的运算法则 Word版含答案
2.2.1导数的运算法则一、选择题1.函数y =cos x x 的导数是( )A .-sin xx 2 B .-sin xC .-x sin x +cos xx 2 D .-x cos x +cos xx 2[答案] C[解析] y ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x ·(x )′x 2=-x sin x -cos xx 2.2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是() A.193 B.163C.133D.103[答案] D[解析] f ′(x )=3ax 2+6x ,∵f ′(-1)=3a -6,∴3a -6=4,∴a =103.3.曲线运动方程为s =1-tt 2+2t 2,则t =2时的速度为() A .4 B .8C .10D .12[答案] B[解析] s ′=⎝ ⎛⎭⎪⎫1-t t 2′+(2t 2)′=t -2t 3+4t ,∴t =2时的速度为:s ′|t =2=2-28+8=8.4.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6,∴y ′=6x 5+12x 2.5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos xB .y =x sin xC .y =1x+2x D .y =1cos x [答案] C[解析] ∵函数y =1x+2x 在x =0处无定义, ∴函数y =1x+2x 在点x =0处没有切线. 6.函数y =sin ⎝⎛⎭⎫π4-x 的导数为( )A .-cos ⎝⎛⎭⎫π4+xB .cos ⎝⎛⎭⎫π4-xC .-sin ⎝⎛⎭⎫π4-xD .-sin ⎝⎛⎭⎫x +π4 [答案] D[解析] ∵y =sin π4cos x -cos π4·sin x =22cos x -22sin x , ∴y ′=22(-sin x )-22cos x =-22(sin x +cos x ) =-sin ⎝⎛⎭⎫x +π4,故选D. 7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x =x 0处( )A .可导B .不可导C .不一定可导D .不能确定 [答案] B8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6D .-5x 4[答案] C [解析] (x -5)′=-5x -6.9.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6[答案] C [解析] ∵y =3x (x 2+2)=3x 3+6x ,∴y ′=9x 2+6.10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1[答案] A[解析] f (x )=(x -1)2+3(x -1)=x 2+x -2,f ′(x )=2x +1,f ′(1)=3.二、填空题11.若函数f (x )=1-sin x x,则f ′(π)________________. [答案] π-1π2[解析] f ′(x )=(1-sin x )′·x -(1-sin x )x ′x 2=sin x -x cos x -1x 2, ∴f ′(π)=sinπ-πcosπ-1π2=π-1π2. 12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是____________.[答案] 34[解析] 由⎩⎪⎨⎪⎧y =1x y =x 2得交点为(1,1), y ′=⎝⎛⎭⎫1x ′=-1x 2,y ′=(x 2)′=2x , ∴曲线y =1x 在点(1,1)处的切线方程为x +y -2=0,曲线y =x 2在点(1,1)处的切线方程为2x -y -1=0,两切线与x 轴所围成的三角形的面积为34. 13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )=________.[答案] x sin x +cos x[解析] ∵f ′(x )=[(ax +b )sin x ]′+[(cx +d )cos x ]′=(ax +b )′sin x +(ax +b )(sin x )′+(cx +d )′cos x +(cx +d )(cos x )′=a sin x +(ax +b )cos x +c cos x -(cx +d )sin x =(a -d -cx )sin x +(ax +b +c )cos x .为使f ′(x )=x cos x ,应满足⎩⎪⎨⎪⎧ a -d =0,c =0,a =1,b +c =0,解方程组,得⎩⎪⎨⎪⎧ a =1,b =0,c =0,d =1.从而可知,f (x )=x sin x +cos x .14.设f (x )=ln a 2x (a >0且a ≠1),则f ′(1)=________.[答案] 2ln a[解析] ∵f (x )=ln a 2x =2x ln a ,∴f ′(x )=(2x ln a )′=2ln a (x )′=2ln a ,故f ′(1)=2ln a .三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5); (2)1+x 1-x +1-x 1+x; (3)f (x )=ln x +2xx 2. [解析] (1)∵f ′(x )=[2x 5+8x 4-5x 3+2x 2+8x -5]′,∴f ′(x )=10x 4+32x 3-15x 2+4x +8.(2)∵f (x )=1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴f ′(x )=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. (3)f ′(x )=⎝⎛⎭⎫ln x x 2+2x x 2′=⎝⎛⎭⎫ln x x 2′+⎝⎛⎭⎫2xx 2′ =1x ·x 2-ln x ·2x x 4+2x (ln2·x 2-2x )x 4=(1-2ln x )x +(ln2·x 2-2x )·2xx 4=1-2ln x +(ln2·x -2)2xx 3. 16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).[解析] 题设中有四个参数a 、b 、c 、d ,为确定它们的值需要四个方程.由f (2x +1)=4g (x ),得4x 2+2(a +2)x +(a +b +1)=4x 2+4cx +4d . 于是有⎩⎪⎨⎪⎧a +2=2c , ①a +b +1=4d , ② 由f ′(x )=g ′(x ),得2x +a =2x +c ,∴a =c .③由f (5)=30,得25+5a +b =30.④∴由①③可得a =c =2.由④得b =-5,再由②得d =-12. ∴g (x )=x 2+2x -12.故g (4)=16+8-12=472. 17.(2010·湖北文,21)设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.[解析] 由f (x )=13x 3-a 2x 2+bx +c ,得f (0)=c ,f ′(x )=x 2-ax +b ,f ′(0)=b ,又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,得f(0)=1,f′(0)=0,故b=0,c=1.18.已知函数f(x)=2x3+ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.[解析]∵f(x)=2x3+ax图象过点P(2,0),∴a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.对于g(x)=bx2+c,图象过点P(2,0),则4b+c=0.又g′(x)=2bx,g′(2)=4b=f′(2)=16,∴b=4.∴c=-16.∴g(x)=4x2-16.综上,可知f(x)=2x3-8x,g(x)=4x2-16.。
高中数学选修1-1(人教A版)第三章导数及其应用3.1知识点总结含同步练习及答案
当点 Pn 趋近于点 P (x 0 , f (x 0 )) 时,割线 P Pn 趋近于确定的位置,这个确定位置的直线 P T 称为点 P 处的切线(tangent line). 割线 P Pn 的斜率是
kn =
f (x n ) − f (x 0 ) . xn − x0
当点 Pn 无限趋近于点 P 时, kn 无限趋近于切线 P T 的斜率. 函数 f (x) 在 x0 处的导数 f ′ (x0 ) 的几何意义,就是曲线 y = f (x) 在点 (x0 , f (x 0 ) 处的导数就是切线 P T 的斜率 k ,即
y ′ ,即 f ′ (x) = y ′ = lim
Δx→0
f (x + Δx) − f (x) . Δx
例题: 求函数 y = 2 2 + 5 在区间 [2, 2 + Δx] 上的平均变化率,并计算当 Δx = 1 时,平均变化率的值. x 解:因为
2
Δy = 2 × (2 + Δx)2 + 5 − (2 × 2 2 + 5) = 8Δx + 2(Δx)2 ,
高中数学选修1-1(人教A版)知识点总结含同步练习题及答案
第三章 导数及其应用 3.1 变化率与导数
一、学习任务 1. 2.
了解平均变化率的概念和瞬时变化率的意义. 了解导数概念的实际背景,体会导数的思想及其内涵.
二、知识清单
数列极限与函数极限 变化率与导数
三、知识讲解
1.数列极限与函数极限 描述: 数列极限 设 {xn } 为实数数列,a 为常数.若对任意给定的正数 ε ,总存在正整数 N ,使得当 n > N 时,有 |x n − a| < ε ,则称 数列 {x n }收敛于 a ,常数 a 称为数列 {x n } 的极限.并记作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P81~P85的内容,回答下列问题.
已知函数:
①y=f(x)=c,②y=f(x)=x,③y=f(x)=x2,
④y=f(x)=1x,⑤y=f(x)=x.
(1)函数y=f(x)=c的导数是什么?
提示:∵
ΔyΔx=f(x+Δx)-f(x)Δx=c-c
Δx
=0,
(2)函数②③④⑤的导数分别是什么?
提示:由导数的定义得:(x)′=1,(x2)′=2x,1x′=-1x2,(x)′=12x .
(3)函数②③⑤均可表示为y=xα(α∈Q*)的形式,其导数有何规律?
提示:∵(x)′=1·x1-1,(x2)′=2·x2-1,(x)′=x12′=12x
12-1=1
2x
,∴(xα)′=αxα-1.
2.归纳总结,核心必记
(1)基本初等函数的导数公式
原函数 导函数
f(x)=c(c为常数) f′(x)=0
f(x)=xα(α∈Q*) f′(x)=α·xα-1
f(x)=sin x f′(x)=cos_x
f(x)=cos x f′(x)=-sin_x
f(x)=ax f′(x)=axln_a(a>0)
f(x)=ex f′(x)=ex
数学
f(x)=logax f′(x)=1xln a(a>0,且a≠1)
f(x)=ln x f′(x)=1x
(2)导数运算法则
①[f(x)±g(x)]′=f′(x)±g′(x);
②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
当g(x)=c时,[cf(x)]′=cf′(x).
③f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).
[问题思考]
(1)常数函数的导数为0说明什么?
提示:说明常数函数f(x)=c图象上每一点处的切线的斜率都为0,即每一点处的切线
都平行(或重合)于x轴.
(2)对于公式“若f(x)=xα(α∈Q*),则f′(x)=αxα-1”,若把“α∈Q*”改为“α∈R”,公
式是否仍然成立?
提示:当α∈R时,f′(x)=αx
α-
1
仍然成立.
(3)下面的计算过程正确吗?
sin
π
4
′=cosπ4=22.
提示:不正确.因为sin
π
4=22
是一个常数,
而常数的导数为零,所以sinπ4′=0.
(4)若f(x),g(x)都是可导函数,且f(x)≠0,那么下列关系式成立吗?
①[af(x)+bg(x)]′=af′(x)+bg′(x)(a,b为常数);
②1f(x)′=-f′(x)[f(x)]2.
提示:由导数的运算法则可知,这两个关系式都正确.
[课前反思]
(1)基本初等函数的导数公式有哪些?
;
(2)导数的运算法则有哪些?其适用条件是什么?