2018-2019学年数学高考二轮复习课时跟踪检测:(一) 集合、常用逻辑用语 Word版含解析

合集下载

2018-2019学年高中数学第一章常用逻辑用语1.3简单的逻辑联结词第2课时“非”课件新人教A版选修2-1

2018-2019学年高中数学第一章常用逻辑用语1.3简单的逻辑联结词第2课时“非”课件新人教A版选修2-1

假 ______ 假 ______ 真 ______ 真 ______
含“且”“或”命题的否定
(¬ p)∨(¬ ) ”,“p 3.根据“且”、“或”的含义,“p∧q”的否定为“________ __q ___
(¬ p)∧ (¬ q) ______”. ∨q”的否定为“______ __ ________
[规范解答] 命题的否定为:(1)若x,y都是奇数,则x+y 不是偶数.为假命题. (2)若xy=0,则x≠0或y≠0.为假命题. (3)若一个数是质数,则这个数不一定是奇数.为真命 题. 否命题为:(1)若x,y不都是奇数,则x+y不是偶数.为假 命题. (2)若xy≠0,则x≠0且y≠0.为真命题. (3)若一个数不是质数,则这个数不一定是奇数.为真命 题.
3.已知命题p:若x>y,则-x<-y;命题q:若x>y,则 x2>y2.在命题①p∧q;②p∨q;③p∧(¬ q);④(¬ p)∨q中,真 C 命题是 ( ) A.①③ B.①④ C.②③ D.②④ [解析] 当x>y时,两边乘以-1可得-x<-y,所以命题p 为真命题,当x=1,y=-2时,因为x2<y2,所以命题q为假命 题,所以②③为真命题,故选C.
命题方向3 ⇨命题的否定与否命题
典例 3
写出下列各命题的否定及否命题,并判断它们
的真假. (1)若x,y都是奇数,则x+y是偶数; (2)若xy=0,则x=0或y=0; (3)若一个数是质数,则这个数一定是奇数. [思路分析] 若原命题为“若A,则B”,则其否定为“若 A,则¬ B”,条件不变,否定结论;其否命题为“若¬ A,则 ¬ B”,即要否定条件,又要否定结论.
π π 1.已知命题 p:若 α=2,则 sin α=1;命题 q:若 sin α=1,则 α=2.下面四 个结论中正确的是 A.p∧q 是真命题 C.¬ p 是真命题 B.p∨q 是真命题 D.¬ q 是假命题 ( B )

江苏省2018-2019年高二数学选修2-1课时跟踪训练:(四) 含逻辑联结词的命题的真假判断

江苏省2018-2019年高二数学选修2-1课时跟踪训练:(四) 含逻辑联结词的命题的真假判断

课时跟踪训练(四) 含逻辑联结词的命题的真假判断1.若p是真命题,q是假命题,则下列说法错误的是________.①p∧q是真命题 ②p∨q是假命题 ③綈p是真命题 ④綈q是真命题2.已知命题p:若a>1,则a x>log a x恒成立;命题q:在等差数列{a n}中,m+n=p+q是a m+a n=a p+a q成立的充分不必要条件(m,n,p,q∈N*),则下面为真命题的是________.①(綈p)∧(綈q);②(綈p)∨(綈q);③p∨(綈q);④p∧q.3.已知命题p:不等式ax+b>0的解集为Error!,命题q:关于x的不等式(x-a)(x-b) <0的解集为{x|a<x<b},则“p或q”“p且q”和“非p”形式的命题中,真命题为________.4.已知命题p:所有自然数都是正数,命题q:正数的对数都是正数,则下列命题中为真命题的是________.(填序号)①綈p且q;②p或q;③綈p且綈q;④綈p或綈q5.(湖北高考改编)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为________.①(綈p)∨(綈q);②p∨(綈q);③(綈p)∧(綈q);④p∨q.6.写出下列各组命题构成的“p或q”、“p且q”以及“非p”形式的命题,并判断它们的真假.55(1)p:是有理数,q:是整数;(2)p:不等式x2-2x-3>0的解集是(-∞,-1),q:不等式x2-2x-3>0的解集是(3,+∞).7.命题p:实数x满足x2-4ax+3a2<0(a>0),命题q:实数x满足Error!(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若q⇒綈p,求实数a的取值范围.8.命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题q:函数y=(2a2-a) x为增函数,分别求出符合下列条件的实数a的取值范围.(1)p∨q为真命题;(2)“p∨q”为真,“p∧q”为假.答案1.解析:p是真命题,则綈p是假命题.q是假命题,则綈q是真命题.故p∧q是假命题,p∨q是真命题.答案:①②③2.解析:当a=1.1,x=2时,a x=1.12=1.21,log a x=log1.12>log1.11.21=2,此时,a x<log a x,故p为假命题.命题q,由等差数列的性质,当m+n=p+q时,a n+a m=a p+a q成立,当公差d=0时,由a m+a n=a p+a q不能推出m+n=p+q成立,故q是真命题.故綈p是真命题,綈q是假命题,所以p∧q为假命题,p∨(綈q)为假命题,(綈p)∧(綈q)为假命题,(綈p)∨((綈q)为真命题.答案:② 3.解析:命题p是假命题,因为当a<0或a=0时解集与已知不同;命题q也是假命题,因为不知道a,b的大小关系.所以只有非p是真命题.答案:非p4.解析:因为命题p为假命题,命题q为假命题,所以綈p且綈q为真命题,綈p或綈q 为真命题.答案:③④5.解析:由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(綈p )∨(綈q ).答案:①6.解:(1)p 或q :是有理数或是整数;p 且q :是有理数且是整数;非p :5555不是有理数.因为p 假,q 假,所以p 或q 为假,p 且q 为假,非p 为真.5(2)p 或q :不等式x 2-2x -3>0的解集是(-∞,-1)或不等式x 2-2x -3>0的解集是(3,+∞);p 且q :不等式x 2-2x -3>0的解集是(-∞,-1)且不等式x 2-2x -3>0的解集是(3,+∞);非p :不等式x 2-2x -3>0的解集不是(-∞,-1).因为p 假,q 假,所以p 或q 假,p 且q 假,非p 为真.7.解:(1)由于a =1,则x 2-4ax +3a 2<0⇔x 2-4x +3<0⇔1<x <3.所以p :1<x <3.解不等式组Error!得2<x ≤3,所以q :2<x ≤3.由于p ∧q 为真,所以p ,q 均是真命题,解不等式组Error!得2<x <3,所以实数x 的取值范围是(2,3).(2)綈p :x 2-4ax +3a 2≥0,a >0,x 2-4ax +3a 2≥0⇔(x -a )(x -3a )≥0⇔x ≤a 或x ≥3a ,所以綈p :x ≤a 或x ≥3a ,设A ={x |x ≤a 或x ≥3a },由(1)知q :2<x ≤3,设B ={x |2<x ≤3}.由于q ⇒綈p ,所以B A ,所以3≤a 或3a ≤2,即0<a ≤或a ≥3,23所以实数a 的取值范围是∪[3,+∞).(0,23]8.解:命题p 为真时,Δ=(a -1)2-4a 2<0,即a >或a <-1.①13命题q 为真时,2a 2-a >1,即a >1或a <-.②12(1)当p ∨q 为真时,即p 、q 至少有一个是真命题,即上面两个范围的并集为;{a |a <-12或a >13}∴“p ∨q ”为真时,a 的取值范围是Error!.(2)当“p ∨q ”为真,“p ∧q ”为假,即p ,q 有且只有一个是真命题时,有两种情况:当p 真q 假时,<a ≤1;当p 假q 真时,-1≤a <-.1312∴“p ∨q ”为真,“p ∧q ”为假时,a 的取值范围是Error!.。

2018版高考数学一轮复习第一章集合与常用逻辑用语课时跟踪检测2理新人教A版

2018版高考数学一轮复习第一章集合与常用逻辑用语课时跟踪检测2理新人教A版

课时跟踪检测(二)[高考基础题型得分练]1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案:B解析:依题意,得原命题的逆命题为:若一个数的平方是正数,则它是负数.2.[2017·山东荣成六中高三月考]已知复数z=(a2-4)+(a+2)i(a∈R),则“a=2”是“z为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件答案:D解析:当a=2时,z=4i为纯虚数;当z为纯虚数时,a2-4=0,a+2≠0⇒a=2,所以“a=2”是“z为纯虚数”的充要条件,故选D. 3.给出命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )B.2A.3D.0C.1答案:C解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.4.下列结论错误的是( ) A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”答案:C解析:C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m ≥-14,不能推出m >0,所以不是真命题,故选C.5.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤5答案:C解析:命题“∀x ∈[1,2],x 2-a ≤0”为真命题的充要条件是a ≥4,故其充分不必要条件是集合[4,+∞)的真子集.故选C.6.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:C解析:由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.7.[2017·湖南长沙模拟]已知函数f (x )=x 2-2ax +b ,则“1<a <2”是“f (1)<f (3)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:函数f (x )=x 2-2ax +b ,所以f (1)=1-2a +b ,f (3)=9-6a +b,1<a <2,所以1-2a <9-6a ,即f (1)<f (3);反过来,当f (1)<f (3)时,得1-2a +b <9-6a +b ,解得a <2,不能得到1<a <2,所以“1<a <2”是“f (1)<f (3)”的充分不必要条件.故选A.8.函数f (x )=⎩⎪⎨⎪⎧log2x ,x>0,-2x +a ,x≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12。

(通用版)2019年高考数学二轮复习 课时跟踪检测(二十三)理.doc

(通用版)2019年高考数学二轮复习 课时跟踪检测(二十三)理.doc

(通用版)2019年高考数学二轮复习 课时跟踪检测(二十三)理一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A 由题意得,f (1)=3,所以f (x )>f (1),即f (x )>3.当x <0时,x +6>3,解得-3<x <0;当 x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).2.在R 上定义运算:x ⊗y =x (1-y ).若不等式(x -a )⊗(x -b )>0的解集是(2,3),则a +b =( )A .1B .2C .4D .8解析:选C 由题知(x -a )⊗(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.3.已知正数a ,b 的等比中项是2,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6解析:选C 由正数a ,b 的等比中项是2,可得ab =4,又m =b +1a ,n =a +1b,所以m+n =a +b +1a +1b =a +b +a +b ab =54(a +b )≥54×2ab =5,当且仅当a =b =2时等号成立,故m +n 的最小值为5.4.(2017·合肥质检)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y 的最大值为( )A .5B .6 C.132D .7解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y=4的交点,即⎝ ⎛⎭⎪⎫32,52时,z 取得最大值,z max =32+2×52=132,故选C. 5.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3, 所以z =x -y 的取值范围是[-3,2].6.(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:选A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15.7.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( ) A .8 B .4 C .2D .1解析:选B ∵a 2+b 2+c 2=4,∴2ab +2bc +2ac ≤(a 2+b 2)+(b 2+c 2)+(a 2+c 2)=2(a 2+b 2+c 2)=8,∴ab +bc +ac ≤4(当且仅当a =b =c =233时等号成立),∴ab +bc +ac 的最大值为4.8.(2017·惠州调研)已知实数x ,y 满足:⎩⎪⎨⎪⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,故选B.9.当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx-y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧ x +2y =2,y -4=x ,得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2),由⎩⎪⎨⎪⎧x +2y =2,x -7y =2,得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0),由⎩⎪⎨⎪⎧y -4=x ,x -7y =2,得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1),要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0,故选D.10.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线z =3x +4y 过点B (2,3)时,z 取最大值18,故该企业每天可获得的最大利润为18万元.11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞) 解析:选B 由题可知,1=1x +4y ≥24xy=4xy,即xy ≥4,于是有m 2-3m >x +y4≥xy≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,解得m <-1或m >4,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.(2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-4716,2 B.⎣⎢⎡⎦⎥⎤-4716,3916 C .[-23,2]D.⎣⎢⎡⎦⎥⎤-23,3916 解析:选A 法一:根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x2+a 恒成立,结合图象,只需x 2-x +3≥-⎝ ⎛⎭⎪⎫x 2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x 2+3+a =0,Δ=⎝ ⎛⎭⎪⎫-122-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a ,又x 2+2x ≥2,当且仅当x 2=2x,即x =2时等号成立,所以a ≤2. 综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-4716,2.法二:关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 在R 上恒成立等价于-f (x )≤a +x2≤f (x ),即-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立,令g (x )=-f (x )-x2.若x ≤1,则g (x )=-(x 2-x +3)-x2=-x 2+x2-3=-⎝ ⎛⎭⎪⎫x -142-4716,当x =14时,g (x )max =-4716;若x >1,则g (x )=-⎝ ⎛⎭⎪⎫x +2x -x 2=-⎝ ⎛⎭⎪⎫3x 2+2x ≤-23,当且仅当3x 2=2x ,且x >1,即x =233时,等号成立,故g (x )max =-2 3. 综上,g (x )max =-4716.令h (x )=f (x )-x2,若x ≤1,则h (x )=x 2-x +3-x 2=x 2-32x +3=⎝ ⎛⎭⎪⎫x -342+3916, 当x =34时,h (x )min =3916;若x >1,则h (x )=x +2x -x 2=x 2+2x≥2,当且仅当x 2=2x,且x >1,即x =2时,等号成立,故h (x )min =2. 综上,h (x )min =2.故a 的取值范围为⎣⎢⎡⎦⎥⎤-4716,2. 二、填空题13.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:由x >a ,知x -a >0,则2x +2x -a =2(x -a )+2x -a+2a ≥2 2x -a ·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32.答案:3214.若2x +4y=4,则x +2y 的最大值是________. 解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y,所以2x +2y≤4=22,即x +2y ≤2,所以当且仅当2x=22y=2,即x =2y =1时,x +2y 取得最大值2.答案:215.如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =yx +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z 取最小值12,即11+a =12,所以a =1.答案:116.对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式kx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kx ax +1+bx +1cx +1<0,可化为k a +1x +b +1xc +1x<0,故得-1<1x <-13或12<1x<1,解得-3<x <-1或1<x <2,故kx ax +1+bx +1cx +1<0的解集为(-3,-1)∪(1,2). 答案:(-3,-1)∪(1,2)B 组——能力小题保分练1.已知x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,则z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116 D.132解析:选D 不等式组表示的平面区域如图中阴影部分所示,而z=8-x·⎝ ⎛⎭⎪⎫12y =2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x-y最小,最小值为132.故选D.2.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为6,则1a +2b的最小值为( )A .1B .3C .2D .4解析:选B 依题意画出不等式组表示的平面区域,如图中阴影部分.∵a >0,b >0,∴当直线z =ax +by 经过点(2,4)时,z 取得最大值6, ∴2a +4b =6,即a +2b =3.∵1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +2b )×13=53+2b 3a +2a3b ≥3,当且仅当a =b =1时等号成立, ∴1a +2b的最小值为3.故选B.3.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点(横坐标和纵坐标均为整数的点)个数为a n (n ∈N *),若m >1a 1a 2+1a 2a 3+…+1a n a n +1对于任意的正整数恒成立,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫19,+∞B.⎝ ⎛⎭⎪⎫19,+∞C.⎝⎛⎦⎥⎤-∞,19D.⎝⎛⎭⎪⎫-∞,19解析:选A 不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n表示的平面区域为直线x =0,y =0,y =-nx+3n 围成的直角三角形(不含直角边),区域内横坐标为1的整点有2n 个,横坐标为2的整点有n 个,所以a n =3n ,所以1a n a n +1=13n ·3n +3=19⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1a 2+1a 2a 3+…+1a n a n +1=19⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=19⎝ ⎛⎭⎪⎫1-1n +1,数列⎩⎨⎧⎭⎬⎫19⎝⎛⎭⎪⎫1-1n +1为单调递增数列,故当n 趋近于无穷大时,19⎝ ⎛⎭⎪⎫1-1n +1趋近于19,所以m ≥19.故选A. 4.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域上的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP ―→+OQ ―→|的最小值为( )A.255B.55 C.233 D.33解析:选B 作出不等式组对应的可行域,如图中阴影部分所示.设P (x ,y ),Q (a ,-2a ),则OP ―→+OQ ―→=(x +a ,y -2a ),则|OP ―→+OQ ―→|=x +a2+y -2a2,设z =|OP ―→+OQ ―→|,则z 的几何意义为可行域内的动点P 到动点M (-a,2a )的距离,其中M 也在直线2x +y =0上,由图可知,当点P 为(0,1),M 为P 在直线2x +y =0上的垂足时,z 取得最小值d =122+1=15=55.5.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( )A.6+2 B .6-2 C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝ ⎛⎭⎪⎫ca -12⎝ ⎛⎭⎪⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0<6-2,故b 2a 2+2c 2的最大值为6-2,故选B.6.(2017·福州模拟)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ; ②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的平面区域D 如图中阴影部分(△ABC 及其内部)所示.由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax ,由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2.综上可知,实数a 的取值范围为[-2,1].答案:[-2,1]。

人教版高中数学选修2-1第一章单元测试(一)- Word版含答案

人教版高中数学选修2-1第一章单元测试(一)- Word版含答案

2018-2019学年选修2-1第一章训练卷常用逻辑用语(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:"若0x ≥,0y ≥,则0xy ≥",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( ) A .1B .2C .3D .42.命题“若A B ⊆,则A B =”与其逆命题、否命题、逆否命题这四个命题中, 真命题的个数是( ) A .0B .2C .3D .43.给定空间中的直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知p :若a A ∈,则b B ∈,那么命题p ⌝是( ) A .若a A ∈,则b B ∉ B .若a A ∉,则b B ∉ C .若b B ∉,则a A ∉D .若b B ∈,则a A ∈5.命题“p 且q ”与命题“p 或q ”都是假命题,则下列判断正确的是( )A .命题“非p ”与“非q ”真假不同B .命题“非p ”与“非q ”至多有一个是假命题C .命题“非p ”与“q ”真假相同D .命题“非p 且非q ”是真命题6.已知a ,b 为任意非零向量,有下列命题:①|a |=|b |;②()()22=a b ;③()2⋅=a a b ,其中可以作为=a b 的必要非充分条件的命题是( ) A .①B .①②C .②③D .①②③7.已知A 和B 两个命题,如果A 是B 的充分不必要条件,那么“A ⌝”是“B ⌝”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.若向量()(),3x x =∈R a ,则“4x =”是“5=a ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.下列全称命题中,正确的是( ) A .{},x y ∀∈锐角,sin sin s )n (i x y x y +>+ B .{},x y ∀∈锐角,sin cos c )s (o x y x y +>+ C .{},x y ∀∈锐角,cos sin c )s (o x y x y +<+ D .{},x y ∀∈锐角,cos cos s )n (i x y x y -<+10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“x ∀∈Z ,32x x >”的否定是“x ∃∈Z ,32x x >”C .“=2ϕπ”是“函数()sin y x ϕ=+为偶函数”的充要条件D .“0b =”是“关于x 的二次函数()2f x ax bx c ++=是偶函数”的充要条件此卷只装订不密封班级 姓名 准考证号 考场号 座位号11.已知命题p :函数()log 05()3f x x =-.的定义域为(-∞,3);命题q :若k <0,则函数()kh x x=在(0,)+∞上是减函数,对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或q ⌝”为假C .命题“p 或q ”为假D .命题“p ⌝”且“q ⌝”为假12.已知向量),(x y =a ,co ()s ,sin αα=b ,其中x y α∈R ,,,若4=a b , 则2λ⋅<a b 成立的一个必要不充分条件是( ) A .λ>3或λ<-3 B .λ>1或λ<-1 C .-3<λ<3D .-1<λ<1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.“对顶角相等”的否定为________,否命题为________.14.令()221:0p x ax x ++>,如果对x ∀∈R ,()p x 是真命题,则a 的取值范围是________.15.试写出一个能成为2()(0)21a a -->的必要不充分条件________. 16.给定下列结论:①已知命题p :∃x ∈R ,t a n x =1;命题q :∀x ∈R ,210x x -+>.则命题“p q ⌝∧”是假命题;②已知直线1l :ax +3y -1=0,2l :x +b y +1=0,则12l l ⊥的充要条件是3ab =-;③若()1sin 2αβ+=,()1sin 3αβ-=,则t a nα=5t a nβ;④圆224210x y x y ++-+=与直线12y x =,所得弦长为2. 其中正确命题的序号为________(把你认为正确的命题序号都填上).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知命题p :∀非零向量a 、b 、c ,若()0⋅-=a b c ,则=b c .写出其否定和否命题,并说明真假.18.(12分)给定两个命题P :对任意实数x 都有210ax ax ++>恒成立;Q :关于x 的方程20x x a -+=有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a 的取值范围.19.(12分)求证:一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充分不必要条件是a <-1.20.(12分)已知p :2290x x a -+<,q :22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,且p ⌝是q ⌝的充分条件,求实数a 的取值范围.21.(12分)给出命题p:“在平面直角坐标系xOy中,已知点P(2cos x+1,2cos2x +2)和Q(cos x,-1),∀x∈[0,π],向量OP与OQ不垂直.”试判断该命题的真假并证明.22.(12分)已知ab≠0,求证:a+b=1的充要条件是33220a b ab a b++--=.2018-2019学年选修2-1第一章训练卷常用逻辑用语(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】由题得原命题“若0x ≥,0y ≥,则0xy ≥”是真命题,所以其逆否命题也是真命题.逆命题为:“若0xy ≥,则0x ≥,0y ≥”,是假命题,所以否命题也是假命题, 所以四个命题中,真命题的个数为2.故答案为B . 2.【答案】B【解析】可设{}1,2A =,{}1,2,3B =,满足A B ⊆,但A B ≠,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真. 3.【答案】C【解析】直线l 与平面α内两相交直线垂直⇔直线l 与平面α垂直,故选C . 4.【答案】A【解析】命题“若p ,则q ”的否定形式是“若p ,则q ⌝”.故选A . 5.【答案】D【解析】p 且q 是假命题⇒p 和q 中至少有一个为假,则非p 和非q 至少有一个是真命题.p 或q 是假命题⇒p 和q 都是假命题,则非p 和非q 都是真命题.故选D . 6.【答案】D【解析】由向量的运算即可判断. 7.【答案】B【解析】由于“A ⇒B ,A /⇐B ”等价于“A B ⌝⌝⇐,A ⌝/⇒B ⌝”,故“A ⌝”是“B ⌝”的必要不充分条件.故选B . 8.【答案】A【解析】由“4x =”,得)3(4,=a ,故5=a ;反之,由5=a ,得4x =±.所以“4x =”是“5=a ”的充分而不必要条件.故选A . 9.【答案】D【解析】由于cos cos c (os sin sin )x y x y x y -+=,而当{},x y ∈锐角时,0cos 1y <<,0sin 1x <<,所以cos cos cos sin sin cos s (in )x y x y x y x y -<+=+,故选项D 正确. 10.【答案】D【解析】A 为全称命题;B 中否定应为0x ∃∈Z ,3200x x ≤;C 中应为充分不必要条件.D 选项正确. 11.【答案】D【解析】由题意知p 真,q 假.再进行判断. 12.【答案】B【解析】由已知1=b ,∴44==a b,4.又∵()()cos sin 4sin 4x y αααϕαϕ⋅=++=+≤a b ,由于2λ⋅<a b 成立,则24λ>,解得λ>2或λ<-2,这是2λ⋅<a b 成立的充要条件,因此2λ⋅<a b 成立的一个必要不充分的条件是λ>1或λ<-1.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】对顶角不相等 若两个角不是对顶角,则它们不相等【解析】“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”. 14.【答案】1a >【解析】由已知x ∀∈R ,2210ax x ++>恒成立.显然0a =不合题意, 所以0440a a ∆>⎧⎨=-<⎩⇒1a >.15.【答案】1a > (不惟一)【解析】2()(0)21a a -->的解集记为B ={1|a a >且a ≠2},所找的记为集合{}1A a a =>,则B ⇒A ,B /⇐A .16.【答案】①③【解析】对于①易知p 真,q 真,故命题p q ⌝∧假,①正确; 对于②1l 与2l 垂直的充要条件应为a +3b =0; 对于③利用两角和与差的正弦公式展开整理即得;,④错.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】p ⌝:∃非零向量a 、b 、c ,若()0⋅-=a b c ,使≠b c .p ⌝为真命题. 否命题:∀非零向量a 、b 、c ,若()0⋅-≠a b c ,则≠b c .否命题为真命题. 18.【答案】()1,0,44⎛⎫-∞ ⎪⎝⎭. 【解析】命题P :对任意实数x 都有210ax ax ++>恒成立,则“a =0”,或“a >0且240a a -<”.解得0≤a <4.命题Q :关于x 的方程20x x a -+=有实数根,则140a ∆=-≥,得14a ≤. 因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题, 故P Q ⌝∧为真命题,或P Q ⌝∧为真命题,则0414a a a <≥⎧⎪⎨≤⎪⎩或或0414a a ≤<⎧⎪⎨>⎪⎩, 解得a <0或144a <<.所以实数a 的取值范围是()1,0,44⎛⎫-∞ ⎪⎝⎭.19.【答案】见解析.【解析】一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充要条件是:4401a a ∆=->⇔<,并且10a<,从而a <0.有一个正根和一个负根的充分不必要条件应该是{a |a <0}的真子集,a <-1符合题意.所以结论得证. 20.【答案】a ≤9.【解析】由22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,得1324x x <<⎧⎨<<⎩,即2<x <3.∴q :2<x <3.设{}290|2A x x x a =-+<,B ={x |2<x <3},∵p q ⌝⌝⇒,∴q ⇒p .∴B ⊆A .∴2<x <3包含于集合A ,即2<x <3满足不等式2290x x a -+<.∴2<x <3满足不等式292a x x <-.∵当2<x <3时,222981819818192229,21616488x x x x x ⎛⎫⎛⎫⎛⎤-=--+-=--+∈ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎦,即2819928x x <-≤,∴a ≤9. 21.【答案】见解析.【解析】命题p 是假命题,证明如下:由OP 和OQ 不垂直, 得cos x (2cos x +1)-(2cos2x +2)≠0,变形得:22cos cos 0x x -≠, 所以cos x ≠0或1cos 2x ≠. 而当[]0,x ∈π时,cos2π=0,1cos 32π=, 故存在2x π=或3x π=,使向量OP OQ ⊥成立,因而p 是假命题. 22.【答案】见解析.【解析】必要性:∵a +b =1,∴b =1-a ,∴()()()32332232111a b ab a b a a a a a a ++--=+--+--- 323222133120a a a a a a a a a =+-+-+---+-=.充分性:∵33220a b ab a b ++--=,即()()()22220a b a ab b a ab b --+-+=+, ∴()()2210a ab b a b -+-=+,又ab≠0,即a≠0且b≠0,∴2222324b ba ab b a⎛⎫-+=-+≠⎪⎝⎭,只有1a b+=.综上可知,当ab≠0时,a+b=1的充要条件是33220a b ab a b++--=.。

2018_2019学年高中数学常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系课件

2018_2019学年高中数学常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系课件

答案
A
题型三
逆否命题的应用
(1)命题:“已知a,x为实数,若关于 x的不等
例3
式 x2 + (2a + 1)x + a2 + 2≤0 的解集为空集,则 a<2”的
逆否命题是________命题(填“真”或“假”). (2)证明:如果p2+q2=2,则p+q≤2.
【解析】
(1)先判断原命题的真假.
【答案】
B
●规律总结 四种命题的真假判断的两种方法 (1)直接判断:利用命题真假判断的方法判断. (2)等价转化:由于互为逆否命题的两命题的真假具
有等价性,因而在判断四种命题的真假时,可以转化
为先判断原命题和逆 ( 否) 命题的真假,再利用互为逆
否命题的两命题的真假具有等价性即可完成.
◎变式训练
建联系 ―→根据不等式 ax2-2ax-3≤0 对任意 x∈R 恒成立的条件,列出关于参数 a 的不等式(组), 求解实数 a 的范围
【规范解答】
因为命题“ 对任意 x∈R , ax2 - 2ax - 3>0 不成立”等 价于对任意x∈R,ax2-2ax-3≤0恒成立,(2分) 第一步,通过对条件分析,将所求问题转化为 ax2 - 2ax-3≤0在x∈R上恒成立问题
an+an+1 2.原命题为“若 <an,n∈N+,则{an}为递 2 减数列”,关于逆命题、否命题、逆否命题真假性的判 断依次如下,正确的是 A.真、真、真 C.真、真、假 B.假、假、真 D.假、假、假
解析 数列.
an+an+1 由题知 <an⇔an+1<an⇔{an}为递减 2
原命题与其逆命题都是真命题,所以其否命题和 逆否命题也都是真命题,故选 A.
分)
a<0, 所以 -3≤a≤0,

2018-2019学年高中新创新一轮复习理数通用版:第一章 集合与常用逻辑用语1 Word版含解析

第一章⎪⎪⎪集合与常用逻辑用语 第一节 集 合本节主要包括2个知识点:集合的概念与集合间的基本关系; 2.集合的基本运算.突破点(一) 集合的概念与集合间的基本关系[基本知识]1.集合的有关概念(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a ∈A ;若b 不属于集合A ,记作b ∉A . (3)集合的表示方法:列举法、描述法、图示法. 2.集合间的基本关系A B 或B A∅B 且B ≠∅[基本能力]1.判断题(1)若{x 2,1}={0,1},则x =0,1.( )(2)已知集合A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2},则A =B =C .( ) (3)任何集合都有两个子集.( ) 答案:(1)× (2)× (3)× 2.填空题(1)已知集合A={0,1,x2-5x},若-4∈A,则实数x的值为________.解析:∵-4∈A,∴x2-5x=-4,∴x=1或x=4.答案:1或4(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.解析:∵A={0,1,2},∴B={x-y|x∈A,y∈A}={0,-1,-2,1,2}.故集合B中有5个元素.答案:5(3)集合A={x∈N|0<x<4}的真子集个数为________.解析:因为A={1,2,3},所以其真子集的个数为23-1=7.答案:7(4)已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=________.解析:∵A⊆B,∴a+3=1,∴a=-2.答案:-2[全析考法]1.(1)确定构成集合的元素是什么,即确定性.(2)看这些元素的限制条件是什么,即元素的特征性质.(3)根据元素的特征性质求参数的值或范围,或确定集合中元素的个数,要注意检验集合中的元素是否满足互异性.2.判断集合间关系的常用方法[典例](1)若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中元素的个数为()A.5 B.4C.3 D.2(2)(2018·兰州模拟)已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅C.A⊆B D.B⊆A(3)(2018·湖南长沙一中月考)已知集合A={x|x2-2x≤0},B={x|x≤a}.若A⊆B,则实数a的取值范围是()A.[2,+∞) B.(2,+∞)C.(-∞,0) D.(-∞,0][解析](1)因为x∈A,y∈B,所以当x=-1,y=0,2时,z=x+y=-1,1;当x=1,y =0,2时,z=x+y=1,3,所以集合{z|z=x+y,x∈A,y∈B}={-1,1,3},共3个元素,选C.(2)A={x|x>-3},B={x|x≥2},结合数轴可得:B⊆A.(3)由题意得集合A={x|x2-2x≤0}={x|0≤x≤2},要使得A⊆B,则a≥2.故选A.[答案](1)C(2)D(3)A[易错提醒](1)在用数轴法判断集合间的关系时,其端点能否取到,一定要注意用回代检验的方法来确定.如果两个集合的端点相同,则两个集合是否能同时取到端点往往决定了集合之间的关系.(2)将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.[全练题点]1.(2018·河北邯郸一中调研)已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},则B =()A.{0,1,2,3,4} B.{0,1,2}C.{0,2,4} D.{1,2}解析:选A当x=0,y=0,1,2时,x+y=0,1,2;当x=1,y=0,1,2时,x+y=1,2,3;当x=2,y=0,1,2时,x+y=2,3,4.所以B={z|z=x+y,x∈A,y∈A}={0,1,2,3,4}.2.已知集合A ={x ∈N |x <2},B ={y |y =lg(x +1),x ∈A },C ={x |x ∈A 或x ∈B },则集合C 的真子集的个数为( )A .3B .7C .8D .15解析:选B 因为A ={x ∈N |x <2},所以A ={0,1},因为B ={y |y =lg(x +1),x ∈A },所以B ={0,lg 2}.因为C ={x |x ∈A 或x ∈B },所以C ={0,1,lg 2}.所以集合C 的真子集的个数为23-1=7.故选B.3.(2018·河北衡水中学调研)设A ,B 是全集I ={1,2,3,4}的子集,A ={1,2},则满足A ⊆B 的B 的个数是( )A .5B .4C .3D .2解析:选B 满足条件的集合B 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},所以满足A ⊆B 的B 的个数是4.故选B.4.(2018·成都模拟)已知集合A ={x ∈N |1<x <log 2k },若集合A 中至少有3个元素,则k 的取值范围为( )A .(8,+∞)B .[8,+∞)C .(16,+∞)D .[16,+∞)解析:选C 法一:∵集合A ={x ∈N |1<x <log 2k },集合A 中至少有3个元素,∴log 2k >4,解得k >16.故选C.法二:取k =16,则集合A ={x ∈N |1<x <log 2k }={x ∈N |1<x <4}={2,3},所以排除A 、B 、D ,故选C.5.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.解析:∵B ⊆A ,∴①若B =∅,则2m -1<m +1,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3]. 答案:(-∞,3]突破点(二) 集合的基本运算[基本知识]1.集合的三种基本运算(1)A ∩A =A ,A ∩∅=∅,A ∪A =A ,A ∪∅=A . (2)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .(3)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.[基本能力]1.判断题(1)若A ∩B =A ∩C ,则B =C .( )(2)若集合A =⎩⎨⎧⎭⎬⎫x | 1x >0,则∁R A =⎩⎨⎧⎭⎬⎫x |1x ≤0.( )(3)设集合U ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁U B )={1}.( ) 答案:(1)× (2)× (3)√ 2.填空题(1)(2018·浙江模拟)已知集合P ={x ∈R |0≤x ≤4},Q ={x ∈R ||x |<3},则P ∪Q =________. 解析:由题意,得P =[0,4],Q =(-3,3),∴P ∪Q =(-3,4]. 答案:(-3,4](2)(2018·安徽合肥模拟)已知集合A ={x |x 2<4},B ={x |x -1≥0},则A ∩B =________. 解析:由题意,得A ={x |x 2<4}=(-2,2),B ={x |x -1≥0}=[1,+∞),所以A ∩B =[1,2). 答案:[1,2)(3)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(∁U B )=________.解析:因为∁U B ={2,5,8},所以A ∩(∁U B )={2,3,5,6}∩{2,5,8}={2,5}. 答案:{2,5}(4)设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=________. 解析:∵A ={1,3,5},B ={3,4,5},∴A ∪B ={1,3,4,5}.又U ={1,2,3,4,5,6},∴∁U (A ∪B )={2,6}.答案:{2,6}[全析考法][例1] ,则P ∩Q =( ) A .{1} B .{1,2} C .{2,3}D .{1,2,3}(2)(2018·山东菏泽模拟)设集合A =⎩⎨⎧⎭⎬⎫x |12<x <2,B ={x |x 2<1},则A ∪B =( )A .{x |1<x <2}B .{x |-1<x <2} C.⎩⎨⎧⎭⎬⎫x |12<x <1 D .{x |-1<x <1}[解析] (1)P ={x |1≤2x <4}=[0,2),所以P ∩Q ={1}.故选A.(2)因为B ={x |x 2<1}={x |-1<x <1},所以A ∪B ={x |-1<x <2}.故选B. [答案] (1)A (2)B[方法技巧] 求集合交集或并集的方法步骤[例2] (1)(2018·山东临沂模拟)设集合U =R ,A ={x |2x (x-2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}(2)(2018·湖北黄冈调研)已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1-x )的定义域为N ,则M ∪(∁R N )=( )A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1}[解析] (1)A ={x |2x (x -2)<1}={x |x (x -2)<0}={x |0<x <2},B ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},则∁U B ={x |x ≥1},阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.(2)依题意得M ={x |-1<x <1},N ={x |x <1},∁R N ={x |x ≥1},所以M ∪(∁R N )={x |x >-1}. [答案] (1)B (2)A [方法技巧]解决交、并、补混合运算的一般思路(1)用列举法表示的集合进行交、并、补集运算时,常采用Venn 图法解决,此时要搞清Venn 图中的各部分区域表示的实际意义.(2)用描述法表示的数集进行运算,常采用数轴分析法解决,此时要注意“端点”能否取到.(3)若给定的集合是点集,常采用数形结合法求解.集合的新定义问题[例3] (2018·x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A ⊕B =( )A.⎝⎛⎦⎤-94,0 B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) [解析] 因为A =⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥-94,B ={y |y <0}, 所以A -B ={y |y ≥0},B -A =⎩⎨⎧⎭⎬⎫y ⎪⎪y <-94, A ⊕B =(A -B )∪(B -A )=⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥0或y <-94. 故选C. [答案] C [方法技巧]解决集合新定义问题的着手点(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.[全练题点]1.[考点一](2018·长春模拟)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解析:选C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.2.[考点二](2018·广州模拟)若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},则A∩∁U B=()A.{x|1<x<2} B.{x|0<x≤1}C.{x|0<x<1} D.{x|1≤x<2}解析:选C由题意知,A={x|0<x<2},B={x|x≥1},∁U B={x|x<1},所以A∩∁U B={x|0<x<1}.3.[考点一](2018·潍坊模拟)若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},则A∩B=()A.(2,4] B.[2,4]C.(-∞,0)∪(0,4] D.(-∞,-1)∪[0,4]解析:选A因为A={x|1≤3x≤81}={x|30≤3x≤34}={x|0≤x≤4},B={x|log2(x2-x)>1}={x|x2-x>2}={x|x<-1或x>2},所以A∩B={x|0≤x≤4}∩{x|x<-1或x>2}={x|2<x≤4}=(2,4].4.[考点三](2018·沈阳模拟)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为() A.15 B.16C.20 D.21解析:选D由x2-2x-3≤0,得(x+1)(x-3)≤0,又x∈N,故集合A={0,1,2,3}.∵A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },∴A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A *B ={1,2,3,4,5,6},∴A *B 中的所有元素之和为21.5.[考点三]如图所示的Venn 图中,A ,B 是非空集合,定义集合AB 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B={y |y =3x ,x >0},则A B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D 因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以A B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2},故选D.[全国卷5年真题集中演练——明规律] 1.(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x <1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅解析:选A ∵集合A ={x |x <1},B ={x |x <0}, ∴A ∩B ={x |x <0},A ∪B ={x |x <1},故选A.2.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.(2016·全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32C.⎝⎛⎭⎫1,32D.⎝⎛⎭⎫32,3解析:选D ∵x 2-4x +3<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >32.∴A ∩B ={x |1<x <3}∩⎩⎨⎧⎭⎬⎫x ⎪⎪x >32=⎝⎛⎭⎫32,3. 5.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( ) A .{1} B .{1,2} C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C 因为B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},A ={1,2,3},所以A ∪B ={0,1,2,3}.6.(2015·全国卷Ⅱ)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}解析:选A 由题意知B ={x |-2<x <1},所以A ∩B ={-1,0}.故选A. [课时达标检测][小题对点练——点点落实]对点练(一) 集合的概念与集合间的基本关系 1.已知集合A ={1,2,3},B ={2,3},则( ) A .A =B B .A ∩B =∅ C .A BD .B A解析:选D ∵A ={1,2,3},B ={2,3},∴B A .2.(2018·莱州一中模拟)已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N |(x +3)(x -1)≤0}={x ∈N |-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.3.(2018·广雅中学测试)若全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )解析:选B 由题意知,N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},所以N M ,故选B.4.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,则2m 2+m =3,故m =-32. 答案:-325.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]对点练(二) 集合的基本运算1.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]解析:选A M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1].2.若集合A ={-1,0,1},B ={y |y =x 2,x ∈A },则A ∩B =( )A .{0}B .{1}C .{0,1}D .{0,-1}解析:选C 因为B ={y |y =x 2,x ∈A }={0,1},所以A ∩B ={0,1}.3.(2018·中原名校联考)设全集U =R ,集合A ={x |0≤x ≤2},B ={y |1≤y ≤3},则(∁U A )∪B =( )A .(2,3]B .(-∞,1]∪(2,+∞)C.[1,2)D.(-∞,0)∪[1,+∞)解析:选D因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).4.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=()A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:选B由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.5.(2018·河北正定中学月考)已知集合P={y|y2-y-2>0},Q={x|x2+ax+b≤0}.若P ∪Q=R,且P∩Q=(2,3],则a+b=()A.-5 B.5C.-1 D.1解析:选A P={y|y2-y-2>0}={y|y>2或y<-1}.由P∪Q=R及P∩Q=(2,3],得Q =[-1,3],所以-a=-1+3,b=-1×3,即a=-2,b=-3,a+b=-5,故选A.6.(2018·唐山统一考试)若全集U=R,集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是()A.{x|2<x<3} B.{x|-1<x≤0}C.{x|0≤x<6} D.{x|x<-1}解析:选C由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又题图中阴影部分表示的集合为(∁U B)∩A,∁U B={x|x≥0},所以(∁U B)∩A ={x|0≤x<6},故选C.7.已知集合A={x|x2-x-12>0},B={x|x≥m}.若A∩B={x|x>4},则实数m的取值范围是()A.(-4,3) B.[-3,4]C.(-3,4) D.(-∞,4]解析:选B集合A={x|x<-3或x>4},∵A∩B={x|x>4},∴-3≤m≤4,故选B.8.已知全集U ={x ∈Z |0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩N解析:选C 由已知得U ={1,2,3,4,5,6,7},N ={2,6},M ∩(∁U N )={2,3,5}∩{1,3,4,5,7}={3,5},M ∩N ={2},∁U (M ∩N )={1,3,4,5,6,7},M ∪N ={2,3,5,6},∁U (M ∪N )={1,4,7},(∁U M )∩N ={1,4,6,7}∩{2,6}={6},选C.[大题综合练——迁移贯通]1.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.解:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为A ∩B =[0,3],所以⎩⎪⎨⎪⎧ m -2=0,m +2≥3.所以m =2. (2)∁R B ={x |x <m -2或x >m +2},因为A ⊆∁R B ,所以m -2>3或m +2<-1,即m >5或m <-3.因此实数m 的取值范围是(-∞,-3)∪(5,+∞).2.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧ m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).3.(2018·江西玉山一中月考)已知集合A ={x |3≤3x ≤27},B ={x |log 2x >1}.(1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.解:(1)∵3≤3x ≤27,即31≤3x ≤33,∴1≤x ≤3,∴A ={x |1≤x ≤3}.∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2}.∴A ∩B ={x |2<x ≤3}.∴∁R B ={x |x ≤2},∴(∁R B )∪A ={x |x ≤3}.(2)由(1)知A ={x |1≤x ≤3},C ⊆A .当C 为空集时,满足C ⊆A ,a ≤1;当C 为非空集合时,可得1<a ≤3.综上所述,a ≤3.实数a 的取值范围是{a |a ≤3}.第二节 命题及其关系、充分条件与必要条件本节主要包括2个知识点:1.命题及其关系;2.充分条件与必要条件.突破点(一) 命题及其关系[基本知识]1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.[基本能力]1.判断题(1)“x2+2x-3<0”是命题. ()(2)命题“若p,则q”的否命题是“若p,则綈q”.()答案:(1)×(2) ×2.填空题(1)“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案:2(2)命题“若x>1,则x>0”的否命题是______________________________________.答案:若x≤1,则x≤0(3)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是________________________________________________________________________.答案:若方程x2+x-m=0没有实根,则m≤0(4)有下列几个命题:①“若a>b,则1a>1b”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b ,则1a ≤1b ”,假命题.②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,真命题.③原命题为真命题,故逆否命题为真命题.答案:②③[全析考法]命题的真假判断[例1] 下列命题中为真命题的是( )A .若1x =1y ,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2 [解析] 取x =-1,排除B ;取x =y =-1,排除C ;取x =-2,y =-1,排除D.[答案] A[方法技巧]判断命题真假的思路方法(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若p ,则q ”的形式之后,判断这个命题真假的方法:①若由“p ”经过逻辑推理,得出“q ”,则可判定“若p ,则q ”是真命题;②判定“若p ,则q ”是假命题,只需举一反例即可.四种命题的关系由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.[例2] (1)(2018·西安八校联考)已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C.逆否命题D.否定(2)原命题为“若a n+a n+12<a n,n∈N*,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,真,真B.假,假,真C.真,真,假D.假,假,假[解析](1)命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.(2)原命题即“若a n+1<a n,n∈N*,则{a n}为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{a n}为递减数列,n∈N*,则a n+1<a n”为真命题,所以否命题也为真命题.[答案](1)B(2)A[方法技巧]1.写一个命题的其他三种命题时的注意事项(1)对于不是“若p,则q”形式的命题,需先改写为“若p,则q”形式.(2)若命题有大前提,需保留大前提.2.判断四种命题真假的方法(1)利用简单命题判断真假的方法逐一判断.(2)利用四种命题间的等价关系:当一个命题不易直接判断真假时,可转化为判断其等价命题的真假.[全练题点]1.[考点一]下列命题中为真命题的是()A.mx2+2x-1=0是一元二次方程B.抛物线y=ax2+2x-1与x轴至少有一个交点C.互相包含的两个集合相等D.空集是任何集合的真子集解析:选C A中,当m=0时,是一元一次方程,故是假命题;B中,当Δ=4+4a<0,即a<-1时,抛物线与x轴无交点,故是假命题;C是真命题;D中,空集不是本身的真子集,故是假命题.2.[考点二](2018·河北承德模拟)已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③解析:选A命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确,故选A.3.[考点一、二](2018·黄冈调研)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是() A.3 B.2 C.1 D.0解析:选C易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.4.[考点一、二]有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中为真命题的是________(填写所有真命题的序号).解析:①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,显然是真命题;②“面积相等的三角形全等”的否命题是“若两个三角形面积不相等,则这两个三角形不全等”,显然是真命题;③若x2-2x+m=0有实数解,则Δ=4-4m≥0,解得m≤1,所以“若m≤1,则x2-2x+m=0有实数解”是真命题,故其逆否命题是真命题;④若A∩B=B,则B⊆A,故原命题是假命题,所以其逆否命题是假命题.故真命题为①②③.答案:①②③突破点(二)充分条件与必要条件[基本知识]1.充分条件与必要条件的概念 q 2.A B B A [基本能力]1.判断题(1)当q 是p 的必要条件时,p 是q 的充分条件.( )(2)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( )(3)“x =1”是“x 2-3x +2=0”的必要不充分条件.( )答案:(1)√ (2)√ (3)×2.填空题(1)若x ∈R ,则“x >1”是“1x<1”的____________条件. 答案:充分不必要(2)设x >0,y ∈R ,则“x >y ”是“x >|y |”成立的________条件.答案:必要不充分(3)在△ABC 中,A =B 是tan A =tan B 的________条件.答案:充要(4)设p ,r 都是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么p 是t 的________条件,r 是t 的________条件.(用“充分”“必要”“充要”填空)解析:由题知p ⇒q ⇔s ⇒t ,又t ⇒r ,r ⇒q ,故p 是t 的充分条件,r 是t 的充要条件. 答案:充分 充要[全析考法] 充分条件与必要条件的判断[例1] (1)(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 (2)(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)∵m =λn ,∴m ·n =λn ·n =λ|n |2.∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π,当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.[答案] (1)C (2)A[方法技巧]充分、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.根据充分、必要条件求参数范围[例2] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[解析] 由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,解得0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] [0,3] [方法技巧]根据充分、必要条件求参数范围的思路方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[全练题点]1.[考点一](2018·长沙四校联考)“x >1”是“log 2(x -1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由log 2(x -1)<0得0<x -1<1,即1<x <2,故“x >1”是“log 2(x -1)<0”的必要不充分条件,选B.2.[考点二]已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( )A .[2,+∞)B .[1,+∞)C .(2,+∞)D .(-∞,-1]解析:选A 由3x +1<1,得3x +1-1=-x +2x +1<0,解得x <-1或x >2.因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.3.[考点一](2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 4.[考点一](2016·北京高考)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选D 若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.5.[考点二](2018·河北石家庄模拟)已知命题p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围是________.解析:法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴綈p :A ={x |x >10或x <-2}. 由x 2-2x +1-m 2≤0(m >0), 得1-m ≤x ≤1+m (m >0),∴綈q :B ={x |x >1+m 或x <1-m ,m >0}. ∵綈p 是綈q 的必要不充分条件,∴BA ⇔⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m ≥10,解得m ≥9.法二:∵綈p 是綈q 的必要不充分条件, ∴q 是p 的必要不充分条件, ∴p 是q 的充分不必要条件.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0). ∴q :Q ={x |1-m ≤x ≤1+m ,m >0}.又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴p :P ={x |-2≤x ≤10}.∴PQ ⇔⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m ≥10,解得m ≥9.答案:[9,+∞)[全国卷5年真题集中演练——明规律]1.(2014·全国卷Ⅱ)函数f (x ) 在x =x 0 处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是 q 的充分条件,但不是q 的必要条件C .p 是 q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是 q 的必要条件解析:选C 设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题.故选C.2.(2017·全国卷Ⅰ)设有下面四个命题: p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析:选B 设复数z =a +b i(a ,b ∈R ),对于p 1,∵1z =1a +b i =a -b i a 2+b 2∈R ,∴b =0,∴z∈R ,∴p 1是真命题;对于p 2,∵z 2=(a +b i)2=a 2-b 2+2ab i ∈R ,∴ab =0,∴a =0或b =0,∴p 2不是真命题; 对于p 3,设z 1=x +y i(x ,y ∈R ),z 2=c +d i(c ,d ∈R ),则z 1z 2=(x +y i)(c +d i)=cx -dy +(dx +cy )i ∈R ,∴dx +cy =0,取z 1=1+2i ,z 2=-1+2i ,z 1≠z 2, ∴p 3不是真命题; 对于p 4,∵z =a +b i ∈R , ∴b =0,∴z =a -b i =a ∈R , ∴p 4是真命题.[课时达标检测][小题对点练——点点落实]对点练(一) 命题及其关系1.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数 C .若x +y 不是偶数,则x 与y 不都是偶数 D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.(2018·德州一中模拟)下列命题中为真命题的序号是________. ①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x ≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④5.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________________________________________________________________.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角 对点练(二) 充分条件与必要条件1.(2016·山东高考)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A.2.(2018·浙江名校联考)一次函数y =-m n x +1n 的图象同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:选B 因为y =-m n x +1n 的图象经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.3.(2018·河南豫北名校联盟精英对抗赛)设a ,b ∈R ,则“l og 2a >log 2b ”是“2a -b >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A log 2a >log 2b ⇔a >b >0,2a -b >1⇔a >b ,所以“log 2a >log 2b ”是“2a -b >1”的充分不必要条件.故选A.4.(2018·重庆第八中学调研)定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B ∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.5.(2018·山西怀仁一中期中)命题“∀x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析:选B x 2-a ≤0⇔a ≥x 2.因为x 2∈[1,4),所以a ≥4.故a >4是已知命题的一个充分不必要条件.故选B.6.(2018·广东梅州质检)已知命题p :“方程x 2-4x +a =0有实根”,且綈p 为真命题的充分不必要条件为a >3m +1,则实数m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(0,1)解析:选B 命题p :“方程x 2-4x +a =0有实根”为真时,Δ=16-4a ≥0,∴a ≤4.∴綈p 为真命题时,a >4.又∵綈p 为真命题的充分不必要条件为a >3m +1,∴(3m +1,+∞)是(4,+∞)的真子集,∴3m +1>4,解得m >1,故选B.7.(2018·福建闽侯二中期中)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎡⎦⎤12,1[a ,a +1].∴a ≤12.且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12[大题综合练——迁移贯通]1.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.2.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34, 故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}. (1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围. (2)若A ∩B =∅,求a 的取值范围. 解:A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}. (1)当a =0时,B =∅,不合题意. 当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧ a ≤2,3a ≥4,解得43≤a ≤2.当a <0时,B ={x |3a <x <a },要满足题意,则⎩⎪⎨⎪⎧3a ≤2,a ≥4,无解.。

2018年高考数学(理科,通用版)练酷专题二轮复习课时跟踪检测:(一) 集合、常用逻辑用语(精编含解析)

课时跟踪检测(一)集合、常用逻辑用语1. 设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A. {1,-3}B. {1,0}C. {1,3}D. {1,5}【答案】C【解析】因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m=3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.故选C 2. 设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A. (1,2)B. (1,2]C. (-2,1)D. [-2,1)【答案】D【解析】由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}故选D.3. 已知命题q:∀x∈R,x2>0,则( )A. 命题綈q:∀x∈R,x2≤0为假命题B. 命题綈q:∀x∈R,x2≤0为真命题C. 命题綈q:∃x0∈R,≤0为假命题D. 命题綈q:∃x0∈R,≤0为真命题【答案】D【解析】全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以﹁q为真命题.故选D.4. 命题“若a>b,则a+c>b+c”的否命题是( )A. 若a≤b,则a+c≤b+cB. 若a+c≤b+c,则a≤bC. 若a+c>b+c,则a>bD. 若a>b,则a+c≤b+c【答案】A故选A.5. “x>1”是“x2+2x>0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由,得或,所以“”是“”的充分不必要条件,故选A.6. 已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A. (-∞,-2)B. [2,+∞)C. [-2,2]D. (-∞,-2]∪[2,+∞)【答案】D【解析】因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.故答案为:D.7. 已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A. {x|2<x<3}B. {x|-1<x≤0}C. {x|0≤x<6}D. {x|x<-1}【答案】C【解析】由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁U B)∩A,因为∁U B={x|x≥0},所以(∁U B)∩A={x|0≤x<6}.故答案为; C .8. 已知命题p:∃x0∈(-∞,0),2x0<3x0;命题q:∀x∈,tan x>sin x,则下列命题为真命题的是( )A. p∧qB. p∨(﹁q)C. (﹁p)∧qD. p∧(﹁q)【答案】C【解析】根据指数函数的图象与性质知命题p是假命题,﹁p是真命题;∵x∈,且tan x=,∴0x<1,tan x>sin x,∴q为真命题,故选C.9. 祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】的体积相等,在同高处的截面积相等,由于A、B体积相等,A、B在同高处的截面积不恒相等,譬如一个为柱体另一个为椎体,所以条件不充分;反之成立,条件是必要的,因此是的必要不充分条件.选B.10. 设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若P={x|log2x<1},Q={x||x-2|<1},则P-Q=( )A. {x|0<x<1}B. {x|0<x≤1}C. {x|1≤x<2}D. {x|2≤x<3}【答案】B【解析】试题分析:因为,所以考点:新定义下的集合的运算.11. 命题p:“∃x0∈R,使得+mx0+2m+5<0”,命题q:“关于x的方程2x-m=0有正实数解”,若“p或q”为真,“p且q”为假,则实数m的取值范围是( )A. [1,10]B. (-∞,-2)∪(1,10]C. [-2,10]D. (-∞,-2]∪(0,10]【答案】B故答案为:B.点睛:本题考查了一元二次方程的解与判别式的关系、一元二次不等式的解集与判别式的关系、复合命题的真假判定,对于“p或q”为真,则只需要其中一个为真,“p或q” 为假,则两个均为假.12. 下列选项中,说法正确的是( )A. 若a>b>0,则ln a<ln bB. 向量a=(1,m)与b=(m,2m-1)(m∈R)垂直的充要条件是m=1C. 命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∀n∈N*,3n≥(n+2)·2n-1”D. 已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题【答案】D【解析】A中,因为函数y=ln x(x>0)是增函数,所以若a>b>0,则ln a>ln b,故A错;B中,若a⊥b,则m+m(2m-1)=0,解得m=0,故B错;C中,命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∃n0∈N*,3n0≤(n0+2)·2n0-1”,故C错;D中,原命题的逆命题是“若f(x)在区间(a,b)内至少有一个零点,则f(a)·f(b)<0”,是假命题,如函数f(x)=x2-2x-3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f(-2)·f(4)>0,故D正确.故答案为;D .点睛:本题考查命题的否定,充要条件及四种命题,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.在判断命题的充要条件时,可以先找命题的逆否命题,判断逆否命题的充要条件即可.13. 若集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则实数a的值为________.【答案】1或-【解析】试题分析:由题意可知,集合中的方程有且只有一个根.当时,方程变为,符合题意;当时,有,解得.考点:1.子集的个数;2.由方程根的情况讨论参数的取值范围.14. 已知集合A=B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是________.【答案】(2,+∞)【解析】A=={x|-1<x<3},∵x∈B成立的一个充分不必要条件是x∈A,∴A B,∴m+1>3,即m>2.故答案:(2,+∞)15. 已知非空集合A,B满足下列四个条件:①A∪B={1,2,3,4,5,6,7};②A∩B=∅;③A中的元素个数不是A中的元素;④B中的元素个数不是B中的元素.(1)如果集合A中只有1个元素,那么A=________;(2)有序集合对(A,B)的个数是________.【答案】(1). {6} (2). 32【解析】(1)若集合A中只有1个元素,则集合B中有6个元素,6∉B,故A={6}.(2)当集合A中有1个元素时,A={6},B={1,2,3,4,5,7},此时有序集合对(A,B)有1个;当集合A中有2个元素时,5∉B,2∉A,此时有序集合对(A,B)有5个;当集合A中有3个元素时,4∉B,3∉A,此时有序集合对(A,B)有10个;当集合A中有4个元素时,3∉B,4∉A,此时有序集合对(A,B)有10个;当集合A中有5个元素时,2∉B,5∉A,此时有序集合对(A,B)有5个;当集合A中有6个元素时,A={1,2,3,4,5,7},B={6},此时有序集合对(A,B)有1个.综上可知,有序集合对(A,B)的个数是1+5+10+10+5+1=32.答案:(1){6} (2)3216. 下列说法中不正确的是________.(填序号)①若a∈R,则“<1”是“a>1”的必要不充分条件;②“p∧q为真命题”是“p∨q为真命题”的必要不充分条件;③若命题p:“∀x∈R,sin x+cos x≤”,则p是真命题;④命题“∃x0∈R,+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”.【答案】②④【解析】由<1,得a <0或a >1,反之,由a >1,得<1,∴“<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =,∴命题p 为真命题,③正确;命题“∃x 0∈R ,+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确.故答案:②④点睛:本题考查命题的否定,充要条件及四种命题,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.。

2018届高三数学(文)高考总复习课时跟踪检测 (一) 集 合 Word版含解析

B x x x A 1.已知集合 A =⎨x | x ∈Z ,且2-x ∈Z ⎬,则集合 A 中的元素个数为()B 3课时跟踪检测 (一) 集 合一抓基础,多练小题做到眼疾手快1.(2016· 全国甲卷)已知集合 A ={1,2,3}, ={x |(x +1)(x -2)<0, ∈Z},则 A ∪B =()A .{1}C .{0,1,2,3}B .{1,2}D .{-1,0,1,2,3}解析:选 C 因为 B ={x |(x +1)(x -2)<0,∈Z}={x |-1<x <2,∈Z}={0,1}, ={1,2,3}, 所以 A ∪B ={0,1,2,3}.2.(2016·天津高考)已知集合 A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则 A ∩B =()A .{1}C .{1,3}B .{4}D .{1,4}解析:选 D 因为集合 B 中,x ∈A ,所以当 x =1 时,y =3-2=1;当 x =2 时,y =3×2-2=4;当 x =3 时,y =3×3-2=7;当 x =4 时,y =3×4-2=10.即 B ={1,4,7,10}.又因为 A ={1,2,3,4},所以 A ∩B ={1,4}.故选 D.3.已知集合 A ={y |y =|x |-1,x ∈R},B ={x |x ≥2},则下列结论正确的是( )A .-3∈AC .A ∩B =BB .3 BD .A ∪B =B解析:选 C 化简 A ={y |y ≥-1},因此 A ∩B ={x |x ≥2}=B .4.设集合 A ={3,m },B ={3m,3},且 A =B ,则实数 m 的值是________. 解析:由集合 A ={3,m }=B ={3m,3},得 3m =m ,则 m =0.答案:05.已知 A ={x |x 2-3x +2<0}, ={x |1<x <a },若 A ⊆B ,则实数 a 的取值范围是________. 解析:因为 A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以 a ≥2.答案:[2,+∞)二保高考,全练题型做到高考达标⎧ ⎫ ⎩⎭A .2C .4B .3D .52-x3解析:选C∵∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x值分别为5,3,1,-1,故集合A中的元素个数为4.2.已知集合M={x|0≤x≤2},N={x|x2-2x-3>0},则下列结论正确的是()A.M⊆NC.(∁RM)⊆NB.M⊆(∁RN)D.(∁RM)⊆(∁RN)解析:选B由题意,得N={x|x<-1或x>3},所以∁RN={x|-1≤x≤3},又M={x|0≤x≤2},所以M是∁R N的子集,故选B.3.(2017·中原名校联考)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3]B.(-∞,1]∪(2,+∞)C.[1,2)D.(-∞,0)∪[1,+∞)解析:选D因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).4.(2017·河南六市第一次联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3)C.(0,1)B.(0,1)∪(1,3)D.(-∞,1)∪(3,+∞)解析:选B∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0<a<3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.5.已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是()A.{x|2<x<3}C.{x|0≤x<6}B.{x|-1<x≤0}D.{x|x<-1}解析:选C由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁U B)∩A,因为∁U B={x|x≥0},所以(∁UB)∩A={x|0≤x<6},故选C.6.设集合A={x|x2-x-2≤0},B={x|x<1,且x∈Z},则A∩B=________.⎩解析:依题意得 A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此 A ∩B ={x |-1≤x <1,x∈Z}={-1,0}.答案:{-1,0}7 . 设 全 集 为 R , 集 合 A = {x |x 2 - 9 < 0} , B = {x | - 1 < x ≤5} , 则 A ∩( ∁ R B ) = ______________.解析:由题意知,A ={x |x 2-9<0}={x |-3<x <3},∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1 或 x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1 或 x >5}={x |-3<x ≤-1}. 答案:{x |-3<x ≤-1}8.设全集 U ={x ∈N *|x ≤9}.∁U (A ∪B )={1,3},A ∩(∁U B )={2,4},则 B =________. 解析:∵全集 U ={1,2,3,4,5,6,7,8,9},由∁U (A ∪B )={1,3}, 得 A ∪B ={2,4,5,6,7,8,9},由 A ∩(∁U B )={2,4}知,{2,4}⊆A ,{2,4}⊆∁U B . ∴B ={5,6,7,8,9}.答案:{5,6,7,8,9}9.已知集合 A ={x |4≤2x ≤16},B =[a ,b ],若 A ⊆B ,则实数 a -b 的取值范围是________.解析:集合 A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为 A ⊆B ,所以a ≤2,b ≥4,所以 a -b ≤2-4=-2,即实数 a -b 的取值范围是(-∞,-2].答案:(-∞,-2]10.已知集合 A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}. (1)若 A ∩B =[0,3],求实数 m 的值;(2)若 A ⊆∁R B ,求实数 m 的取值范围. 解:由已知得 A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为 A ∩B =[0,3],⎧⎪m -2=0,所以⎨ 所以 m =2.⎪m +2≥3.(2)∁R B ={x |x <m -2 或 x >m +2}, 因为 A ⊆∁R B ,所以 m -2>3 或 m +2<-1,即 m >5 或 m <-3.因此实数 m 的取值范围是(-∞,-3)∪(5,+∞).⎧ ⎪ A =⎨x ⎪x ≥-4,x ∈R ⎬,B ={x |x <0,x ∈R},则 A ⊕B =(A.⎝-4,0⎭B.⎣-4,0⎭C.⎝-∞,-4⎭∪[0,+∞)D.⎝-∞,-4⎦∪(0,+∞)⎧ ⎪=⎝-∞,-4⎭∪[0,+∞).故选 C.⎩ ⎭①若 2m ≥1-m ,即 m ≥ 时,B =∅,符合题意;1⎧⎪m <1,②若 2m <1-m ,即 m < 时,需⎨ ⎪⎩1-m ≤1 ⎧⎪m <1, 或⎨得 0≤m < 或∅,即 0≤m < .三上台阶,自主选做志在冲刺名校1.已知集合 A ={x |x 2-2 017x +2 016<0},B ={x |log 2x <m },若 A ⊆B ,则整数 m 的最 小值是()A .0C .11B .1D .12解析:选 C 由 x 2-2 017x +2 016<0,解得 1<x <2 016,故 A ={x |1<x <2 016}.由 log 2x <m ,解得 0<x <2m ,故 B ={x |0<x <2m }.由 A ⊆B ,可得 2m ≥2 016,因为 210=1 024,211=2 048,所以整数 m 的最小值为 11.2.对于集合 M ,N ,定义 M -N ={x |x ∈M ,且 x ∉N },M ⊕N =(M -N )∪(N -M ),设9 ⎫ ⎩⎭)⎛ 9 ⎫ ⎡ 9 ⎫⎛ 9⎫ ⎛ 9⎤9 ⎫ 解析:选 C依题意得 A -B ={x |x ≥0,x ∈R},B -A =⎨x ⎪x <-4,x ∈R ⎬ ,故 A ⊕B⎛ 9⎫3.已知集合 A ={x |1<x <3},集合 B ={x |2m <x <1-m }.(1)当 m =-1 时,求 A ∪B ;(2)若 A ⊆B ,求实数 m 的取值范围; (3)若 A ∩B =∅,求实数 m 的取值范围. 解:(1)当 m =-1 时,B ={x |-2<x <2},则 A ∪B ={x |-2<x <3}.⎧⎪1-m >2m ,(2)由 A ⊆B 知⎨2m ≤1,解得 m ≤-2,⎪⎩1-m ≥3,即实数 m 的取值范围为(-∞,-2]. (3)由 A ∩B =∅,得1331 13 33 3 ⎪⎩2m ≥3,综上知m≥0,即实数m的取值范围为[0,+∞).。

2019届高三数学(文)一轮复习课时跟踪训练:第一章集合与常用逻辑用语课时跟踪训练1Word版含解析


的真子集,则实数 a 的取值有 ( )
D.{0,1,2,3}
[ 解析 ] 由 B 中 y= 4-x2,得 4-x2≥0,解得- 2≤x≤2,即 B
=[-2,2].因为 A={ -2,-1,0,1,2,3},所以 A∩B={ -2,-1,0,1,2},
故选 C.
[ 答案 ] C y- 2
13.已知集合 M ={ x|ax-1=0,x∈Z } 是集合 N={y∈Z y ≤0
{ x|0<x≤1} = (0,1],选 B. [ 答案 ] B
4 . (2018 ·广东省惠州高三调研 ) 已知全集 U = R ,集合 A= {1,2,3,4,5} ,B={ x∈R|x≥2} ,则图中阴影部分所表示的集合为 ( )
A .{0,1,2}
B.{0,1}
C. {1,2}
D.{1}
[ 解析 ] 因为 A∩B={2,3,4,5} ,而题图中阴影部分为 A∩(?UB), 所以阴影部分所表示的集合为 {1} .故选 D.
x2+y2=1} ,B={( x,y)|x,y∈R,y=4x2-1} ,则 A∩B 的元素个数 是 ________.
[ 解析 ] 集合 A 是以原点为圆心,半径等于 1 的圆周上的点的集 合,集合 B 是抛物线 y=4x2-1 上的点的集合,观察图象可知,抛物
线与圆有 3 个交点,因此 A∩B 中含有 3 个元素.
课时跟踪训练 (一)
一、选择题
[基础巩固 ]
1.(2017 ·北京卷 )若集合 A={ x|-2<x<1} ,B={ x|x<-1 或 x>3} ,
则 A∩B=( )
A .{ x|-2<x<-1}
B.{ x|-2<x<3}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(一)集合、常用逻辑用语
1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()
A.{1,-3}B.{1,0}
C.{1,3} D.{1,5}
解析:选C因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m=3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()
A.(1,2) B.(1,2]
C.(-2,1) D.[-2,1)
解析:选D由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则()
A.命题綈q:∀x∈R,x2≤0为假命题
B.命题綈q:∀x∈R,x2≤0为真命题
C.命题綈q:∃x0∈R,x20≤0为假命题
D.命题綈q:∃x0∈R,x20≤0为真命题
解析:选D全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.
4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是()
A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b
C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c
解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.
5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
解析:选A由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.
6.已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( )
A .(-∞,-2)
B .[2,+∞)
C .[-2,2]
D .(-∞,-2]∪[2,+∞)
解析:选D 因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,所以m ≥2或m ≤-2.
7.(2017·唐山模拟)已知集合A ={x |x 2-5x -6<0},B ={x |2x <1},
则图中阴影部分表示的集合是( )
A .{x |2<x <3}
B .{x |-1<x ≤0}
C .{x |0≤x <6}
D .{x |x <-1}
解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x <1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.
8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈⎝⎛⎭
⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )
A .p ∧q
B .p ∨(綈q )
C .(綈p )∧q
D .p ∧(綈q )
解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭
⎫0,π2,且tan x =sin x cos x
, ∴0<cos x <1,tan x >sin x ,
∴q 为真命题,选C.
9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.
10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )
A .{x |0<x <1}
B .{x |0<x ≤1}
C .{x |1≤x <2}
D .{x |2≤x <3}
解析:选B 由log 2x <1,得0<x <2,
所以P ={x |0<x <2}.
由|x -2|<1,得1<x <3,
所以Q ={x |1<x <3}.
由题意,得P -Q ={x |0<x ≤1}.
11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x -m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )
A .[1,10]
B .(-∞,-2)∪(1,10]
C .[-2,10]
D .(-∞,-2]∪(0,10] 解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2
-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x 有正实数解,因为当x >0时,2x >1,所以m >1.
因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q 真,所以⎩⎨⎧ m <-2或m >10,m ≤1
或⎩
⎪⎨⎪⎧
-2≤m ≤10,m >1, 所以m <-2或1<m ≤10.
12.(2017·石家庄模拟)下列选项中,说法正确的是( )
A .若a >b >0,则ln a <ln b
B .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1
C .命题“∀n ∈N *,3n >(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”
D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题
解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错;。

相关文档
最新文档