随机变量分布与数字特征

合集下载

第九节 随机变量的数字特征、正态分布

第九节  随机变量的数字特征、正态分布

第九节随机变量的数字特征、正态分布知识点预习1.离散型随机变量的数学期望与方差(1)数学期望(2)方差2.二点分布与二项分布、超几何分布的期望、方差3.正态曲线4.正态曲线的性质5.正态变量在三个特定区间内取值的概率值预习练习题1、判断下面结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( ) (4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(5)均值是算术平均数概念的推广,与概率无关.( ) 2、 (教材改编)某射手射击所得环数ξ的分布列如下: 已知ξ的均值E (ξ)=8.9,则y 的值为( ) A .0.4 B .0.6 C .0.7 D .0.93、设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a4、设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于( )A .5B .8C .10D .16 5、设随机变量X ~B (8,p ),且D (X )=1.28,则概率p 的值是( ) A .0.2 B .0.8 C .0.2或0.8 D .0.166、已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A .73B .4C .-1D .1 7、若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3×2-2B .2-4C .3×2-10D .2-88、有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则D (X )=________.9、某糖厂用自动打包机打包,每包重量X (kg)服从正态分布N (100,1.22),一公司从该糖厂进货1 500包,则重量在(98.8,101.2)的糖包数量为________包.11、抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.例题选讲例1、某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和均值.例2、设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求a ∶b ∶c .例3、某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).例4、计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?例5、已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)( )A .4.56%B .13.59%C .27.18%D .31.74%例6、(12分)甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m 个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为P 2.(1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求P 2的值;(3)设P 2=15,若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的分布列和均值.第九节课堂练习1、若离散型随机变量X 的分布列为 则X 的数学期望E (X )=( )A .2B .2或12C .12D .12、设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是()A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )3、已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.) A .4.56% B .13.59%C .27.18% D .31.74%4、某校在一次月考中约有600人参加考试,数学考试的成绩ξ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.5、为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚,为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:(1)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少? (2)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验. ①求这两种金额之和不低于20元的概率;②若用X 表示这两种金额之和,求X 的分布列和数学期望.6、为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.7、有甲、乙两种棉花,从中各抽取等量的样品进行质量检验,结果如下:其中X表示纤维长度(单位:mm),根据纤维长度的均值和方差比较两种棉花的质量.8、乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与均值.9、某投资公司在2015年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.10、在某次大型考试中,某班同学的成绩服从正态分布N (80,52),现已知该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有多少人.第九节课后作业1.若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3×2-2B .2-4C .3×2-10D .2-82.随机变量ξ的分布列如下,其中a 、b 、c 为等差数列,若E (ξ)=13,则D (ξ)的值为( )A.49B.59C.13D.233.设随机变量X ~N (μ,σ2),且X 落在区间(-3,-1)内的概率和落在区间(1,3)内的概率相等,若P (X >2)=p ,则P (0<X <2)等于( ) A.12+p B .1-p C .1-2pD.12-p 4.一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.从袋子中摸出2个球,其中白球的个数为X ,则X 的均值是________.5.若随机变量X 的概率分布密度函数是f (x )=122π·e -(x +2)28(x ∈R ),则E (2X -1)=________.6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________.7.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率; (2)设这两人中享受折扣优惠的人数为ξ,求ξ的分布列和均值.8.在某次数学考试中,考生的成绩ξ服从正态分布,即ξ~N(100,100),已知满分为150分.(1)试求考试成绩ξ位于区间(80,120]内的概率;(2)若这次考试共有2 000名考生参加,试估计这次考试及格(不小于90分)的人数.9.现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及均值.10.设随机变量X 服从正态分布N (12,σ2),集合A ={x |x >X },集合B ={x |x >12},则A ⊆B 的概率为( )A.14 B.13 C.12D.2311.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E (ξ)为( ) A.16 B.13 C.12D.2312.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.13.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从360天的市区PM2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)在这15天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的分布列.(2)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.14.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:(1)求Y,Z的值;(2)若视频率为概率,求六月份西瓜日销售额的均值和方差;(3)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.。

随机变量的数字特征

随机变量的数字特征

1 2 3 求E(Z)
-1 0 0.1 1
0.4 0.2 0.4
解:方法一:
(1) E(X)=1*0.4+2*0.2+3*0.4=2 E(Y)=-1*0.3+0*0.4+1*0.3=0
方法二:
(1)E(X)=0.2*1+0.1*2+0*0.3+0.1*1+0*2+0.3*3+0.1*1+0.1*2+0.1*3=2
E( X ) xk pk . k 1
E( X ) 0 0.2 0.2 0.2 0.2 0.2 1 (元)
例题:有 5 个相互独立工作的电子装置,它们的寿命Xk (k 1, 2,3,4,5) 服从同一指数分布,其概率密度为
f
(
x
)
1
e
x
/
,
x 0, 0.
0,
x 0,
1) 若将5个装置串联成整机,求整机寿命 N 的数学期望;
若 g(xk )pk 绝对收敛,则有
k 1
E(Y ) E[g( X )] g(xk )pk .
k 1
2). X 是连续型随机变量,概率密度为 f (x),
若 g(x) f (x)dx 绝对收敛,则有
E(Y ) E[g( X )] g(x) f (x)dx
(证明超过范围,略)
说明: 在已知Y是X的连续函数前提下,当我们求
E(Y)时不必知道Y的分布, 只需知道X的分布就可
以了.
Y x42
0
4
例: 设随机变量 X 的分布律为 X -2
0
2
求:E( X ), E( X 2 ), E(3X 2 5). P 0.4 0.3 0.3 解:(1)E(X) 2 0.4 0 0.3 2 0.3 0.2,

随机变量的数字特征(2)

随机变量的数字特征(2)

性质2 设c是常数,若X的数学期望EX存在,则EcX也存在,
且有 EcX=cEX
证 以连续型X为例。设X的密度函数为(x), 而积分
|cx|(x)dx|c| |x|(x)dx
由于EX存在且收敛,故EcX存在。故有
E cXcx(x)dxcx(x)dxcE X
性质3 若随机向量(XY)的数学期望(EX,EY)存在,则X+Y的数学
则函数f(i X)的数学期望存在,k记为Ef(X),且有
Ef(X) f(xi)pi
i
二维离散型随机变量函数的数学期望
设二维离散型随机变量(X,Y)的联合分布律为
P{X=xi,Y=yj}=pij (i,j=1,2,…)
如果 g(xi,yj) pij收敛,则g(X,Y)的数学期望存在,记为
Eg(X,Yi),j,且有
X的一切可能值为:-1, 1, 2, 3 可以用考察EX是否等于零来评价这一游戏规则对下注者 是否有利。 设掷3次骰子,恰好出现所压的数字的次数为Y,则
Y~B(3,1/6)
P(Y k)C 3 k 1 6 k 6 5 3k k0,1,2,3
而Y=0时,X=-1; Y=1时, X=1; Y=2时, X=2; Y=3时, X=3; 所以,X的分布律为
特别有
E g (X ,Y ) g (x ,y )f(x ,y )d x d y
EX xf(x,y)dxdy x f(x,y)dydx xfX(x)dx
EY yf(x,y)dxdy y f(x,y)dxdy yfY(y)dy
式中fX(x) 和fY(y)分别为为X和Y的密度函数。
期望也存在,且有 E(X+Y) = EX+EY 。
证 以连续型(XY)为例。设联合密度函数为f(x,y),

随机变量的数字特征

随机变量的数字特征

为该生各门课程的算术平均成绩.

n

xi
ωi
n
i1
ωj
n
xivi , 其中 vi ωi
i 1
j1
n
ωj ,
j1
则称 xω为该生的加权平均成绩. 显然算术平均成绩是加权平均成绩的一种
特例,

vi

1 n
,
可见加权平均才充分的体现了
平均值的意义.
2. 离散型随机变量的数学期望
k 1
注1º EX是一个实数, 而非变量, 它是一种加 权平均, 与一般的平均值不同, 它从本质上体现 了随机变量 X 取可能值的真正的平均值, 也称 均值.
注2º 级数的绝对收敛性保证了级数的和不随 级数各项次序的改变而改变, 之所以这样要求 是因为数学期望是反映随机变量X 取可能值的 平均值, 它不因可能值的排列次序而改变.
本章即将学习的数字特征是: 数学期望、方差、相关系数、矩.
§4.1 随机变量的数学期望
一、数学期望的概念
二、随机变量函数的数学期望
三、数学期望的性质 四、应用实例

停 下
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒
约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望
3. 常见离散型随机变量的数学期望
例1 (二项分布) 设随机变量X~Bn, p, 求EX. 解 设随机变量 X 服从参数为 n, p 二项分布, 其分布律为

2.2随机变量的数字特征

2.2随机变量的数字特征


数学期望也称为均值。
返回主目录
二、 随机变量的函数的分布
随机变量的函数
设 X 是一随机变量,Y 是 X 的函数, g X , 则 Y Y
也是一个随机变量.当 X 取值 x时,Y 取值 y g x
本节的任务就是:
已知随机变量 X 的分布,并且已知Y g X , 要求随机变量Y 的分布.
返回主目录
此时称Y 服从自由度为1的 2分布。
二、 随机变量的函数的分布
例 6
设 随机变量 X 的密度函数为 f X x , X ,试 Y 求随机变量Y 的密度函数 f Y y .
设随机变量X 的分布函数为FX y ,随机变量 Y 的分布函数为FY y
解:
FY y P y P X y Y
解:(1) 先求 Y = X 2 的分布函数 FY(y):
10 由于 Y X 2 0, 故当 y 0 时 FY ( y) 0.
20 当 y 0 时, FY ( y ) P{Y y} P{ X 2 y} P{ y X y }
y y
f X ( x)dx.
Y = (X-1)2
的分布律.
1 2 X -1 0 pk 0.2 0.3 0.1 0.4
解: Y 有可能取的值为 0,1,4. 且 Y=0 对应于 ( X-1)2=0, 解得 X=1, 所以, P{Y=0}=P{X=1}=0.1,
返回主目录
二、 随机变量的函数的分布
例 2(续) Y=(X-1)2 同理,
(1) 旅客 8:00 到站,求他侯车时间的数学期望。 (2) 旅客 8:20 到站,求他侯车时间的数学期望。
解:设旅客的候车时间为 X(以分记)

大学文科数学-概率论-随机变量的数字特征

大学文科数学-概率论-随机变量的数字特征

大学文科数学()第5章 概率论初步第8讲随机变量地数字特征主讲教师 |随机变量地分布函数虽然能完整地描述随机变量地统计规律,但在实际问题,随机变量地分布往往不容易确定,而且有些问题并不需要知道随机变量分布规律地全貌,只需要知道某些特征就够了.例如:(1)考察LED灯管地质量时,随机变量表示灯管地寿命,但我们常常关注地是灯管地平均寿命,这说明随机变量地"平均值" 是一个重要地数量特征;(2)比较两台机床生产质量地高低,不仅要看它们生产地零件地尺寸是否合格(误差范围内),还需要考察每个零件尺寸与平均尺寸地偏离程度,只有偏离程度较小地才是精度高地,这说明随机变量与其"平均值"地偏离程度也是一个重要地数量特征.这些刻画随机变量某种特征地数量指标称为随机变量地数字特征,它们在理论与实践上都具有重要地意义.￿01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 定义5.18即￿简称(常数项)级数,记作如果给定一个数列则表达式叫作(常数项)无穷级数,其￿叫作级数地项叫作级数地首项,级数地第项叫作级数地通项或一般项.Ὅ 定义5.19级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿地前项与叫作级数地部分与,记作,即Ὅ 定义5.20若级数￿￿￿￿￿￿￿￿￿￿￿￿地部分与数列收敛于即￿则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿收敛,其与为￿也称级数￿￿￿￿￿￿￿￿￿￿￿￿收敛于,记为￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿若级数地部分与数列发散,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿发散.利用极限地有关性质,可以得到收敛级数地基本性质:性质5.8(级数收敛地必要条件):如果级数 收敛,则.性质5.9:若级数 收敛于与,则级数 也收敛,其与为(为常数).性质5.10:如果级数 发散,当时,级数 也发散.性质5.11:如果级数 与 分别收敛于与与,则级数 也收敛,且其与为.性质5.12:如果级数 收敛, 发散,级数 发散.性质5.13:在级数去掉,加上或改变有限项,不会改变级数地敛散性.性质5.14:如果级数 收敛,则在不改变其各项次序地情况下,对该级数地项任意添加括号后所形成地级数仍收敛,且其与不变.性质5.15:如果加括号后所形成地级数发散,则原级数也发散.Ὅ 定义5.21若级数￿￿￿￿￿￿￿￿￿￿￿地每一项都是非负地,即,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿为正项级数.Ὅ 定义5.22数项级数或其,称为交错级数.相应地,正负项可以任意出现地级数称为任意项级数.Ὅ 定义5.23如果级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿各项地绝对值所构成地正项级数￿￿￿￿￿￿￿￿￿￿￿￿￿收敛,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛;如果级数￿￿￿￿￿￿￿￿￿￿￿￿￿收敛,而级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿发散,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿条件收敛.Ὅ 定理5.8若级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛,则级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿一定收敛.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 例1解甲:乙:问:甲,乙两谁地技术好些?￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿甲,乙两工用相同地设备生产同一种产品,设两各生产10组产品,每组出现地废品件数分别记为废品件数与相应地组数记录如下:思路￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿从上面地统计记录很难立即看出结果,我们可以从两地每组平均废品数来评定其技术优劣.解甲地每组平均废品数为:乙地每组平均废品数为故从每组地平均废品数看,乙地技术优于甲.(件),(件),὎ 注题给出地是事件在10次试验发生地频率,当试验次数很大时,￿这个频率接近于发生地概率此时平均废品数可表示为:由此引入随机变量平均值地一般概念—数学期望.Ὅ 定义5.24设离散型随机变量地分布律为若级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛,则称其与为随机变量地数学期望,简称期望或均值,记为,即:὎ 注因此要求级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛,保证数学期望地唯一性.上述概念可推广至连续性随机变量地情形,有:￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿随机变量地数学期望完全由地分布律确定,不应受地可能取值地排列次序地影响,Ὅ 定义5.25设连续型随机变量地概率密度为,若积分绝对收敛,则称该积分值为随机变量地数学期望,简称期望或均值,记为,即Ὅ 例2解求下列离散型随机变量地数学期望:(1)￿(0-1)分布;￿￿￿￿￿￿￿￿￿￿(2)￿泊松分布.￿于是(1)￿设随机变量X 服从(0-1)分布,分布律如下:.￿于是(2)￿设随机变量服从参数为地泊松分布,即,则.Ὅ 例3解￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿求下列离散型随机变量地数学期望.￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿(1)￿￿指数分布;￿￿￿￿￿￿￿￿￿￿￿(2)￿￿正态分布￿.￿于是￿￿￿￿￿￿￿￿￿￿(1)￿￿设随机变量￿X￿服从参数为地指数分布,其概率密度为(2)￿￿设随机变量￿X￿服从正态分布,其概率密度为￿于是:Ὅ 例4解￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿一工厂生产地某种设备地寿命X (以年计)服从参数为1/4地指数分布,工厂规定:出售地设备若在售出一年之内损坏可予以调换.若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元.求厂方出售一台设备净盈利地数学期望.因为服从参数为地指数分布,故分布函数为使用一年不损坏地概率为则一台设备在一年内损坏地概率为设￿表示出售一台设备地净盈利,则其分布律为:故￿(元)01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差在实际问题,常常需要求出随机变量函数地数学期望。

概率论与数理统计 第4章 随机变量的数字特征


解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15

8-5随机变量的数字特征

解: 句子中共8个单词,其中5个单词含3个字母,其 余3个单词分别含2个字母、4个字母、9个字母。 因此,X 的概率分布为
X xk
2
34
9
P{ X xk }
1
8
5 8
1 8
1 8
EX 2 1 3 5 4 1 9 1 15
8
8
8
84
例2 已知连续型随机变量 X 的分布密度为
p( x)
2( x 1) 3 , x 0
随机变量的这些数字特征不仅在一定程度上可以简 单刻划出随机变量的基本性态,而且可以用数理统计 的方法估计出它们。因此,对它们的研究在理论上、 实际上都有重要意义。
一、数学期望(均值)---数据的中心
1、从加权平均到数学期望
一门课程,平时成绩p占20%,期末成绩m占 80%,某生平时得90分,期末得82分,则该生该课程 的总成绩 z 为平时成绩p和期末成绩m的加权平均,即
.
0,
x0
求 EX 。
解: EX
xp( x)dx
2x 0 ( x 1)3 dx
2
1
1 dx
0 ( x 1)2 ( x 1)3
1
2
(x 1)2 x 1 0
1
2
lim
x
(x
1)2
x1
(1 2) 1
2、常见分布的数学期望
• 二项分布 X B(n, p) EX n p
• 泊松分布 X P( λ) EX λ
z 20% p 80% m 0.2 90 0.8 82 83.6
一般地,一组数 x1, x2 , , xn 在一组权
p1, p2 , , pn 下的加权平均为 p1 x1 p2 x2 pn xn

《概率论与数理统计》课件 第七章 随机变量的数字特征


i 1,2, , 如果 xi pi , 则称 i 1 E( X ) xi pi 为随机变量X的数学期望; i 1
或称为该分布的数学期望,简称期望或均值.
(2)设连续随机变量X的密度函数为p( x),
如果
+
x p( x)dx ,
则称
-
E( X ) xp( x)dx 为随机变量X的数学期望.
5
例2.求二项分布B(n, p)的数学期望.
P(X
k)
n!
k!n
k !
pk
(1
p)nk ,k
1, 2,
, n.
n
解:EX kP{ X k}
k0
n
k
k0
n!
k!n
k !
pk
(1
p)nk
n
np
k 1
k
n 1! 1!n
pk1
k!
(1
p)nk
np[ p (1 p)]n1 np.
特别地,若X服从0 1分布,则EX p.
6
例3. 求泊松分布P( )的数学期望.
注:P( X k) k e , k 1, 2, .
k!
解:EX k k e e
k1
e
k1
k0 k !
k1 k 1 !
k1 k 1 !
ee
e x 1 x 1 x2 1 xn [这里,x ]
当 a 450时,平均收益EY 最大.
28
第二节 方差与标准差
29
引例
比较随机变量X、Y 的期望
X3 4 5 Y1 4 7 P 0.1 0.8 0.1 P 0.4 0.2 0.4
01 2 3 4 5 67

2.2 随机变量的数字特征



3.推论: DX=0 存在一个常数a 使得P{Xa}1
P22-19
数字特征
作业:第55页第2、3题.
补充: 教材第55页: 第13题
一 张 贴 现 债 券 到 期 还付 息 共 计 本 1025 , 市 场 上 同 类 债 元 券 的 收 益 率 为 随 机 变 , 记 作K %, 设 K 的 密 度 函 数 为 量 1 , 0 x5 f ( x) 5 0 , 其 他 求 这 张 债 券 的 市 场 定应 该 为 多 少 价 .
i 1 i 1
( 2) 若X为连续型随机变量 , 密度函数为( x ), 且 | g ( x ) | f ( x )dx , f


则Eg ( X )存在, 且Eg ( X ) g ( x ) f ( x )dx.


例1 设X的概率分布如下表 求E(X2)
P22-10
P22-17
已知EX1 求DX
1/6
数字特征
例3 X为一随机变量 方差存在 令 l(C)E(XC)2 证明 当且仅当CEX时 l(C)达到最小值 最小值为DX
证明 l(C)E(XC)2E[(XEX)(EXC)]2
E[(XEX)22(XEX)(EXC)(EXC)2] E(XEX)2(EXC)2
数字特征
2008年考研数学四真题(11分)
设某企业生产线上产品合格率为0.96,不合格产品中只有
3/4产品可进行在加工且再加工的合格率为0.8,其余均为废 品,每件合格品获利80元,每件废品亏损20元。为保证该 企业每天平均利润不低于2万元,问企业每天至少生产多少 件产品?
P22-22
E(XEX)2DX
显然 当且仅当CEX时 最后一个不等式的等号成立 故l(C) 在CEX时达到最小值 且最小值为DX
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档