二次根式教学设计五篇

合集下载

二次根式教案设计

二次根式教案设计

二次根式教案设计【篇一:16.1二次根式教学设计】16.1二次根式第一课时吕彦启 2014、2、7教学目标:1、了解二次根式的意义.2、掌握二次根式的基本性质。

3、会用二次根式的性质进行简单的二次根式的化简。

4、会判断二次根式,能求简单的二次根式中的字母的取值范围。

5、经历二次根式的基本性质、运算法则的探究过程,培养学生从具体到抽象的概括能力6、经历观察、比较、总结和应用数学等活动,感受数学活动充满了探索性与创造性。

体现发现的快乐,并提高应用的意识。

教学重难点重点:二次根式的概念及意义难点:二次根式的判断与字母取值的确定教与学的互动设计一、创设情境、导入新课复习⑴什么叫做一个数的平方根?如何表示?⑵什么是一个数的算术平方根?如何表示?1、平方根的性质:正数有两个平方根且互为相反数;0有一个平方根就是0;负数没有平方根。

1、16的平方根是什么? 算术平方根是什么?2、03、-7有没有平方根?有没有算术?你认为所得的各代数式有哪些共同特点?表示一些正数的算术平方根.二次根式的概念:a(a≥0)的式子叫做二次根式.请你凭着自己已有的知识,说说对二次根式 a的认识!a≥0)的式子叫做二次根式.1.表示a的算术平方根2. a可以是数,也可以是式.3. 形式上含有二次根号4. a≥0, a ≥0( 双重非负性)(1) , (2) 6, (3) 5.既可表示开方运算,也可表示运算的结果. 下列各式是二次根式吗? -12,-m,(m≤0 (5) xy(x,y 异号)(6) a2+1 ,(7)3(1 1、判断下列代数式中哪些是二次根式?22a+2a+2m-3x≤0 求下列二次根式中字母的取值范围: 12(3a-3 (2a+11-2a求二次根式中字母的取值范围的基本依据:①被开方数不小于零;②分母中有字母时,要保证分母不为零。

1、 x取何值时,下列二次根式有意义?1(1)x-1x≥1(2)-3xx≤0x0(3)4x2x为全体实数(4)x 1 ) x3(a≥0)(5(6)x≠02 x当x为当x为当x为怎样的实数时,下列各式有意义?x-3+6-x 12-x+x-13x2+2 x+1 4x+1+y-3=0时, 1(),y=() x=2 2、已x+5+6-3y+(z+2)=0求xyz的值。

二次根式教案四篇

二次根式教案四篇

二次根式教案四篇二次根式教案篇1一、教学目标1.了解二次根式的意义;2.把握用简洁的一元一次不等式解决二次根式中字母的取值问题;3.把握二次根式的性质和,并能敏捷应用;4.通过二次根式的计算培养学生的逻辑思维能力;5.通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,表示的是算术平方根.(二)引入新课我们已遇到的这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应留意的问题,引导学生总结:(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必需保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题依据二次根式定义,由学生分析、回答.例1当a为实数时,下列各式中哪些是二次根式?分析:,,,、、、四个是二次根式.因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0例2x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3当字母取何值时,下列各式为二次根式:(1)(2)(3)(4)分析:由二次根式的定义,被开方数必需是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式.(2)-3x0,x0,即x0时,是二次根式.(3),且x0,x0,当x0时,是二次根式.(4),即,故x-20且x-20,x2.当x2时,是二次根式.例4下列各式是二次根式,求式子中的字母所满意的条件:(1);(2);(3);(4)分析:这个例题依据二次根式定义,让学生分析式子中字母应满意的条件,进一步巩固二次根式的定义,.即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+30,得.(2)由,得3a-10,解得.(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是,式子是二次根式.所以所求字母x的取值范围是全体实数.(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满意的.条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必需大于等于零.(四)练习和作业练习:1.推断下列各式是否是二次根式分析:(2)中,,是二次根式;(5)是二次根式.因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材P.172习题11.1;A组1;B组1.六、板书设计二次根式教案篇2目标1.熟练地运用二次根式的性质化简二次根式;2.会运用二次根式解决简洁的实际问题;3.进一步体验二次根式及其运算的实际意义和应用价值。

二次根式教案(通用8篇)

二次根式教案(通用8篇)

二次根式教案(通用8篇)二次根式教案(通用8篇)作为一位兢兢业业的人民教师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。

那么什么样的教案才是好的呢?以下是小编整理的二次根式教案8篇,希望能够帮助到大家。

二次根式教案篇1教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点最简二次根式的定义。

教学难点一个二次根式化成最简二次根式的方法。

教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。

第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1 把下列各式化成最简二次根式:例2 把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

二次根式教案合集6篇

二次根式教案合集6篇

二次根式教案合集6篇二次根式教案篇1教学设计思想新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。

本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。

然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。

本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

教学目标知识与技能1.知道什么是二次根式,并会用二次根式的意义解题;2.熟记二次根式的性质,并能灵活应用;过程与方法通过二次根式的概念和性质的学习,培养逻辑思维能力;情感态度价值观1.经历将现实问题符号化的过程,发展应用的意识;2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

教学重点和难点重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;难点:确定二次根式中字母的取值范围。

教学方法启发式、讲练结合教学媒体多媒体课时安排1课时二次根式教案篇2一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案篇31.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

人教版九年级上册数学教案5篇

人教版九年级上册数学教案5篇

人教版九年级上册数学教案5篇人教版九年级上册数学教案篇1二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。

2、使学生了解两个二次根式的商仍然是一个二次根式或有理式。

3、使学生会将分母中含有一个二次根式的式子进行分母有理化。

4、经历探索二次根式的除法运算法则过程,培养学生的探究精神和合作交流的习惯。

教学过程一、创设问题情境问题l 上一节课,我们采取什么方法来研究二次根式的乘法法则?问题2 是否也有二次根式的除法法则呢?问题2 两个二次根式相除,怎样进行呢?二、加强合作,探索规律让抽象的问题具体化,这是我们研究抽象问题的一个重要方法、请同学们参考二次根式的乘法法则的研究,分组讨论两个二次根式相除,会有什么结论,并提出你的见解,然后其他小组同学补充,归纳为:提问:1、a和b有没有限制?如果有限制,其取值范围是什么?2、= (a≥0,b0)成立吗?为什么?请举例。

三、范例例1、计算。

教学要求:(1)对于(1)可由教师解答示范;(2)对于(2)可由学生自己计算。

提问:1、除了课本中的解答外,是否还有其他解法?如果有,请给出另外解法。

2、哪种方法更简便?例2、化简:(要求分母不带根号)说明:二次根式的化简要求满足以下两条:(1)被开方数的因数是整数,因式是整式,也就是说“被开方数不含分母”。

(2)被开方数中不含能开得尽的因数或因式,也就是说“被开方数的每一个因数或因式的指数都小于2”。

把一个二次根式化简的具体方法是:化去根号下的分母;并把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外面。

四、做一做化简:教学要点:(1)叫两位同学板演,其他同学做完练习进行评价、(2)可用提问的方式引导学生探索其他解法。

五、课堂练习P12 练习1、(3)、(4)六、小结本节课,我们学习了二次根式的除法法则,即= (a≥0,b0),并利用它进行计算和化简。

化简要做到“被开方数不含分母”和“被开方数的每一个因数或因式的指数都小于2”。

精选二次根式教案4篇

精选二次根式教案4篇

精选二次根式教案4篇二次根式教案篇1教学设计思想新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。

本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。

然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。

本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

教学目标知识与技能1.知道什么是二次根式,并会用二次根式的意义解题;2.熟记二次根式的性质,并能灵活应用;过程与方法通过二次根式的概念和性质的学习,培养逻辑思维能力;情感态度价值观1.经历将现实问题符号化的过程,发展应用的意识;2.通过二次根式性质的.介绍渗透对称性、规律性的数学美。

教学重点和难点重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;难点:确定二次根式中字母的取值范围。

教学方法启发式、讲练结合教学媒体多媒体课时安排1课时二次根式教案篇21.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

二次根式 教学设计示例2(优秀4篇)

二次根式 教学设计示例2(优秀4篇)

二次根式教学设计示例2(优秀4篇)次根式教案篇一1.请同学们回忆(≥0,b≥0)是如何得到的?2.学生观察下面的例子,并计算:由学生总结上面两个式的关系得:类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:(≥0,b0)使学生回忆起二次根式乘法的运算方法的推导过程。

类似地,请每个同学再举一个例子,请学生们思考为什么b的。

取值范围变小了?与学生一起写清解题过程,提醒他们被开方式一定要开尽。

对比二次根式的乘法推导出除法的运算方法增强学生的自信心,并从一开始就使他们参与到推导过程中来。

对学生进一步强化被开方数的取值范围,以及分母不能为零。

强化学生的解题格式一定要标准。

教学过程设计问题与情境师生行为设计意图活动二自我检测活动三挑战逆向思维把反过来,就得到(≥0,b0)利用它就可以进行二次根式的化简。

例2化简:(1)(2)(b≥0).解:(1)(2)练习2化简:(1)(2)活动四谈谈你的收获1.商的算术平方根的性质(注意公式成立的条件).2.会利用商的算术平方根的性质进行简单的二次根式的化简.找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足。

二次根式的乘法公式可以逆用,那除法公式可以逆用吗?找学生口述解题过程,教师将过程写在黑板上。

请学生仿照例题自己解决这两道小题,组长检查本组的学习情况。

请学生自己谈收获,并总结本节课的主要内容。

为了更快地发现学生的错误之处,以便纠正。

此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难。

让学困生在自己做题时有一个参照。

充分发挥组长的作用,尽可能在课堂上将问题解决。

次根式教案篇二一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。

2.内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。

二次根式教案四篇

二次根式教案四篇

二次根式教案四篇二次根式教案四篇作为一名教学工,时常需要编写教案,教案有助于学生理解并把握系统的学问。

写教案需要留意哪些格式呢?下面是我帮大家整理的二次根式教案4篇,欢迎阅读,希望大家能够宠爱。

二次根式教案篇1第十六章二次根式代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,0,∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题表达了数形结合的思想.已知a,b,c为三角形的三条边,则+= .〔解析〕根据三角形三边的关系,先推断a+b-c与b-a-c的符号,再去根号、确定值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.[解题策略] 此类化简问题要特别留意符号问题.化简:.〔解析〕题中并没有明确字母x的取值范围,需要分x≥3和x<3两种状况考虑.解:当x≥3时,=|x-3|=x-3;当x<3时,=|x-3|=-(x-3)=3-x.[解题策略] 化简时,先将它化成|a|,再根据确定值的意义分状况进行商议.5OM二次根式教案篇2教学目的:1、在二次根式的混合运算中,使学生把握应用有理化分母的方法化简和计算二次根式;2、会求二次根式的代数的值;3、进一步提高学生的综合运算能力。

教学重点:在二次根式的混合运算中,灵敏选择有理化分母的方法化简二次根式教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值教学过程:一、二次根式的混合运算例1 计算:分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最终进行除法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式教学设计五篇二次根式教学设计1一.教学目标:(一)知识与技能:1.了解二次根式的概念,会确定二次根式成立的条件。

2.会用二次根式性质进行有关计算。

3.了解逆用公式在实数范围内因式分解。

(二)过程与方法:体验性质的推导过程,感受由特殊到一般的方法。

(三)情感态度:激发对数学的兴趣。

二.教学重点:二次根式成立的条件,双重非负性;用性质进行计算。

三.教学难点性质的逆用。

四.教学准备:课件五.教学过程(一)复习提问1.什么叫二次根式?2.下列各式是二次根式,求式子中的字母所满足的条件:(3)∵x取任何值都有2x2≥0,因此2x2+1>0,故x的取值为任意实数.(二)二次根式的简单性质上节课我们已经学习了二次根式的定义,并了解了第一个简单性质我们知道,正数a有两个平方根,分别记作零的平方根是零。

引导学生总结出,其中,就是一个非负数a的算术平方根。

将符号“”看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?请分析:引导学生答如时才成立。

时才成立,即a取任意实数时都成立。

我们知道如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.(三)小结1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.2.有关公式的应用。

(1)经常用于乘法的运算中.(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.二次根式教学设计2一.情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为xx,面积为S的正方形的边长为xx(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为xxm。

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=xx。

问题2:上面得到的式子,分别表示什么意义?它们有什么共同特征?二.合作探究探究点一:二次根式的定义下列各式中,哪些是二次根式,哪些不是二次根式?解析:要判断一个根式是不是二次根式,首先是看根指数是不是2,第二是看被开方数是不是非负数。

解:因为xx=,(x≤3),(ab≥0)中的根指数都是2,且被开方数为非负数,因此都是二次根式的根指数不是2,(x≥0),的被开方数小于0,因此不是二次根式。

方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数。

探究点二:二次根式有意义的条件类型一根据二次根式有意义求字母的取值范围求使下列式子有意义的x的取值范围。

解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解。

解:(1)由题意得4-3x>0,解得x<.当x<时,有意义;(2)由题意得解得x≤3且x≠2.当x≤3且x≠2时,有意义;(3)由题意得解得x≥-5且x≠0.当x≥-5且x≠0时,有意义。

方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零。

类型二利用二次根式的非负性求解(1)已知a、b满足+|b-|=0,解有关x的方程(a+2)x+b2=a-1;(2)已知x、y都是实数,且y=++4,求yx的平方根。

解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x的值,进而求得y的值,进而可求出yx的平方根。

解:(1)根据题意得解得则(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;(2)根据题意得解得x=3.则y=4,故yx=43=64,±=±8,∴yx的`平方根为±8。

方法总结:二次根式和绝对值都有非负性,几个非负数的和为0,这几个非负数都为0。

探究点三:和二次根式有关的规律探究性问题先观察下列等式,再回答下列问题。

①=1+-=1;②=1+-=1;③=1+-=1.(1)请你根据上面三个等式提供的信息,写出的结果;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数)。

解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子。

解:(1)=1+-=1;(2)=1+-=1(n为正整数).方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来。

三.板书设计1.二次根式的定义一般地,我们把形如(a≥0)的式子叫做二次根式。

2.二次根式有意义的条件被开方数(式)为非负数;有意义?a≥0。

通过将新知识与旧知识进行联系与对比,随后由学生了解的实际问题出发,用已有的知识进行探究,由此引入二次根式。

在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣。

二次根式教学设计3一.教学目标1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;2.会进行简单的二次根式的除法运算;3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;4.培养学生利用二次根式的除法公式进行化简与计算的能力;5.通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提升学生的归纳总结能力;6.通过分母有理化的教学,渗透数学的简洁性。

二.教学重点和难点1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行。

2.难点:二次根式的除法与商的算术平方根的关系及应用。

三.教学方法从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节内容可引导学生自学,进行总结对比。

四.教学手段利用投影仪。

五.教学过程(一)引入新课学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。

)学生观察下面的例子,并计算:由学生总结上面两个式的关系得:类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:(二)新课商的算术平方根。

一般地,有(a≥0,b>0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义。

引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算。

二次根式教学设计4一.教学目标1.了解二次根式的意义;2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3.掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5.通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二.教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三.教学方法启发式、讲练结合。

四.教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:通过练习使学生进一步理解平方根、算术平方根的概念。

观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,表示的是算术平方根。

(二)引入新课我们已遇到的这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a0时才叫二次根式,是二次根式吗?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式。

下面例题根据二次根式定义,由学生分析、回答。

二次根式教学设计5教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会利用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点最简二次根式的定义。

教学难点一个二次根式化成最简二次根式的方法。

教学过程一.复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二.讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。

第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1 把下列各式化成最简二次根式:例2 把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三.巩固练习1.把下列各式化成最简二次根式:2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

相关文档
最新文档