人教高中化学 选修三 第一章 第一节 原子结构知识点

合集下载

高中化学《选修三》知识要点

高中化学《选修三》知识要点

高中化学《选修三》知识要点第一章原子结构与性质第一节原子结构1.原子的诞生①宇宙诞生于一次大爆炸,爆炸产生了大量的氢、少量的氦以及极少量的锂。

②氢是宇宙中最丰富的元素,约占宇宙原子总数的88.6%,氦约占氢的1/8,它们合起来约点宇宙元素的99.7%以上,其它90多种元素不到1%。

2.能层与能级①能层与能级划分依据:能层划分是按电子离核的远近和能量的高低。

离核越近的电子能量越低;K<L<M<N<O<P……能级划分的依据是同一能层中电子的能量也不相同,电子云的形状和伸展方向不同。

能层能级的数目与能层系数相同。

②能级的表示:1s-2s-2p-3s-3p-3d-4s-4p-4d-4f-……③能级能量大小关系:ns<np<nd<nf3.构造原理:(1)根据构造原理,按箭头顺序电子进入能级,能量最低,最稳定。

(2)按照构造原理,将电子进入能级的顺序可以分为能级组,能级组能量大小关系为:ns<(n-2)f<(n-1)d<np4.原子核外电子排布遵循的规律①能量最低原理:按照构造原理进行电子排布,原子的能量最低,最稳定。

②泡利原理:在一个原子轨道里,最多容纳2个电子,且自旋方向相反。

③洪特规则:电子在进入多轨道能级时,总是先分占不同轨道,自旋方向相同(先占位,后配对);当能级上电子数为全满、全空或半满时,能量最低,最稳定。

5.基态与激发态与光谱原子处于能量最低状态时,称为基态。

由基态变为激发态,吸收能量,产生吸收光谱(暗线光谱);反之,原子由激发态变为基态时,释放能量(主要以光的形式),产生发射光谱(明线光谱)。

第二节原子结构与元素的性质1.原子结构与元素周期表①电子排布与原子结构示意图以铁为例:Fe:1s2 2s22p6 3s23p63d6 4s2②电子排布与元素在周期表中的位置+26 2 8 214K层L层M层N层K层L层M层N层例 锗(Ge ):1s 2 2s 22p 6 3s 23p 63d 10 4s 24p 2 第四周期,第ⅣA 族铁(Fe ):1s 2 2s 22p 6 3s 23p 63d 6 4s 2第四周期,第Ⅷ族锰(Mn ):1s 2 2s 22p 6 3s 23p 63d 5 4s 2第四周期,第ⅦA 族③电子排布与元素的性质 例 硫(S ):1s 2 2s 22p 6 3s 23p 4 主要化合价:+4,+6,-2。

化学选修三第一章笔记

化学选修三第一章笔记

化学选修三第一章笔记以下是一份化学选修三第一章的笔记,供您参考:化学选修三第一章:原子结构与元素周期律一、原子结构1. 原子的构成:原子由原子核和核外电子组成,原子核由质子和中子组成。

2. 电子排布:根据能量高低,电子分布在不同的能层上,能层序数即为电子层数。

同一能层中,电子的能量还不同,又可分为不同的能级。

3. 电子排布规律:(1)电子排布顺序:按照能层序数由低到高、能级符号由低到高的顺序。

(2)泡利原理:一个原子轨道上最多只能容纳自旋方向相反的两个电子。

(3)洪特规则:在等价能级上排布的电子将尽可能分占不同的能级,且自旋方向相同。

4. 元素性质与原子结构的关系:原子序数在数值上等于核电荷数,原子核电荷数等于质子数,质子数加中子数等于质量数。

二、元素周期律1. 元素周期表的结构:周期、族、区。

周期序数等于元素原子的电子层数,族序数等于最外层电子数,根据价电子构型将元素分为s区、p区、d区和ds区等区域。

2. 元素周期律:元素的性质随着原子序数的递增而呈现周期性的变化规律。

3. 元素周期表的意义:预测新元素及其性质,指导元素的发现、合成和开发,指导新材料的研发与应用等。

三、化学键与分子间作用力1. 离子键:由阳离子和阴离子通过静电作用形成的化学键。

离子键的强弱与离子半径和离子电荷有关。

2. 共价键:原子之间通过共用电子对形成的化学键。

根据共用电子对的偏移程度,可分为极性共价键和非极性共价键。

3. 金属键:金属原子之间通过自由电子形成的化学键。

金属键的强弱与金属原子的半径和价电子数有关。

4. 分子间作用力:分子之间的相互作用力,包括范德华力和氢键等。

范德华力主要与分子之间的距离和分子极性有关,氢键则与分子之间的特殊结构有关。

高中化学选修三-物质结构与性质-全套课件

高中化学选修三-物质结构与性质-全套课件
nd能级的电子云轮廓图:多纺锤形
b.电子云扩展程度
同类电子云能层序数n越大,电子能量越 大,活动范围越大电子云越向外扩张
2、原子轨道
①定义
电子在原子核外的一个空间运动状态
②原子轨道与能级
ns能级 ns轨道
npx轨道 简
np能级 npy轨道 npz轨道
并 轨 道
nd能级
ndz2轨道
ndx2—y2轨道
从K至Q ,能层离核越远,能层能量越大 每层最多容纳电子的数量:2n2
2、能级
同一个能层中电子的能量相同的电子亚层
能级名称:s、p、d、f、g、h…… 能级符号:ns、np、nd、nf…… n代表能层 最多容纳电子的数量 s:2 p:6 d:10 f:14
能层: 一 二

KL
M
四…… N ……
能级: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
全满规则 半满规则
四、电子云与原子轨道
1、电子云 以量子力学为基础
①电子云 处于一定空间运动状态的电子在原子核外空间 的概率密度分布的形象化描述
小黑点:概率密度 单位体积内出现的概率 小黑点越密概率密度越大
小黑点不是电子!
②电子云轮廓图 电子出现的概率约为90%的空间 即精简版电子云
③电子云轮廓图特点 a.形状 ns能级的电子云轮廓图:球形 np能级的电子云轮廓图:双纺锤形
2s
2p
F ↑↓ ↑ ↓ ↑ ↓ ↑
原子结构的表示方法 原子结构示意图
电子排布式 O原子:1s2 2s2 2p4
电子排布图
1s2 2s2
2p4
O原子
六、能量最低原理、基态与激发态、光谱
1、能量最低原理

人教版高中化学选修三《物质结构与性质》优质课件【全套】

人教版高中化学选修三《物质结构与性质》优质课件【全套】

1926年,奥地利物理学家薛定谔等 以量子力学为基础提出电子云模型
质子(正电) 原子核 原子 (正电) 中子(不带电)
不显 电性 核外电子 分层排布
(负电) 与物质化学性质密切相关
学与问
核外电子是怎样排布的?
二、能层与能级
1、能层
电子层
能层名称 一 二 三 四 五 六 七 能层符号 K L M N O P Q
N
能级 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
能级 电子 2 2 6 2 6 10 2 6 10 14

能层 2 8 电子
18
32
数 2n2 2n2
2n2
2n2
三、构造原理与电子排布式
1、构造原理
多电子基态原子的电子按能级交错的形式排布
电子排布顺序 1s
→ 2s → 2p → 3s → 3p → 4s → 3d → 4p → → 5s → 4d → 5p → → 6s → 4f → 5d → 6p……
一、开天辟地——原子的诞生
1、原子的诞生
宇宙大爆炸2小时:大量氢原子、少量氦原子 极少量锂原子
140亿年后的今天: 氢原子占88.6% 氦原子为氢原子数1/8 其他原球中的元素
绝大多数为金属元素 包括稀有气体在内的非金属仅22种 地壳中含量在前五位:O、Si、Al、Fe、Ca
22 钛 Ti 1s2 2s22p6 3s23p63d2 4s2
序数 名称 符号 K
L
M
N
1 氢 H 1s1
2 氦 He 1s2
3 锂 Li 1s2 2s1
4 铍 Be 1s2 2s2
5

B 1s2 2s22p1
6

新课标高中化学人教版选择性必修123册教材解读〖第一章--原子结构与性质——说明〗全篇

新课标高中化学人教版选择性必修123册教材解读〖第一章--原子结构与性质——说明〗全篇

可编辑修改精选全文完整版第一章原子结构与性质本章说明本章在学生已有原子结构知识的基础上,进一步深入研究了原子结构,简述了构造原理及运用构造原理进行原子核外电子排布;运用电子云的概念,图文并茂地描述了原子轨道。

在比较系统而深入介绍原子结构知识的基础上,使学生比较容易理解元素周期表的结构及元素周期律的知识,为后续章节内容的学习奠定了基础。

本章内容比较抽象,易成为学习难点。

作为本书的第一章,教材从内容和形式上都比较注意激发和保持学生的学习兴趣,注重培养学生的化学学科核心素养。

一、教材分析本章教材充分考虑了初中化学和高中化学(必修)中的原子结构知识的基础,注意知识的衔接与深化。

本章内容包括原子结构、元素周期表和元素周期律等知识,教材以原子结构为基础,并在此基础上推演元素的性质。

本章的内容结构如下图所示。

在第一节“原子结构”中,在学生已有原子结构知识的基础上,直接给出核外电子的能层(即“电子层”)和能级(即“电子亚层”)两个概念,给出每一能层有几个能级,每个能级最多可以容纳的电子数,并在能级的基础上引出原子的基态和激发态,以及原子光谱。

有了能层和能级的概念,教材直接给出构造原理,并根据构造原理进行核外电子排布。

这样一来,教材中没有出现四个量子数的概念,降低了学习难度。

构造原理是一个经验规律,构造原理直接给出了原子核外电子排布的次序。

该节在描述原子核外电子的运动状态时,借助电子云的概念,形象地引出了原子轨道。

有了原子轨道的概念,运用原子轨道对原子核外电子的排布作进一步研究,进而介绍了泡利原理和洪特规则,以及能量最低原理。

在第二节“原子结构与元素的性质”中,首先,从元素周期律、元素周期系的角度说起元素周期表,然后,根据构造原理得出的核外电子排布,解释了元素周期系的基本结构,再通过“探究”栏目要求学生进一步认识元素周期表的结构。

关于元素周期律,教材重点讨论原子半径、电离能和电负性的周期性变化。

另外,多样化的图表是本章在呈现方式上的特点。

高中化学选修3重要知识点总结

高中化学选修3重要知识点总结

高中化学选修3重要知识点总结关于高中化学选修3重要知识点总结高中的化学课本包括必修和选修,选修课本的知识通常是一些重点难点知识的拓展,我们现在学习化学的时候,选修三的内容是不能轻视的。

下面是店铺为大家整理的高中化学必备的知识点,希望对大家有用!高中化学选修3重要知识点总结1(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。

原子轨道的能量关系是:ns<(n-2)f < (n-1)d(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

原子结构第1课时-人教版高中化学选修三导学笔记

原子结构第1课时-人教版高中化学选修三导学笔记

第一节原子结构第1课时原子的诞生能层与能级构造原理[学习目标定位] 1.知道原子的诞生及人类认识原子结构的演变过程。

2.熟知核外电子能层与电子层的关系,能级的分布。

3.能根据构造原理写出1~36号元素的核外电子排布。

一、能层与能级1.原子的诞生(1)原子的诞生(2)人类对原子结构认识的演变2.能层(1)根据多电子原子核外电子的能量差异将核外电子分成不同的能层(电子层),并用符号K、L、M、N、O、P、Q…表示。

(2)原子核外电子的每一能层最多可容纳的电子数与能层的序数(n)间存在的关系是2n2。

3.能级(1)定义:根据多电子原子的能量也可能不同,将它们分为不同能级。

(2)表示方法:分别用相应能层的序数和字母s、p、d、f等表示,如n能层的能级按能量由低到高的排列顺序为n s、n p、n d、n f等。

(3)能层、能级与最多容纳的电子数由上表可知:①能层序数等于该能层所包含的能级数,如第三能层有3个能级。

② s 、p 、d 、f 各能级可容纳的电子数分别为1、3、5、7的2倍。

③原子核外电子的每一能层最多可容纳的电子数与能层的序数(n )间存在的关系是2n 2。

能层中各能级的能量关系(1)不同能层之间,符号相同的能级的能量随着能层数的递增而增大。

(2)在相同能层各能级能量由低到高的顺序是n s<n p<n d<n f 。

(3)不同能层中同一能级,能层数越大,能量越高。

例如:1s<2s<3s<4s ……例1 (2018·邢台市月考)下列能级符号表示错误的是( ) A.2p B.3f C.4s D.5d 【考点】能层与能级【题点】能层、能级的表示方法及数量关系 答案 B解析 每一能层的能级数与能层序数相等,且具有的能级依次为s 、p 、d 、f ……,M 能层只有3s 、3p 、3d 能级,没有3f 能级。

例2 (2018·银川市育才中学月考)下列叙述正确的是( ) A.能级就是电子层B.每个能层最多可容纳的电子数是2n 2C.同一能层中的不同能级的能量高低相同D.不同能层中的s 能级的能量高低相同 【考点】能层与能级【题点】不同能层或能级的能量高低比较 答案 B解析 A 项,能层是电子层,对于同一能层里能量不同的电子,又将其分为不同的能级;C 项,同一能层里不同能级,能量按照s 、p 、d 、f 的顺序升高;D 项,不同能层中的s 能级的能量不同,能层越大,s 能级的能量越高,例如:E (1s)<E (2s)<E (3s)……。

人教版高中化学选修三第一章知识点汇总

人教版高中化学选修三第一章知识点汇总

人教版高中化学选修三第一章知识点汇总第一章原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。

说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。

也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。

(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。

构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。

(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。

换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。

洪特规则(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。

比如,p3的轨道式为 或, 而不是 。

特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。

即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。

前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。

4. 基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化: ①、原子最外层电子数呈周期性变化 元素周期律 ②、原子半径呈周期性变化③、元素主要化合价呈周期性变化④、元素的金属性与非金属性呈周期性变化①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。

①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA ~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行)④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核电荷数,电子层结构,最外层电子数 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数: 相同条件下,电子层越多,半径越大。

判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。

最外层电子数 相同条件下,最外层电子数越多,半径越大。

微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外)如:Na>Mg>Al>Si>P>S>Cl.2、同主族元素的原子半径随核电荷数的增大而增大。

如:Li<Na<K<Rb<Cs具体规律: 3、同主族元素的离子半径随核电荷数的增大而增大。

如:F --<Cl --<Br --<I --4、电子层结构相同的离子半径随核电荷数的增大而减小。

如:F -> Na +>Mg 2+>Al 3+5、同一元素不同价态的微粒半径,价态越高离子半径越小。

如Fe>Fe 2+>Fe 3+ 1--36号元素电子排布式氢 H :1s 1 氦 He :1s 2锂 Li :1s 22s 1 铍 Be :1s 22s 2硼 B :1s 22s 22p 1 碳 C :1s 22s 22p 2氮 N :1s 22s 22p 3 (第一电离能比氧大) 氧 O :1s 22s 22p 4氟 F :1s 22s 22p 5 氖 Ne :1s 22s 22p 6 编排依据 具体表现形式七主七副零和八 三长三短一不全钠Na:1s22s22p63s1 镁Mg:1s22s22p63s2铝Al :1s22s22p63s23p1 硅Si :1s22s22p63s23p2磷P :1s22s22p63s23p3硫S :1s22s22p63s23p4氯Cl:1s22s22p63s23p5氩Ar:1s22s22p63s23p6钾K :1s22s22p63s23p64s1钙Ca:1s22s22p63s23p64s2钪Se:1s22s22p63s23p63d14s2钛Ti :1s22s22p63s23p63d24s2矾V :1s22s22p63s23p63d34s2铬Cr:1s22s22p63s23p63d54s1锰Mn:1s22s22p63s23p63d54s2铁Fe:1s22s22p63s23p63d64s2 钴Co:1s22s22p63s23p63d74s2镍Ni:1s22s22p63s23p63d84s2铜Cu:1s22s22p63s23p63d104s1锌Zn:1s22s22p63s23p63d104s2镓Ga:1s22s22p63s23p63d104s24p1亚铁离子1s2 2s2 2p6 3s2 3p6 3d6 锗Ge:1s22s22p63s23p63d104s24p2砷As:1s22s22p63s23p63d104s24p3硒Se:1s22s22p63s23p63d104s24p4溴Br:1s22s22p63s23p63d104s24p5氪Kr:1s22s22p63s23p63d104s24p6①与水反应置换氢的难易②最高价氧化物的水化物碱性强弱金属性强弱③单质的还原性或离子的氧化性(电解中在阴极上得电子的先后)④互相置换反应依据:⑤原电池反应中正负极①与H2化合的难易及氢化物的稳定性元素的非金属性强弱②最高价氧化物的水化物酸性强弱金属性或非金属③单质的氧化性或离子的还原性性强弱的判断④互相置换反应①、同周期元素的金属性,随荷电荷数的增加而减小,如:Na>Mg>Al;非金属性,随荷电荷数的增加而增大,如:Si<P<S<Cl。

规律:②、同主族元素的金属性,随荷电荷数的增加而增大,如:Li<Na<K<Rb<Cs;非金属性,随荷电荷数的增加而减小,如:F>Cl>Br>I 。

③、金属活动性顺序表:K>Ca>Mg>Al>Zn>Fe>Sn>Pb>(H)>Cu>Hg>Ag>Pt>Au1、定义:相邻的两个或多个原子之间强烈的相互作用。

①、定义:阴阳离子间通过静电作用所形成的化学键②、存在:离子化合物(NaCl 、NaOH 、Na 2O 2等);离子晶体。

①、定义:原子间通过共用电子对所形成的化学键。

②、存在:共价化合物,非金属单质、离子化合物中(如:NaOH 、Na 2O 2);共价键 分子、原子、离子晶体。

2、分类 共价化合物 化学键 非极性键 非金属单质③、分类:如:NH 4+、H 3O +金属键:金属阳离子与自由电子之间的相互作用。

存在于金属单质、金属晶体中。

3、键参数 键长4、表示方式:电子式、结构式、结构简式(后两者适用于共价键)固体物质分子间作用力(范德瓦尔斯力):影响因素:大小与相对分子质量有关。

作用:对物质的熔点、沸点等有影响。

①、定义:分子之间的一种比较强的相互作用。

分子间相互作用 ②、形成条件:第二周期的吸引电子能力强的N 、O 、F 与H 之间(NH 3、H 2O )③、对物质性质的影响:使物质熔沸点升高。

④、氢键的形成及表示方式:F -—H ···F -—H ···F -—H ···←代表氢键。

氢键 O OH H H HOH H ⑤、说明:氢键是一种分子间作用;它比化学键弱得多,但比分子间作用力稍强;是一种较强的分子间作用力。

氢键:无机物如NH 3,H 2O,HF,等.有机物:乙醇、乙酸、邻硝基苯酚(分子内)等.定义:从整个分子看,分子里电荷分布是对称的(正负电荷中心能重合)的分子。

非极性分子 双原子分子:只含非极性键的双原子分子如:O 2、H 2、Cl 2等。

举例: 只含非极性键的多原子分子如:O 3、P 4等分子极性 多原子分子: 含极性键的多原子分子若几何结构对称则为非极性分子如:CO 2、CS 2(直线型)、CH 4、CCl 4(正四面体型)极性分子: 定义:从整个分子看,分子里电荷分布是不对称的(正负电荷中心不能重合)的。

举例 双原子分子:含极性键的双原子分子如:HCl 、NO 、CO 等多原子分子: 含极性键的多原子分子若几何结构不对称则为极性分子如:NH 3(三角锥型)、H 2O (折线型或V 型)、H 2O 2离子键 不同原子间存在 相同原子间 分子的极性 分子的稳定性分子的空间构型 决定 分子的极性 决定分子化合物的杂化类型及分子构型1 确定中心原子A价层电子对数目。

计算时注意:(a)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。

(b)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。

如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。

(c)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。

如NO2分子中N原子有5个价电子,O原子不提供电子。

因此中心原子N价层电子总数为5,当作3对电子看待。

(d)中心原子孤电子对数=n(价电子对数)-m(配位原子数)。

2 由价电子对数确定空间结构价层电子对数目电子对的排列方式分子类型孤电子对数目分子构型实例2 直线形AB20 直线形BeH2、BeCl2、CO2、CS23 正三角形AB3AB201正三角形角形(V形)BF3SO3、CO2-3SnCl24 正四面体AB4AB3AB2012正四面体形三角锥形角形(V形)CH4CCl4SiH4SO42-NH4+、PO43-NH3H2O H2S3 由价电子数目确定杂化类型中心原子价电子对数价电子对几何分布中心原子杂化轨道类型2 直线形sp3 平面三角形sp24 正四面体sp3石墨为sp2,金刚石为sp3,CO2为sp,二氧化硅为sp3。

键角sp3,109°28‘sp2,120°,sp,180°常见分子的键角硫化氢:90°水:104.5°氨气:107.3°甲烷、四氯甲烷、四氟化硅109°28′二氧化碳、二硫化碳、一氧化碳:180°白磷:60°三氟化硼:120°乙烯:120°乙炔:180°苯:120°4 等电子原理等电子原理中所讲的“电子数相等”既可以是指总电子数相等(如CO和N2,均为14),也可以是指价电子数相等(如N2和CN-,均为10)。

因而互为等电子体的微粒可以是分子,也可以是离子。

注意的是,若按价电子数相等计数时,此时价电子总数包括重原子(原子序数≥4)提供的价电子以及轻原子(H、He、Li)用来与重原子成键的电子,如N2和C2H2互为10电子体,其中,C2H2的总电子数就包括两个H原子与C原子形成C-H键的电子。

此外,等电子原理中所指的“原子数相等”通常指的是重原子个数相等;“结构相似”也是针对重原子而言。

因此,等电子原理也可以理解为:重原子数相等,总电子数相等的分子或离子,重原子的空间构型通常具有相似性。

运用等电子原理预测分子或离子的空间构型时,不能简单的认为价电子数相等的两种微粒即为等电子体,必须注意等电子体用于成键的轨道具有相似性。

例如CO2和SiO2,CO2为sp,二氧化硅为sp3。

表2 常见的等电子体及空间构型等电子类型常见等电子体空间构型2原子10电子2原子14电子3原子16电子3原子18电子4原子24电子4原子26电子5原子8电子5原子32电子6原子30电子7原子48电子N2, CN-, C22-, C2H2, NO+F2, O22-, H2O2, N2H4, C2H6, CH3NH2, NH2OH, CH3FCO2, N2O, NCO-, N3-, NO2+, SCN-, HgCl2, BeCl2(g),O3, SO2, NO3-SO3(g), CO32-, NO3-, BO33-, BF3SO32-, ClO3-, BrO3-, IO3-, XeO3CH4, SiH4, NH4+, PH4+, BH4-CCl4, SiF4, SiO44-, SO42-, ClO4-C6H6, N3B3H6(俗称无机苯)AlF63-, SiF62-, PF6-, SF6直线型直线型直线型折线型平面三角型三角锥型正四面体型正四面体型平面六边型八面体型固体物质①构成微粒:离子②微粒之间的相互作用:离子键③举例:CaF2、KNO3、CsCl、NaCl、Na2O等NaCl型晶体:每个Na+同时吸引6个Cl-离子,每个Cl-同结构特点时吸引6个Na+;Na+与Cl-以离子键结合,个数比为1:1。

相关文档
最新文档