差热分析法(DTA)ppt课件
合集下载
热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

亮点
金属氧化物薄层通常制备方法:原子层沉积、脉冲激光沉积、化学气相 沉积、射频溅射、喷墨印刷等方法。
本文—— “combustion” process in which the
heat required for oxide lattice formation is provided by the large internal energies of the precursors
IPS实质TFT
TFT:指薄膜晶体管,即每个液晶像素点都是由集成在像素点后面的 薄膜晶体管来驱动, 高速度、高亮度、高对比度, 最好的LCD彩色显示设备之一
文章内容: 金属氧化物半导体——耦合光透性、机械性能好、出色的电子性能。
TFT performance of many oxides exceeds that of amorphous silicon (a-Si:H), and their stability rivals or exceeds that of typical organic semiconductors
外推始点onset:基线延长线与曲线拐点切线的交点。
始点initial:开始偏离基线的点。
常见热分析技术
热重分析 微分热重分析 差热分析 差示扫描量热法
检测待测物与样品 的不同
TG(DTG) 质量
DTA 温度
DSC 能量(热焓)
热重分析法
程序控温下,质量 随温度的变化。m=f(T)。 测量条件:发生质量变化。 纵坐标:质量或其百分数
600
800
1000
1200
140 780
180 205
450
T/℃
1030
差热分析法(DTA)参Fra bibliotek物:在测量温度范围内不发生 任何热效应的物质,如-Al2O3、
热分析技术PPT课件

从熔融热焓法得到的结晶度定义为
c
Ha H H a Hc
9/18/2019
20
热重(TG)
在程序控温下测量试样质量对温度 的变化。
9/18/2019
21
TG仪器
热重分析仪的基本部件是热天平。根据结 构的不同,热天平可分为水平型、托盘型 和吊盘型三种。
9/18/2019
22
9/18/2019
9/18/2019
2
热分析技术
热分析(Thermal Analysis, TA)是指在程序控 温下测量物质的物化性质与温度关系的一类技术。
根据所测物性的不同,广义的热分析方法可分为9 类17种,但狭义的热分析技术只限于差热分析 (Differential thermal analysis, DTA)、差示扫 描量热(Differential scanning calorimetry, DSC)、热重分析(Thermogravimetry, TG)、 热机械分析(Thermomechanical analysis, TMA) 和动态热机械分析(Dynamic mechanical analysis, DMA)等。
9/18/2019
E'(elastic)
E(" viscous) 48
动态模量
E’ 为弹性模量,又称为储能模量,代表材 料的弹性; E” 为黏性模量,又称为损耗模量,代表材 料的黏性。 损耗模量对储能模量的比值称为损耗因子 或损耗角正切,即
tan E"/ E' DMA测试通常记录的是动态(储能、损耗) 模量对温度、频率等的变化。
9/18/2019
31
2019/9/18
热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

热分析技术分类
测定的性质 质量
温度 热焓
挥发物 尺寸 电性质 光性质 磁性质
方法 热重分析法(TG)
微热重分析法(DTG) 差热分析法(DTA) 差示扫描量热法(DSC)
逸出气体分析法(EGA) 热膨胀法 热电法 热光法 热磁法
描述
程序控温下,测量物质的质量随温度的变 化 TG的基础上,利用计算机计算Δm-T的曲线 程序控温下,测量温度随程序温度的变化
TG,DTA,DSC曲线
相关文献 壹
JACS简介
Journal of the American Chemical Society 中文名:《美国化学会志》 化学杂志龙头 1879至今 134年历史
JACS简介
总引证次数和被引次数第一,远超第二 JACS每年有51期 JACS不收版面费,文章用彩色不加收费用 审稿周期10周。通讯是2个审稿人,全文是3个,全文审稿周期更长
IPS实质TFT
TFT:指薄膜晶体管,即每个液高速度、高亮度、高对比度, 最好的LCD彩色显示设备之一
文章内容: 金属氧化物半导体——耦合光透性、机械性能好、出色的电子性能。
TFT performance of many oxides exceeds that of amorphous silicon (a-Si:H), and their stability rivals or exceeds that of typical organic semiconductors
发展历史
1964年—— Watson等研制出可定量测量热量的差示扫描量热计,试样用量 为mg级。Mazieres研制的微量差热分析仪的试样量达到了10-100ug。 近十年来——热分析仪器与其他分析仪器的联用技术也发展很快,出现了 TG-MS、TG-GC、DTA-MS、TG-TGA等联用仪器,既节省试样用量又同时 获得更多的信息。
差热分析DTA

(3)试样的结晶度、纯度和离子取代 ——结晶度好,峰形尖锐;结晶度不好,则峰面 积要小。 ——纯度、离子取代同样会影响DTA曲线。
(4)试样的用量 ——试样用量多,热效应大,峰顶温度滞后,容 易掩盖邻近小峰谷。 ——以少为原则。
(5)试样的装填 ——装填要求:薄而均匀 ——试样和参比物的装填情况一致 (6)热中性体(参比物) ——整个测温范围无热反应 ——比热与导热性与试样相近 ——粒度与试样相近(100-300目筛)
二、差热分析
• 差热分析(Differential Thermal Analysis), 简称DTA
——是在程序控制温度下测定物质和参比物之 间的温度差和温度关系的一种技术。 参比物: 在测定条件下不产生任何热效应 的惰性物质
1. 差热分析原理 • 热电偶与差热电偶
• 差热分析曲线
温差
温度
2. 差热分析仪
铜-康铜(长期350℃ /短期500 ℃ )、 铁-康铜(600/800 ℃ )、镍铬-镍铝(1000/1300 ℃ )、 铂-铂铑(1300/1600 ℃ )、铱-铱铑(1800/>2000 ℃ )。
(4)温度控制系统
——以一定的程序来调节升温或降温的装置, ——1-100K/min,常用的为1-20K/min。
常用的参比物:α-Al2O3
(经1270K煅烧的高纯氧化铝粉, α-Al2O3晶型)Βιβλιοθήκη 6、影响DTA曲线的操作因素
(1)加热速度 加热速度快,峰尖而窄,形 状拉长,甚至相邻峰重叠。 加热速度慢,峰宽而矮,形 状扁平,热效应起始温度超 前。 常用升温速度:1-10K/min,
升温速度对硫酸钙相邻峰谷的影响
(5)记录系统
差热分析仪
3、差热分析曲线
差热分析

TG曲线
No Image
热天平
用于热重法的装置是热天平(热重分析仪)。 热天平由天平、加热炉、程序控温系统与记录仪等几部分组成。 热天平测定样品质量变化的方法有变位法和零位法 变位法:利用质量变化与天平梁的倾斜成正比的关系,用直接差动变 压器控制检测 零位法:靠电磁作用力使因质量变化而倾斜的天平梁恢复到原来的平 衡位置(即零位),施加的电磁力与质量变化成正比,而电磁力的大 小与方向是通过调节转换机构中线圈中的电流实现的,因此检测此电 流值即可知质量变化。
第二节 差示扫描量热法
一、基本原理与差示扫描量热仪 差示扫描量热法(DSC):在程序控制温度条件下,测量输入给样品与 参比物的功率差与温度关系的一种热分析方法。 DSC有功率补偿式差示扫描量热法和热流式差示扫描量热法两种类型。
图6 功率补偿式差示扫描量热仪示意图
典型的DSC曲线
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以时间(t)或温度(T) 为横坐标,即dH/dt-t(或T) 曲线。 曲线离开基线的位移即代表样 品吸热或放热的速率(mJ· s1),而曲线中峰或谷包围的 面积即代表热量的变化。 因而差示扫描量热法可以直接 测量样品在发生物理或化学变 化时的热效应。
失重量的计算
热失重有关的几个名词:热天平;试样;试样支持器;平台;起始温 度(Ti);终止温度(Tf);反应区间Ti~Tf。 实验条件:质量mg;扫描速率(升温速率)℃/min;温度范围(℃或 K);气氛等。 以草酸钙脱水失重为例。 三个脱水失重区间失重率的计算如下: ΔW1%=(W0-W1)100%/W0 ΔW2%=(W1-W2)100%/W0 ΔW3%=(W2-W3)100%/W0 ΔW%=(W0-W1)100%/W0 总失重率 ΔW=ΔW1+ΔW2+ΔW3也可用ΔW%=(W0-W3)100%/W0 残渣:100%-ΔW%=W渣%
DTA课件-2011化工

dH/dt=f(T 或 t)
5.1 DSC的基本原理
动态零位平衡原理:DTA曲线记录的是 试样与参比物之间的温差,这种温差(TS-TR) 可正也可负。DSC则要求无论试样吸热还是 放热,试样与参比物之间的温差始终趋于零, 即保持一种动态零位平衡的状态。 这也是DSC和DTA技术最本质的不同。
5.1 DSC的基本原理
5.3 DSC和DTA的比较
不同点:
工作原理不同:DTA只能检测实验与参比物 之间的温差(△T),无法建立△H与T之间的联系而 DSC能够建立△H与T之间的联系。 DTA曲线的纵坐标为温度差( △T );DSC 曲线的纵坐标为功率差(dH/dt)。
一般而言,根据二者的工作原理,DTA曲线吸热 峰向下,放热峰向上;DSC曲线的吸热峰向上,放热 峰向下。
5.4 DSC和DTA的应用
5. 纯度的测定
物质的纯度越高, DSC曲线上,熔融峰越陡, 峰顶温度越高,而且Te也 越高。据此可比较(测定) 物质的纯度。
5.4 DSC和DTA的应用
6. 高聚物玻璃化转变温度的测定
DSC /(mW/mg) [1.5] 放热 0.45
聚酯 P9520-034
0.40 样品称重:10.60mg 升降温速率:10K/min 气氛:N2 坩埚:Al 加盖扎孔
式中:p是气氛中某种组分的蒸汽压,ΔH是转变的热焓,ΔV是转变 前后的摩尔体积差,T是发生转变的绝对温度。
对于不涉及气相的反应,如晶型转变、熔 融、结晶等,ΔV基本不变或很少,则P对T 影响很小,DTA峰基本不变。 对于释放或者消耗气体的反应,如固气热 分解、升华、汽化、氧化等,ΔV较大,则P 对影响较大,因此峰温有较大的变化,其变 化程度与热效应成正比。P提高将使气体分 子数增加的反应的Ti,Tf,Tm都向高温移动。
差热 分析

7
8
9
10
第二节
在高分子中的应用
DSC/DTA在高分子材料领域的应用、主要有物理转变 的研究和化学反应的研究两类。物理转变包括结晶/熔融、 液晶转变等相转变,玻璃化转变等;化学反应包括聚合、 固化、文联、氧化和分解等。DTA/DSC可以用来测定聚 合物的结晶度、反应热,研究结晶动力学、反应动力学 以及聚合物的热稳定性、阻燃性、结构对物理转变的影 响等。此处只介绍在物理转变测定中的应用。
第一节 差热分析法(DTA)
1
第一节
1
概述
差热分析法和差示扫描量热法
在热分析仪器中,差热分析仪是使用得最早和最为广泛
的一种热分析仪器,它是在程序控制温度下,测量物质和
参比物的温度差随时间或温度变化的一种技术。当试样发 生任何物理或化学变化时,所释放或吸收的热量使样品温
度高于或低于参比物的温度,从而相应地在差热曲线上得
到放热或吸热峰。图1中显示出材料典型的DTA曲线,在 DTA曲线中反映出材料随温度升高而产生的玻璃化转变、
结晶、熔融、氧化和分解等过程。
。
2
3
传统的DTA的基本原理是,将试样和参比物置于以一定速率加热或冷 却的相同温度状态的环境中.记录下试样和参比物之间的温差,并 对时间或温度作图,得到DTA曲线。
12
13
14
15
16
17
18
19
1。3多重熔融行为
20
1。4历史效应对熔点的影响
热历史 应力历史
21
22
23
24
1。5结晶度和结晶动力学
25
结晶动力学
等温结晶动力学 等温结晶的动力学方 程 ‘Avrnmi方程,经 改进后,也适用于测 定非等温结晶速率常 数 Avramt指数n,
差热分析技术解读

2017/9/19 24
二、实验条件的影响
1.升温速率 影响峰的形状、位臵和相邻峰的分辨率。 升温速率越大,峰位向高温方向迁移,峰变尖 锐。使试样分解偏离平衡条件的程度也大,易使 基线漂移 , 并导致相邻两个峰重叠,分辨力下降。 慢的升温速率,基线漂移小,使体系接近平衡 条件,得到宽而浅的峰,也能使相邻两峰更好地 分离,因而分辨力高。但测定时间长,需要仪器 的灵敏度高。
17
2017/9/19
18
(三)
将(6-7)式积分整理后得到
c a
H Cs [Tc Ta ] K [T Ta ]dt 表达式可表示为: Cs [Tc Ta ] K [T Ta ]dt
c c a c
(6 10)
由于差热曲线从反应终 点c返回到基线的积分 (6 11)
2017/9/19 50
差热分析时添加稀释剂的目的,稀释剂
对差热分析的影响。 试样用量对差热分析的影响,如何选择 试样用量? 试样粒度对差热分析的影响,如何准备 试样? 差热分析曲线能提供那些信息?
2017/9/19 13
基线形成后继续升温,如果试样发生了吸热 变化,此时试样总的热流率为:
dTS dH CS K TW TS dt dt
ΔH:试样全部熔化的总吸热量
参比物总热流率
dTR CR K TW TR dt
(6 3)
(6 4)
2017/9/19
dTW dTR dt dt
2017/9/19 39
稀释剂的加入 往往会降低差 热分析的灵敏 度!
2017/9/19
40
2017/9/19
41
6.3.5 差热分析的应用
二、实验条件的影响
1.升温速率 影响峰的形状、位臵和相邻峰的分辨率。 升温速率越大,峰位向高温方向迁移,峰变尖 锐。使试样分解偏离平衡条件的程度也大,易使 基线漂移 , 并导致相邻两个峰重叠,分辨力下降。 慢的升温速率,基线漂移小,使体系接近平衡 条件,得到宽而浅的峰,也能使相邻两峰更好地 分离,因而分辨力高。但测定时间长,需要仪器 的灵敏度高。
17
2017/9/19
18
(三)
将(6-7)式积分整理后得到
c a
H Cs [Tc Ta ] K [T Ta ]dt 表达式可表示为: Cs [Tc Ta ] K [T Ta ]dt
c c a c
(6 10)
由于差热曲线从反应终 点c返回到基线的积分 (6 11)
2017/9/19 50
差热分析时添加稀释剂的目的,稀释剂
对差热分析的影响。 试样用量对差热分析的影响,如何选择 试样用量? 试样粒度对差热分析的影响,如何准备 试样? 差热分析曲线能提供那些信息?
2017/9/19 13
基线形成后继续升温,如果试样发生了吸热 变化,此时试样总的热流率为:
dTS dH CS K TW TS dt dt
ΔH:试样全部熔化的总吸热量
参比物总热流率
dTR CR K TW TR dt
(6 3)
(6 4)
2017/9/19
dTW dTR dt dt
2017/9/19 39
稀释剂的加入 往往会降低差 热分析的灵敏 度!
2017/9/19
40
2017/9/19
41
6.3.5 差热分析的应用