一维对流扩散问题求解
第五章——对流-扩散问题的有限体积法

混合格式兼具中心差分格式和迎风差分格式的优 点,具有守恒性、有界性和迁移性,其缺点是按 Taylor级数展开后截断误差为一阶,精度不高
第五章 对流-扩散问题的有限体积法
边界条件处理:
第五章 对流-扩散问题的有限体积法
上机课:高速流计算
第五章 对流-扩散问题的有限体积法
一维稳态对流-扩散问题的有限体积法 举例:考虑一维无源项的稳态对流-扩散问题: (核心区的稳态能量方程) d d d d ( u ) ( ) ( u ) 0 dx dx dx dx
第五章 对流-扩散问题的有限体积法
W
uw
w
P
x
xwp
ue
e
E
d d d ( u ) ( ) dx dx dx
P点中心差分
d ( u ) 0 dx
x pe
xWP
xPE
d d ( uA ) e ( uA ) w (A ) e (A ) w dx dx
设: F u
D x
w e De 有: Fw ( u) w Fe ( u ) e Dw xWP xPE
aPP aWW aEE
第五章 对流-扩散问题的有限体积法
当速度较大时,采用中心差分格式处理边界值, 下游边界条件对数值计算法
离散格式的性质: (1)在数学上,一个离散格式必须要引起很小 的误差才能收敛于精确解,即要求离散格式必 须稳定或网格必须满足稳定性条件。 (2)在物理上,离散格式所计算出的解必须要 具有物理意义,对于得到物理上不真实的解的 离散方程,其数学上精度再高也没有价值
FeE FwP De (E P ) Dw (P W )
[(Dw ) ( De Fw ) ( Fe Fw )]P DwW ( De Fw )E
一维对流扩散方程的格子Boltzmann模型研究

一维对流扩散方程的格子Boltzmann模型研究雷娟霞;李春光【摘要】给出了一维对流扩散方程(e)u/(e)t+α(e)u/(e)x=β(e)2u/(e)x2的一种三速格子Botzmann模型(D1Q3模型).采用Chapman-Enskog多尺度展开技术,导出了该模型的平衡态分布函数.理论分析和数值算例均表明,该模型方法具有计算量小、精度较高等特点.【期刊名称】《宁夏工程技术》【年(卷),期】2018(017)003【总页数】4页(P218-221)【关键词】格子Boltzmann方法;对流扩散方程;Chapman-Enskog展开;平衡态分布函数;数值模拟【作者】雷娟霞;李春光【作者单位】北方民族大学数学与信息科学学院,宁夏银川 750021;北方民族大学数值计算与工程应用研究所,宁夏银川 750021【正文语种】中文【中图分类】O242.1对流扩散方程在数学物理领域扮演着非常重要的角色。
近年来,关于这类方程的一些数值模拟方法逐渐发展起来,包括有限差分法[1—2]、有限元法[3]、有限体积法[4]等。
然而,由于对流扩散方程求解的复杂性,传统的数值模拟方法很难对其进行有效模拟。
格子 Boltzmann 方法(Lattice Boltzmann method,简称LBM)不同于传统的数值方法,它是介于宏观和微观的介观方法。
LBM在求解非线性偏微分方程,特别是在流体力学的研究中取得了很大成果,这是由于LBM具有物理背景清晰、边界容易处理、编程实现简单等优点。
LBM提供了联系宏观和微观的可能性和现实性,除了在一般的流体力学问题中得到了成功的验证之外,在湍流[5—6]、多相流[7]、粒子悬浮流[8]等相关领域也具有广阔的应用前景。
本文利用LBM构造了一个D1Q3模型,该模型具有3个速度方向,平衡态分布函数的最小量也展开到三阶。
本文给出了详细的理论推导,同时用数值算例验证了模型的有效性。
1 模型及方法1.1 一维对流扩散方程考虑如下一维对流扩散方程:式中:α,β为常数为对流项为扩散项。
第五章对流扩散问题(一维稳态对流扩散问题)

第五章 对流扩散问题———一维稳态对流扩散问题
a P P a E E a W W
中心节点系数
相邻节点系数
aP aE , a W aP aE a W (Fe Fw )
考虑到连续方程
Fe-Fw=0
满足相邻系 数之和准则
a P aE a W
扩散项和以前的处理方法一样,即有:
(u) e e (u) w w e ( E P ) ( x ) e w ( P E ) ( x ) w
而控制容积界面上的变量值取其相应上风侧网格 节点上的值。即:
第五章 对流扩散问题———一维稳态对流扩散问题
第五章 对流扩散问题———一维稳态对流扩散问题 5.2 一维稳态对流扩散问题
5.2.1 基本方程与差分方程
du d d ( ) dx dx dx
(x)w
其中,u已知,且满
d u 足: 0 或u 常数 dx
( x ) e
( x ) e ( x ) e
w W
e P x
a P P a E E a W W
aE 1 4 1 2 4 aW 1 3 2 a P 1 3 4 4 2
2P E 3W
De Dw 1 Fe Fw 4
E 200, W 100
E 100 W 200
2 P 0.25E 1.75 W
De D w 1 Fe Fw 1.5
E 200, W 100
E 100 W 200
P 187.5
P 112.5
某问题 结果合理
第五章 对流扩散问题———一维稳态对流扩散问题
解一维和二维对流扩散方程的单调差分格式

一维对流扩散方程是指一维均匀的边界层上的传质过程的数学模型,常用于描述对流扩散过程中的温度、湿度、速度等场的分布情况。
一维对流扩散方程的数学形式为:∂φ/∂t+U∂φ/∂x=D∂^2φ/∂x^2其中φ表示传质物质的浓度,t表示时间,x表示空间坐标,U表示对流速度,D表示扩散系数。
二维对流扩散方程是指二维均匀的边界层上的传质过程的数学模型,常用于描述对流扩散过程中的温度、湿度、速度等场的分布情况。
二维对流扩散方程的数学形式为:∂φ/∂t+U∂φ/∂x+V∂φ/∂y=D∂^2φ/∂x^2+D∂^2φ/∂y^2其中φ表示传质物质的浓度,t表示时间,x和y分别表示两个空间坐标,U和V分别表示两个方向上的对流速度,D表示扩散系数。
单调差分格式是一种常用的数值求解方法,它通过进行差分运算来求解微分方程的数值解。
在求解一维和二维对流扩散方程时,可以使用单调差分格式来解决。
具体来说,可以将空间坐标和时间分别离散化,将对流扩散方程转化为一个线性方程组,然后使用单调差分格式来解决。
单调差分格式的具体形式取决于方程的类型和离散化的方式,但一般来说,它都是将微分方程的差分形式写成一个线性方程组的形式。
例如,在求解一维对流扩散方程时,可以使用下面的单调差分格式:φ_i^{n+1}=φ_i^n+Δt(D(φ_{i+1}^n-2φ_i^n+φ_{i-1}^n)/Δx^2+U(φ_ {i+1}^n-φ_{i-1}^n)/2Δx)其中φ_i^n表示第i个网格点在时间步n的浓度值,Δx和Δt分别表示网格的空间步长和时间步长。
同样的,在求解二维对流扩散方程时,可以使用下面的单调差分格式:φ_i^n=φ_i^n+Δt(D(φ_{i+1,j}^n+φ_{i-1,j}^n+φ_{i,j+1}^n+φ_{i,j-1}^ n-4φ_i^n)/Δx^2+U(φ_{i+1,j}^n-φ_{i-1,j}^n)/2Δx+V(φ_{i,j+1}^n-φ_ {i,j-1}^n)/2Δy)其中φ_i^n表示第(i,j)个网格点在时间步n的浓度值,Δx和Δy分别表示网格在x和y方向上的空间步长,Δt表示时间步长。
对流方程及其解法

对流方程及其解法对流方程是描述流体运动的最基本方程之一,涉及热、动量、物质等的传递现象,对于各种物理问题的研究都具有重要意义。
本文将从对流方程的基本形式和意义出发,探讨其常见解法及相关应用。
一、对流方程的基本形式与意义对流方程是描述流体中质量、热量和动量传递的方程,其基本形式可以写作:$$ \frac{\partial\phi}{\partial t} + (\mathbf{v}\cdot\nabla)\phi =\nabla\cdot(\Gamma\nabla\phi) $$其中,$\phi$为描述流体量的变量,如温度、密度、浓度等;$\mathbf{v}$为流体的流速,$\Gamma$为扩散系数。
对该方程的解析求解较为困难,故通常采用数值方法进行求解。
下面介绍几种常见的数值解法。
二、有限差分法有限差分法是在连续方程的基础上,利用有限差分代替导数,将微分方程变为代数方程组,从而利用计算机求解的方法。
其基本思想是将求解区域划分为有限个网格,对每个网格内的量用差分代替导数,从而得到有限差分方程。
以简单的二维对流扩散为例,其对流方程为:$$ \frac{\partial\phi}{\partial t} + u\frac{\partial\phi}{\partial x} + v\frac{\partial\phi}{\partial y} = \Gamma\frac{\partial^2\phi}{\partial x^2} + \Gamma\frac{\partial^2\phi}{\partial y^2} $$其中,$u$和$v$分别代表$x$和$y$方向的流速。
对该方程进行离散,假设$\phi_{i,j}$为$x=i\Delta x$,$y=j\Delta y$处的$\phi$值,则可以得到:$$ \frac{\phi^{k+1}_{i,j} - \phi^k_{i,j}}{\Delta t} +u\frac{\phi^k_{i+1,j} - \phi^k_{i-1,j}}{2\Delta x} +v\frac{\phi^k_{i,j+1} - \phi^k_{i,j-1}}{2\Delta y} $$$$ = \frac{\Gamma\Delta t}{(\Delta x)^2}(\phi^k_{i+1,j} -2\phi^k_{i,j} + \phi^k_{i-1,j}) + \frac{\Gamma\Delta t}{(\Deltay)^2}(\phi^k_{i,j+1} - 2\phi^k_{i,j} + \phi^k_{i,j-1}) $$其中,$k$为时刻,$\Delta x$和$\Delta y$分别为$x$和$y$方向的网格间距。
数值级数法求解一维对流扩散方程

下面我们计算( ) , m= 0 , 1 , …, M。 当 m= O , / 7 7 , = 时, 由边界条件 ( 4 ) 得到
o
( ) = g 0 ( t ) , 肘 ( )= g 1 ( )
( 1 0 )
取
r 口 1 ( ‰, )= g o ( t )
( 青 岛理工大学 琴岛学院 ,山东 青岛 2 6 6 1 o 6 )
摘
要: 给 出求解一维对流扩散 方程的新方法叫数值级数法。该方法的特点是在 离散后 的 网格点 处用级数 表示数
值解 。数值算例表 明在计 算时取级数前 六项就 可以达到很 高的精度 , 该 方法还有 非常好 的收敛性和稳 定性 , 因此
数 值 级 数 法是 一 个 实 用 的 方 法 。
关键词 : 一维对流扩散 方程 ; 数值级数 法; 收敛性 ; 无条件稳 定 中图分类号 : 0 2 4 1 . 8 2 文献标志码 : A 文章编号 : 1 0 0 9— 3 9 0 7 ( 2 0 1 3 ) 0 8— 0 9 6 3— 0 4
…
,
Ⅳ。这 里 J I I f , Ⅳ为正 整数 。我 们定 义 M ( t )=u ( x , t ) , 一 ( , t ) 。 数值 级数 法 的计算 过程 如下 :
( 1 ) 计算初始值 0 , . : ( ) , m= 0 , 1 , …M;
( 2 ) 计 算边 界值 0 n = g o ( t ) , = g ( t ) , =O , 1 , …J 7 、 , ; ( 3 ) 当 n= 0 , 1 , …Ⅳ一1时 首先 , 从 一维对 流扩 散方 程 ( 2 ) 中, 得 到半 离散 差分 方程
.
: 0 -
一维对流扩散问题例题含吸附作用

一维对流扩散问题例题含吸附作用一维对流扩散问题是描述物质在一维空间中传输的数学模型。
吸附作用是指物质在传输过程中与固体表面发生相互作用,被固体吸附的现象。
下面是一个关于一维对流扩散问题含吸附作用的例题:假设有一根长度为L的管道,管道内充满了某种气体。
气体沿管道的方向发生对流传输和扩散,同时在管道壁上发生吸附作用。
已知管道的吸附速率常数为k,气体的对流速度为u,扩散系数为D。
求解以下问题:1. 假设管道内初始时刻气体浓度均匀分布,求解在稳态情况下管道内吸附物质的分布。
2. 假设管道内初始时刻气体浓度为C0,求解在稳态情况下管道内气体浓度随时间和位置的变化。
解答:1. 在稳态情况下,管道内吸附物质的分布可以通过解一维扩散方程和吸附方程的组合得到。
扩散方程为:∂C/∂t = D * ∂²C/∂x²吸附方程为:∂θ/∂t = -k * θ其中,C是气体浓度,θ是吸附物质的分布,t是时间,x是空间位置。
根据稳态条件,扩散方程右侧为0,可以得到:∂²C/∂x² = 0对扩散方程积分两次得到:C(x) = Ax + B再根据吸附方程,可以得到:θ(t) = Ce^(-kt)其中A、B和C是待定系数,可以利用边界条件来确定。
边界条件可以是在管道起始端和末端的浓度值或者通量值。
求解稳态问题时,通常会假设管道起始端浓度已知,末端处的吸附物质浓度为零。
2. 在稳态情况下,气体浓度随时间和位置的变化可以通过解一维扩散方程得到。
扩散方程为:∂C/∂t = D * ∂²C/∂x²根据稳态条件,扩散方程右侧为0,可以得到:∂²C/∂x² = 0对扩散方程积分一次得到:∂C/∂x = A再次积分得到:C(x) = Ax + B其中A和B是待定系数,根据边界条件可以确定A和B的值。
边界条件可以是在管道起始端和末端的浓度值或者通量值。
通过上述方法,可以求解一维对流扩散问题含吸附作用的例题。
第五章对流扩散问题(假扩散)

该问题的数值解如下:
1 n i
u t n u t n (1 ) i i 1 x x
MUD : du d ux d (( ) ) dx dx 2 dx
第五章 对流扩散问题———假扩散
由图可以看出,在区间 P 2 ,中心差分格式预报的 P 值优于迎风格式的预报值。对比这两种格式,其扩散项 的处理是完全相同的,所不同的仅仅是对流项的处理上 ,在中心差分格式中对流项的差分格式具有二阶精度, 而在迎风格式中对流项的差分格式只具有一阶精度。在 区间 P 2 ,两种格式预报 P值所表现出的差异性恰恰是 这两种格式精度不同的体现。观察上图,迎风格式所预 报的 P值具有该高不高和该低不低的特点,这一特点正 是由一阶精度迎风格式所引起的扩散系数为 ux / 2 的 假扩散项造成的。也反映了假扩散项的影响。
n n ux ut 2 n ( ) i u( ) i (1 )( 2 ) i O( x 2 , t 2 ) t x 2 x x
由此可以看出,我们前边得到的差分方程所逼近的是 一个非稳态对流扩散问题,而非原型问题所要求的非 稳态对流问题。
第五章 对流扩散问题———假扩散
1 n (1 P
ut n ut n ) P W x x
用编号法表示
1 n i
1 n , n 在点 (i, n) i i 1
u t n u t n (1 ) i i 1 x x
做Taylor展开
n n u 2 n 1 2 n ( ) i u( ) i ( 2 ) i x ( 2 ) i t O( x 2 , t 2 ) t x 2 x 2! t
第五章 对流扩散问题———假扩散
将 i 1 和 i 1 台劳 级数展开代入
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。