纳米氧化锌晶体概述

合集下载

纳米氧化锌综述

纳米氧化锌综述

纳米氧化锌综述概述纳米氧化锌是一种多功能性的新型无机材料,晶体为六方结构,其颗粒大小约在1~100纳米。

纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点[1]。

近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。

纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。

由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。

纳米氧化锌的性质纳米氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。

激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死[2]。

纳米氧化锌的制备1.纳米氧化锌的液相化学制备技术除了能够准确控制粒子的化学组成外,液相法与其它化学制备技术相比还具有设备简单、批量大、原料易得、相对来说粒子大小集中、晶相结构及形状容易控制、产物活性好、成本低等特点。

液相法可以分为沉淀法、溶胶-凝胶法、微乳液法、水热合成法、溶剂蒸发法等。

1.1化学沉淀法1.1.1直接沉淀法直接沉淀法是直接混合制备氧化锌的锌盐与沉淀剂溶液的方法,特点是条件易于控制,操作简单,适于大批量制备粉体材料,其缺点是副产物离子的洗涤较困难,且产物粒径分布较宽,干燥过程中粒子易于团聚。

郭志峰等[3]向乙酸锌溶液滴加草酸,同时搅拌,伴有草酸锌沉淀生成。

纳米氧化锌

纳米氧化锌

摘要纳米氧化锌是一种面向2l世纪的新型高功能精细无机产品,其粒径介于l-100纳米。

又称为超微细氧化锌。

由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。

因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。

纳米氧化锌由于其巨大的表面能,导致颗粒很容易团聚在一起.要使纳米氧化锌的种种特殊性能得以充分利用,首先必须解决纳米粒子之问的团聚及在溶剂中分散性能差的问题.表面活性剂是一种常用的表面改性剂,目前,国内外采用表面活性剂作为纳米粉体改性剂的研究工作并不少见.本文采用水热合成法制备纳米氧化锌,通过在反应过程中加入复合型表面活性剂(油酸/十二烷基硫酸钠)对其进行表而修饰改性,改善纳米ZnO的水溶性和颗粒团聚的现象,制备出了粒径更小、分散性更好的纳米氧化锌.关键词:纳米氧化锌;粒径;复合型表面活性剂复合型表面活性剂对纳米氧化锌粒径和形貌的影响研究前言纳米技术的发展对世界经济的发展将起到推动作用。

纳米材料的制备与性能研究有着十分重要的意义,而对于纳米材料的表面修饰是纳米材料制备、加工和应用过程中具有决定意义的关键技术。

ZnO作为纳米化的半导体材料不仅具有宽频带、强吸收和“蓝移”现象,还能产生光学非线性响应,具有更优异的光电催化活性,在发光材料、非线性光学材料、光催化材料等方面也应用广泛。

纳米氧化锌的化学法制备包括气相法、液相法和固相法,其中液相法对设备要求不高,成本低,产品纯度高,适于大规模生产。

液相法主要有直接沉淀法和均匀沉淀法,其中在直接沉淀法基础上又发展了用表面活性剂对纳米氧化锌进行表面改性的方法[1]。

目前已有多种不同用途的纳米ZnO的合成方法,但是没有很好解决纳米ZnO由于粒径小、表面能大等因素引起的团聚问题;另一方面ZnO的水溶性差,难以均匀分散在水溶液中,为此需要对无机粉体表面进行修饰,以解决团聚和相容性问题。

纳米氧化锌综述

纳米氧化锌综述

化学沉淀法
2.均匀沉淀法 均匀沉淀法 连续微波加热 硫酸锌+ 纳米氧化锌( 例:硫酸锌+尿素 纳米氧化锌(粒 径为8~ 径为 ~30nm ) 特点:避免了直接沉淀法中的局部过浓, 特点:避免了直接沉淀法中的局部过浓,从 而大大降低沉淀反应的过饱和度。 而大大降低沉淀反应的过饱和度。
溶胶-凝胶法 溶胶 凝胶法
纳米氧化锌的气相化学制备技术
例:高纯度锌粒 氧化锌纳米棒 直径20~ (直径 ~30nm、长径比 、长径比>20) ) 气相法常以惰性气体为载体, 气相法常以惰性气体为载体,在超高 温气相中发生化学反应, 温气相中发生化学反应,利用高温区与周 围环境的温度梯度, 围环境的温度梯度,通过急冷作用得到氧 化锌纳米颗粒。 化锌纳米颗粒。
纳米氧化锌粒子的超重力制备技术
例:六水硝酸锌(aq) 六水硝酸锌 中间体悬浊液 过滤洗涤 煅烧 中间体干粉 纳米氧化锌 特点:粒径小且分布集中。 特点:粒径小且分布集中。
旋转床内通氨气
纳米ZnO的超临界流体干燥制备技术 的超临界流体干燥制备技术 纳米
例:先用沉淀法制得纳米氢氧化锌
交换 无水乙醇洗涤、 无水乙醇洗涤、
国防工业中的应用
纳米氧化锌具有很强 的吸收红外线的能力, 的吸收红外线的能力,吸 收率和热容的比值大, 收率和热容的比值大,可 应用于红外线检测器和红 外线传感器 纳米氧化锌还具有质量轻、颜 纳米氧化锌还具有质量轻、 色浅、吸波能力强等特点,能有 色浅、吸波能力强等特点, 效的吸收雷达波, 效的吸收雷达波,应用于新型的 吸波隐身材料。 吸波隐身材料。
纳米氧化锌的应用
• • • • • 1.橡胶工业中的应用 橡胶工业中的应用 2.国防工业中的应用 2.国防工业中的应用 3.纺织工业中的应用 纺织工业中的应用 4.涂料防腐中的应用 涂料防腐中的应用 5.生物医学中的应用 生物医学中的应用

纳米氧化锌介绍与应用

纳米氧化锌介绍与应用

纳米氧化锌介绍与应用纳米氧化锌(ZnO)粒径介于1-100 nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。

概述中文名:纳米氧化锌英文名:Zinc oxide,nanometer 别名:纳米锌白;Zinc White nanometer CAS RN.:1314-13-2 分子式:ZnO 分子量:81.37形态纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。

由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。

近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。

纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。

由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。

纳米氧化锌金属氧化物粉末如氧化锌、二氧化钛、二氧化硅、三氧化二铝及氧化镁等,将这些粉末制成纳米级时,由于微粒之尺寸与光波相当或更小时,由于尺寸效应导致使导带及价带的间隔增加,故光吸收显著增强。

各种粉末对光线的遮蔽及反射效率有不同的差异。

以氧化锌及二氧化钛比较时,波长小于350纳米(UVB)时,两者遮蔽效率相近,但是在350~400nm(UVA)时,氧化锌的遮蔽效率明显高于二氧化钛。

同时氧化锌(n=1.9)的折射率小于二氧化钛(n=2.6),对光的漫反射率较低,使得纤维透明度较高且利于纺织品染整。

纳米氧化锌还可用来制造远红外线反射纤维的材料,俗称远红外陶瓷粉。

纳米氧化锌的部分特性

纳米氧化锌的部分特性

纳米氧化锌的部分特性薛元凤051002231摘要:纳米材料的物理化学性能与其颗粒的形状、尺寸有着密切的关系。

因此,单分散纳米材料的制备及其与尺寸相关的性能研究成为近几年人们研究的热点之一。

ZnO作为一种宽禁带半导体具有独特的性质,在纳米光电器件、光催化剂、橡胶、陶瓷及化妆品领域有着广阔的应用前景,随着对不同形状的纳米ZnO的制备及其相关的性能研究不断升温,对其应用方面的研究进展不断深入,单分散纳米ZnO材料已经引起了人们越来越广泛的关注。

ZnO作为一种宽禁带,高激子结合能的氧化物半导体,以其优越的磁、光、电以及环境敏感等特性而广泛地应用于透明电子元件、UV 光发射器、压电器件、气敏元件以及传感器等领域。

ZnO 本身晶格结构特点决定了在众多的氧化物半导体中是一种晶粒形态最丰富的材料。

本文主讲纳米氧化锌紫外屏蔽、光电催化、气敏、磁性等特性,及纳米氧化锌在生活中、工厂作业中的用途。

关键词:紫外屏蔽光电催化气敏导电性磁性1 引言随着纳米科学的发展,人类对自然的认识进入到一个新的层次。

材料的新性质被逐渐发掘!认识,新的理论模型被提出"著名学者钱学森院士预言:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是二十一世纪的又一次产业革命”。

纳米ZnO具有优异的光、电、磁性能,在当今一些材料研究热点领域表现活跃。

与普通ZnO相比,纳米ZnO颗粒尺寸小,微观量子效应显著,展现出许多材料科学家渴望的优异性质,如压电性,荧光性,非迁移性,吸收和散射电磁波能力等。

大量科研工作集中于纳米ZnO材料的制备、掺杂和应用等方面。

制备均匀、稳定的纳米ZnO是首要任务,获得不同形貌的纳米结构,如纳米球、纳米棒、纳米线、纳米笼、纳米螺旋、纳米环等,将这些新颖的纳米结构材料所具有的独特性能,应用到光电、传导、传感,以及生化等领域,取得了可喜的成绩。

世界各国相继大量投入,开发和利用纳米ZnO材料,使其在国防,电子,化工,冶金,航空,生物,医学和环境等方面具发挥更大的作用。

纳米氧化锌

纳米氧化锌

国家标准
中华人民共和国国家标准GB /T - 2004。 纳米氧化锌国家标准
产品前景
目前纳米氧化锌的制备技术已经取得了一些突破,在国内形成了几家产业化生产厂家。但是纳米氧化锌的表 面改性技术及应用技术尚未完全成熟,其应用领域的开拓受到了较大的限制,并制约了该产业的形成与发展。虽 然我们近年来在纳米氧化锌的应用方面取得了很大的进展,但与发达国家的应用水平以及纳米氧化锌的潜在应用 前景相比,还有许多工作要做。如何克服纳米氧化锌表面处理技术的瓶颈,加快其在各个领域的广泛应用,成为 诸多纳米氧化锌生产厂家所面临的亟待解决的问题。
减量使用
我们知道,氧化锌作为硫化体系必用的助剂,其填充量较高,一般为5份左右,由于氧化锌比重大,填充量大, 其对胶料密度的影响非常大。而动态使用的制品如轮胎等,重量越大,其生热、滚动阻力就愈大,对制品使用寿 命和能源消耗都不利,尤其是现代社会,人们对产品安全性和环保都提出了很高的要求。最近的国外名牌轮胎剖 析资料表明:其氧化锌用量远低于国内普通水平,一般约为1.5-2份左右。而国内以前由于材料的落后无法实现 这一点,现在大比表面纳米氧化锌的出现,可完全减量至这个水平,基本填补了这一空白。另外,减量使用对配 方成本的影响也较大,使通过减量使用降低成本成为现实。
1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。
2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。
3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。
4.典型绿色化工工艺,属于环境友好过程。
性能表征
纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化 锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光 化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防霉等一系列独 特性能。

纳米氧化锌实验报告

实验3 氧化锌纳米阵列的制备【摘要】水热法是合成氧化锌纳米阵列的基本方法之一,通过本实验进一步研究氧化锌纳米线的制备工艺,学会氧化锌纳米线透射率的测量方法,并掌握半导体材料禁带宽度的基本计算方法。

【关键字】水热法纳米线禁带宽度0.引言氧化锌(ZnO)是一种具有纤锌矿结构的Ⅱ-Ⅵ族化合物半导体,由于其具有优异的光电性质而有很大的使用价值和研究价值,如它对可见光的高透过率,能用作透明导电涂层;具有光电效应,能用于紫外激光器件和太阳能电池等[1]。

为了获得或改善其某一方面的性质,利用各种方法掺杂或制备具有特定形貌的氧化锌纳米材料成为近年来研究的热点。

而水热法制备ZnO纳米材料,以其设备简单、原料廉价、条件易控、适合大面积生长等优点而被广泛采纳。

本实验主要是采用水热法合成氧化锌纳米线,并测量纳米线的透射率,通过计算得出制备的氧化锌禁带宽度为3.34eV,与理论值基本吻合。

1.实验目的1.了解水热合成氧化锌纳米线的原理以及基本操作方法;2.独立制备出氧化锌纳米线;3.掌握纳米线透射率的表征方法和半导体禁带宽度的计算方法;4. 掌握实验数据处理方法,并能利用Origin绘图软件对实验数据进行处理和分析。

2.实验仪器设备和材料清单1.水浴锅、紫外可见分光光度计、量筒、样品瓶、PH试纸、2.试剂:硝酸锌、乙醇胺、正丁醇、高锰酸钾、氨水、酒精、稀硝酸3.实验原理3.1纳米氧化锌概述[2]氧化锌(ZnO):直接宽禁带半导体材料,室温下禁带宽度为3.37 eV ,激子束缚能为60meV。

纳米氧化锌具有非迁移性、压电性、荧光性、吸收和散射紫外线能力等特殊能力,ZnO一维材料的阵列能够加快光生电子、空穴的分离,使电子具有良好的运输性,所以纳米棒、纳米线阵列的制备备受关注。

氧化锌(ZnO)在自然界有两种晶体结构,即纤锌矿结构和闪锌矿结构。

其中稳定相是纤锌矿结构(如左图),属六方晶系,为极性晶体。

制备ZnO一维材料阵列的方法主要有气相沉积法、溅射法或外延法等,这些技术需要昂贵的仪器、苛刻的实验条件,而溶液法则具有设备简单、条件温和等优点。

浅析纳米氧化锌的制备及应用现状


质中,与基料没有结合力,易造成界面 缺陷,导致材料的性能下降。
故表面改性在纳米氧化锌的应用过 程中起着至关重要的作用。表面改性是
指采用物理、化学、机械等方法,来处 理纳米颗粒表面有目的地改变纳米颗粒 表面的物理化学性质,以满足其不同应 用领域的需求。[1]
2. 纳米氧化锌的制备方法概述
制备纳米氧化锌主要有三种方法: 纳米微粒。
有效的方法。
直接沉淀法所得到的产品粒径分
优点:对环境和人的毒害很小;反
布比较窄、分散性也很好,所以工业 应先驱体易得,成本低,制品晶粒结
化被大为看好。
晶完好、无团聚、分散性好。[1]
优点:设备要求低、工艺主要是通过制备两种微
缺点:后处理时,除去沉淀剂阴离 乳液:含盐离子乳液和含沉淀剂乳液,
在不同的条件下,氧化锌晶体呈现 出三种类型:纤锌矿结构、岩盐型结构 和闪锌矿结构。在常温常压条件下,六 方纤锌矿结构形式的氧化锌晶体的热力 学最为稳定,故研究该结构对于调控该 晶体生长具有重要意义。
纤锌矿结构的氧化锌晶体模型示意图
中国粉体工业 2018 No.5 11
纳米氧化锌的高表面能,使其处于 热力学非稳定状态,极易聚集成团,从 而会影响颗粒的应用效果;表面亲水疏 油,呈强极性,难于均匀分散在有机介
1. 纳米氧化锌概述
纳米氧化锌作为一种新型多功能无 机材料,粒子尺寸介于 1 ~ 100nm,由 于其比表面积大,表面活性较大,故呈 现出表面效应、体积效应、量子隧道效 应等特性。纳米氧化锌热稳定性和化学 稳定性较好,具有无毒、非迁移性、低
介质常数、高透光率、光催化性能、荧 光性、压电性、吸收和散射紫外线的能 力等特点,使其作为半导体、压电材料、 催化材料、紫外屏蔽等材料,在陶瓷、 纺织、化妆品、电子、建材、环境等行 业中得到广泛的应用与研究。[1]

氧化锌纳米材料简介

目录摘要 (1)1.ZnO材料简介 (1)2.ZnO材料的制备 (1)2.1 ZnO晶体材料的制备 (1)2.2 ZnO纳米材料的制备 (2)3. ZnO材料的应用 (3)3.1 ZnO晶体材料的应用 (3)3.2 ZnO纳米材料的应用 (5)4.结论 (7)参考文献 (9)氧化锌材料的研究进展摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。

关键词:ZnO;晶体材料;纳米材料1.ZnO材料简介氧化锌材料是一种优秀的半导体材料。

难溶于水,可溶于酸和强碱。

作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。

ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。

此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。

纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。

下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。

2.ZnO材料的制备2.1 ZnO晶体材料的制备生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。

尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。

由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。

由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。

氧化锌纳米材料简介

目录摘要 (1)1.ZnO材料简介 (1)2.ZnO材料的制备 (1)2.1 ZnO晶体材料的制备 (1)2.2 ZnO纳米材料的制备 (2)3. ZnO材料的应用 (3)3.1 ZnO晶体材料的应用 (3)3.2 ZnO纳米材料的应用 (5)4.结论 (7)参考文献 (9)氧化锌材料的研究进展摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。

关键词:ZnO;晶体材料;纳米材料1.ZnO材料简介氧化锌材料是一种优秀的半导体材料。

难溶于水,可溶于酸和强碱。

作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。

ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。

此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。

纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。

下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。

2.ZnO材料的制备2.1 ZnO晶体材料的制备生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。

尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。

由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。

由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米氧化锌晶体概述作者姓名:00班级:00学号:*********联系方式:000000000000****************纳米氧化锌晶体概述钱学森91 马博摘要:纳米氧化锌是一种具有特异性能并且用途广泛的新材料,同时也是一种重要的基础化工原料。

本文首先介绍了纳米氧化锌晶体的基本物理和化学性质,基于这些性质,进一步阐述了纳米氧化锌在各个行业的应用。

其次,本文对纳米氧化锌的制备方法进行了较为详细和系统的介绍。

于此同时,为了对纳米氧化锌的性质进行改进,以扩大其应用领域,最后,我们又对纳米氧化锌的表面改型进行了较为深入地分析。

关键词:纳米ZnO;性质;应用;制备;改性目录1 纳米氧化性概述 (5)1.1氧化锌的基本性质 (5)1.2氧化锌晶体的结构 (5)1.3纳米氧化锌的基本性能[3] (5)1.3.1表面效应 (5)1.3.2体积效应 (5)1.3.3量子尺寸效应 (6)1.3.4宏观量子隧道效应 (6)2 纳米氧化锌的应用 (6)2.1纳米氧化锌在橡胶轮胎中的应用[6] (6)2.2纳米氧化锌在陶瓷中的应用[8] (6)2.3纳米氧化锌在防晒化妆品中的应用 (6)2.4纳米氧化锌在油漆涂料中的应用 (7)2.5纳米氧化锌在纺织中的应用 (7)2.6纳米氧化锌在催化剂和光催化剂中的应用 (7)2.7纳米氧化锌在磁性材料中的应用[5] (7)2.8作为填充剂的应用 (8)3 纳米氧化锌的制备方法 (8)3.1固相法 (8)3.1.1燃烧法[14] (8)3.1.2固相合成法[14] (8)3.2液相法 (8)3.2.1直接沉淀法 (8)3.2.2均匀沉淀法[16] (9)3.2.3并流沉淀法[17] (9)3.2.4溶胶-凝胶法[18] (9)3.2.5水热合成法[19] (10)3.2.6微乳液法[20] (10)3.3气相法[21,22] (10)3.3.1激光诱导气相沉积法 (10)3.3.2气相反应合成法 (10)3.3.3喷雾热解法 (10)3.3.4化学气相氧化法 (10)4 纳米氧化锌的表面改性 (11)4.1表面物理修饰法 (11)4.1.1表面活性剂法[24] (11)4.1.2表面沉积法 (11)4.2表面化学修饰法 (11)4.2.1酯化反应法[27] (11)4.2.2 偶联剂法[24] (11)4.2.3表面接枝改性法[28] (12)4.2.4 机械化学修饰[29] (12)4.2.5外层膜修饰 (12)4.2.6 高能量表面修饰 (12)4.2.7其它方法[30] (13)1 纳米氧化性概述1.1 氧化锌的基本性质氧化锌,俗称锌白,属六方晶系纤锌矿结构,白色或浅黄色晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中能吸收二氧化碳和水[1]。

1.2氧化锌晶体的结构氧化锌晶体是纤锌矿结构,属于六方晶系,为极性晶体。

氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn−O4配位四面体结构,晶体中负离子配位多面体就成为研究晶体结构与形貌基本结构的单元。

Zn−O4−6在一个晶胞层中可分为上、下两层,两层四面体,而上、下两层四面体的顶角和面与六方柱之间的对应关系是相同的。

同时,上、下两层Zn−02四面体的顶角都是指向晶体的负极面。

正极面与四面体的面平行,在C轴方向Zn、0原子的分布是不对称的,表现出极性晶体的特征[2]。

1.3纳米氧化锌的基本性能[3]纳米氧化锌(ZnO)是一种直接宽带隙半导体材料,室温下其禁带隙宽3.37eV,激子束缚能为60 meV。

纳米氧化锌的粒径介于1-100 nm,由于颗粒尺寸的细微化,颗粒比表面积急剧增加,使得纳米氧化锌产生了其本体块状物料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等,因而使得纳米氧化锌在磁、光、电、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途[4]。

1.3.1表面效应球形粒子的表面积与其半径平方成正比,体积与其半径的立方成正比,所以表积比(表面积与体积之比)与粒子半径成反比。

表面效应是指纳米粒子表面原子与总原子数之比(即表面积与体积之比)随粒径的变小而急剧增大后所引起的性质上的变化。

随着粒径减小,表面原子数迅速增加,另外,纳米粒子的表面积、表面能及表面结合也都迅速增大。

这主要是由于粒径越小,处于表面的原子数越多。

同时,表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性。

所以,伴随表面能的增加,其颗粒的表面原子数增多,表面原子数与颗粒的总原子数的比值也增大,于是便产生了“表面效应” [5],使其表面与内部的晶格振动产生了显著变化,导致纳米材料具有许多奇特的性能。

1.3.2体积效应纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应,这种体积效应为实际应用开拓了广阔的新领域[6]。

1.3.3量子尺寸效应当微粒尺寸下降到一定值时,费米能级附近的电子能级由准连续能级变为分立能级,吸收光谱阈值向短波方向移动,这种现象称为量子尺寸效应。

纳米粒子的量子尺寸效应使其在光、磁、热、电、催化等特性与普通材料有显著的不同。

对半导体材料而言,尺寸小于其本身的激子波尔半径,就会表现明显的量子效应。

1.3.4宏观量子隧道效应微观粒子具有贯穿势阱的能力称为隧道效应。

近年来,人们发现一些宏观量如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有隧道效应,它们可以穿越宏观系统的势阱而产生变化,故称之为宏观的量子隧道效应,该效应与量子尺寸效应一起确定了微电子器件进一步微型化的极限,也限定了采用磁带磁盘进行信息储存的最短时间[7]。

2 纳米氧化锌的应用2.1纳米氧化锌在橡胶轮胎中的应用[6]橡胶工业是氧化锌的最大用户,纳米氧化锌作为普通氧化锌的代换材料,在橡胶工业中的应用已越来越受到重视。

这是因为纳米氧化锌具有颗粒微小,比表面积大,分散性好等优良的物理化学特性,用于制造高速耐磨的橡胶制品,如飞机轮胎、高级轿车用的子午线胎等,具有防止老化、抗摩擦着火、使用寿命长等优点,不仅改善了橡胶制品的表观质量和内在质量,而且其用量仅为等级氧化锌用量的30%-50%,降低了企业的生产成本。

2.2纳米氧化锌在陶瓷中的应用[8]陶瓷行业是纳米氧化锌的又一大用户。

纳米氧化锌可不经磨碎直接使用,并使陶瓷制品的烧结温度降低400-600℃,烧成品光亮如镜,有很好的“成像效应”,故可减少工序,降低能耗,极大地提高产品的质量和产量。

加有纳米氧化锌的陶瓷制品具有抗菌除臭和分解有机物的自洁作用。

2.3纳米氧化锌在防晒化妆品中的应用纳米ZnO的紫外-可见光特性的研究表明,在可见光区,纳米ZnO比普通ZnO对可见光的吸收弱得多,有很好的透过率;而在紫外区,纳米ZnO对紫外光的吸收能力远远高于普通ZnO,说明纳米ZnO具有很好的可见光透明性以及紫外线遮蔽特性。

因而纳米ZnO是比较理想的紫外线屏蔽剂,与有机紫外线吸收剂相比,无机纳米ZnO具有无毒,并且具有对皮肤无刺激,不分解,不变质,价格便宜,吸收紫外线能力强的特点,可以应用于防化纤纺织品老化、防晒化妆品等领域。

2.4纳米氧化锌在油漆涂料中的应用借助于传统的涂层技术,添加纳米材料,可进一步提高涂料防护能力,实现防紫外线照射,耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用,在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能,节约能源的目的,在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果、产生隔热、阻燃等效果[9]。

舰船长期航行、停泊在海洋环境中,采用纳米氧化锌作原料,制成一种舰船专用的涂料,不仅起到屏蔽紫外线的作用,而且还可以杀灭各种微生物,从而可提高航行速度并延长检修期限。

此外,用纳米氧化锌制造一种汽车(尤其是高级轿车)专用的变色颜料,添加在金属闪光的面漆中,随着角度的变化,能使涂层产生丰富而神秘的“颜色效应”,使车身表面产生较好的成像效果,增辉闪光,深受汽车配色专家的偏爱。

2.5纳米氧化锌在纺织中的应用纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。

将金属氧化锌粉末制成纳米级时,由于微粒尺寸与光波相当或更小,尺寸效应使导带及价带的间隔增加,故光吸收显著增强。

纳米氧化锌对光的漫反射率较低,使得纤维透明度较高且利于纺织品染整。

2.6纳米氧化锌在催化剂和光催化剂中的应用纳米氧化锌因其尺寸小、比表面积大、表面键性和颗粒内部的不同、表面原子配位不全等,导致表面的活性位置增多,形成了凸凹不平的原子台阶,加大了反应接触面,此外,气体通过纳米氧化锌的扩散速度比较快,因此,纳米氧化锌的催化活性和选择性远远大于其传统催化剂[10]。

例如,水中的有害有机物质如有机氯化物、农药、界面活性剂、色素等,用目前的水处理技术充分去除是困难的,而氧化锌作为光催化剂可以使有机物分解,研究表明,纳米氧化锌粒子的反应速度是普通氧化锌粒子的100-1000倍,而且与普通粒子相比,它几乎不引起光的散射,且有大的比表面积和宽的能带,因此被认为是极具应用前景的光催化剂之一[2]。

2.7纳米氧化锌在磁性材料中的应用[5]磁性材料是电子信息产业发展的基础,纳米磁性材料的特性不同于常规的磁性材料,其原因是有关联于与磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸、超顺磁性临界尺寸、交换作用长度、以及电子平均自由路程等大致处于1~lOOnm量级,当磁性体的尺寸与这些特征物理长度相当时,就会出现反常的磁学性质。

纳米做晶金属软磁材料具有十分优异的性能,高磁导率、低损耗、高饱和磁化强度,已应用于开关电源、变压器、传感器等,可实现器件的小型化、轻型化、高频化以及多功能化,近年来发展十分迅速。

2.8作为填充剂的应用普通的ZnO的空间结构含有氧空位和间隙锌等,它们在禁带中引入浅施主能级,而使ZnO 表现出n型半导体的性质,所以纳米ZnO颗粒以其良好的导电性能可以用作导电纤维、塑料、涂料的填充剂以提高产品的导电性能和抗静电能力。

例如,在橡胶中补充纳米氧化锌等补强性填料,可以提高橡胶制品的物理机械性能,延长使用寿命[11]。

除以上应用之外,纳米氧化锌还可以应用于气敏传感器、光电探测器、图像记录材料等。

3 纳米氧化锌的制备方法纳米氧化锌的制备方法按照物料状态可分为:固相法、液相法和气相法[12]。

3.1固相法固相法也称为固相化学反应法,是近几年来刚发展起来的一种价廉而又简易的新方法,是将金属盐或金属氧化物按一定比例充分混合,研磨后进行煅烧,通过发生固相反应直接制得纳米粉末[13]。

相关文档
最新文档