功放TDA2004典型应用电路图

功放TDA2004典型应用电路图
功放TDA2004典型应用电路图

TDA2004功放主要参数及实用电路图

TDA2004,音频双功放,单列ll脚封装,输出电流大,负载阻抗低。电源电压8—18V。当V cc=14.4V,Rl=1.6Ω时,输出功率Po=11W×2,Rl=4Ω.Po=6.5w×2。典型应用图如下:

引脚功能图

时间:2009-11-10 21:13:33

tda2030_功放_OTL_BTL_OCL单、双电源___高保真

TDA2030A是高保真集成功放之一,许多功放电路都采用这种集成方式。用TDA2030A做几款不同形式的功放,也许能给音响爱好者增加一点趣味。 一、用TDA2030A做成的OTL形式的功放 OTL功放的形式:采用单电源,有输出耦合电容。如图1所示电路中的R5 (150 kΩ)与R4 (4.7 kΩ)电阻决定放大器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。两个二极管接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。C3(0.22 uF)电容与R6(1 Ω)的电阻是对感性负载(喇叭)进行相位补偿来消除自激,该电路采用36V单电源,输出功率约20 W。 二、用TDA2030A做成的OCL形式功放 OCL功放的形式是采用双电源,无输出耦合电容,如图2所示,由于无输出耦合电容低频响应得到改善,属于高保真电路。双电源采用初级线圈中间点接地、上下电压对称相等的变压器,经过整流滤波后构成±18 V的双电源,输出功率为20 W。 三、用TDA2030A做成的BTL形式功放 BTL的主要特点是:由两个相同的功放组成,输入信号互为反相。实际采用放大器的同相输入与反相输入,以保证输入信号互为反相,同时还应使两输入信号的幅度相同,这样便可以满足BTL电路形式的基本要求。电路图如图3所示,其中R7 (1 kΩ)与R8(33 Ω)电阻对信号分压后衰减的倍数与U1的放大倍数正好相同,衰减后的信号通过R5加在U2的反相输入端。事实上是由两个运放完成了一路信号放大,实际测得输出电平高出用一个集成电路的

1.5倍。即原输出功率为20 W的运放,现输出功率约为50 W。但由于BTL电路特点,选择集成电路时尽可能用参数一致的两个运算放大电路,调整输入信号幅度,可通过输入正弦波用示波器观察两输入信号的幅度,这时调整R7使两输入信号的幅度相同,以保证在提高功率的同时尽可能减小非线性对称性失真。笔者曾见到与图3类似的电路,但其电路中没有R7, R8对信号分压后衰减的电阻,而U2的反相输入端R5(680 Ω)电阻仍接地。表面看来它也满足BTL电路的特点,喇叭也能发声,但用一个集成电路U1也能发出同样响的声音(U1的④脚对地接喇叭),而U2的④脚对地接喇叭却无声,正常应该能发声。事实上,原来由于信号通过U2的④脚与②脚相连的R4 (22 kΩ)电阻时,极大衰减了输入信号,再从680Ω与地之间加到U2的反相端,信号几乎为零。用一个U1也能发出声响的原因是:U2在电源电压作用下对信号形成一个接地通路,与喇叭一端接地相同。 经过以上分析,读者也可以将其他功放集成块做类似的变换,大家不妨试一下

功放喇叭保护电路

功放喇叭保护电路 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功放喇叭保护电路 大功率的家用功放的主声道均采用了OCL电路作功率放大。这种电路出现故障时,其输出端的直流电位常常会偏离零电平,出现较高的正或负的直流电压。输出的直流电流流过扬声器的音圈时,轻者会产生固定磁场,使音圈移位,难以恢复,重者会将其烧毁。另外。在部分特大功率功放中,由于输出功率非常大,在用户操作不当时,可能会持续输出数安培甚至十几安培的峰值电流,使该声道的最大输出功率远远超过功放的额定输出功率,致使扬声器烧毁。本文以奇声AV-713功放的扬声器保护电路为例介绍其工作原理。功放扬声器保护电路原理框图如图1所示,图中含有了三种保护方式。 (1)直流保护: 当功率放大电路发生故障,其输出端出现的直流电压的绝对值超过设计限度时,保护电路中的直流检测电路即把它检测出来,变成控制信号。控制信号经放大后控制触发器翻转,驱动保护继电器动作,断开功率输出电路,使扬声器得到保护。同时,控制信号还启动指示电路工作,使保护指示灯闪烁报警。(2)过载保护: 当输出电流超过额定输出电流的1倍左右时,过载检测电路输出保护控制信号,控制输出电路断开,保护扬声器及功放。

(3)开机延时接通保护: 通过开机延时电路控制继电器驱动电路的工作状态,使继电器在开机时延时1—4秒钟接通扬声器,以避免开机过程中产生的浪涌电流冲击扬声器。使其音圈移位。具体电路如图2所示。该电路以 Q4、Q5为中心,组成了直流电压取样检测电路。图中的Q1、Q2等系右声道功率输出电路(左声道功率输出电路图中未画出)。右声道的直流电压取样信号经由R6(左声道取样信号经由R21)衰减、隔离,C2、C3滤波,送往Q4、Q5、R7组成的互补式直流检测电路进行监测。当右(或左)声道的功率输出电路出现正极性的较大的直流失调电压时,电流经R6(或R21)、Q4的be结到地,Q4导通,其集电极输出控制电平,经R8、D2送Q7放大后,输往R-S触发器。同样。功率输出电路中出现负的直流失调电压时,电流经地、Q5的be 结、R6(或R21)、OCL电路中点。Q5导通,也输出控制电平。这种取样检测方式为互补方式。 R1、R2、R3、R4、Q3等组成了过载检测电路(左声道的过载检测电路未画出)。R1、R2分别用来对输出级上、下臂功率管的过载情况

tda2030功放电路图

tda2030功放电路图 TDA2030是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。如图1所示,按引脚的形状引可分为H型和V型。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。 电路特点: 1.外接元件非常少。 2.输出功率大,Po=18W(RL=4Ω)。 3.采用超小型封装(TO-220),可提高组装密度。 4.开机冲击极小。 5.内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 6.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。无疑,用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 引脚情况: 1.脚是正相输入端 2.脚是反向输入端 3.脚是负电源输入端 4.脚是功率输出端 5.脚是正电源输入端。 注意事项: 1.TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。 2.热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。 3.与普通电路相比较,散热片可以有更小的安全系数。万一结温超过时,也不会对器件有所损害,如果发生这种情况,Po=(当然还有Ptot)和Io就被减少。 4.印刷电路板设计时必须较好的考虑地线与输出的去耦,因为这些线路有大的电流通过。

功放电路集锦

功放电路集锦 一、双30W功放 图1是2×30W双声道音频功率放大器,其核心器件ICl采用高保真音响功放集成电路STK465,该电路内包含两个性能指标完全相同的功率放大器,分别用作左、右声道的功放,可保证两个声道放大器指标的一致性。电路输入阻抗30k,输入灵敏度150mV,电压增益40dB,频率响应:10Hz~100kHz,谐波失真≤0.08%,电源电压范围±(25~35)V。制作时应注意,正、负电源退耦滤波电容C5、C14的位置应尽量分别靠近sTK465的正、负电源输入端。如电路有自激现象,则增大C5和C14的容量。该功放输出功率适中,制作容易,可用作一般家庭的组合音响、卡拉OK设备或VCD机的声音播放。由于该功放电压增益高达40dB,输入灵敏度高,可省去前置放大器,而直接与卡拉OK机、VCD机等信号源连接。该功放也可用作家庭影院系统的环绕声功放。

二、40W功放 图2为采用高保真音响专用功放集成电路TDAl514构成的40W功率放大器,具有快速切断保护和延时静噪功能。电路输入阻抗20k,输入灵敏度600mV,电压增益30dB,信噪比80dB。制作两套该功放,分别用于左、右声道,即可构成2×40W立体声功率放大器。 三、50W功放 图3是50W高保真功率放大器,采用LM3886音频功放集成电路构成。电路输入阻抗20k,输入灵敏

度1000mV,电压增益26dB,信噪比110dB,输出连续平均功率50W,峰值功率可达135W,总静态电流50mA,电源电压范围±(30~40)V。Ll用φ1.2mm漆包线在10Ω/5W金属膜电阻(R7)上平绕10匝后与该电阻并联即可。LM3886还具有静音功能,其第8脚为静音控制端,当第8脚开路(或接地)时为静音状态;第8脚通过30k电阻接-35V时则无静音。调试时,如发现总静态电流过大,则是电路自激,可适当调节负反馈回路中的C3、R4或移相网络中的C4。 四、60W功放 图4是采用LM3875T构成的60W高保真功率放大器,具有外围电路简单、易于制作的特点。电路输入阻抗≥20k,输入灵敏度1100mV,电压增益26dB,频响范围5Hz~lOOkHz,总失真≤O.05%,信噪比114dB,电源电压范围±(20~40)v。L1绕制方法同图3电路。 五、70W功放 图5为采用STK4040X1构成的音频功率放大器,额定输出功率70W,最大谐波失真O.008%,频响范围20Hz-20kHz(-3dB),电路输入阻抗30k,输入灵敏度1000mV,电压增益27dB。L1可用φ1.2mm 漆包线在φ10mm骨架上平绕15圈后脱胎而成。

TDA2030经典电路

2015年大学生创新基地第二阶段培训题目题目:基于TDA2030的音频功放 一、培训目的 独立完成一个音频功放,增加同学们对DXP软件的使用熟练度及对各种电子元器件的认识。本功放分成两部分,前置放大加调高低音部分及功率放大两部分,其中功率放大部分是必做部分,前置放大部分有能力的同学也可以做(希望同学们都做),DXP使用熟练的同学可以将两个原理图连起来画在同一个板子上。 二、原理图: 1. 功率放大,必做!(基础部分) 2. 前置放大加调高低音部分,有能力的同学做完功率放大后可选做(加分部分) 三、电路工作原理: 本电路是基于TDA2030A的音频功放电路,TDA2030A是电话机根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。本电路是内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接以及负载泄放电压反冲等。TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。无疑,用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 NE5532是高性能低噪声双运算放大器(双运放)集成电路,用作音频放大时音色温暖,保真度高,在上世纪九十年代初的音响界被发烧友们誉为“运放之皇”,至今仍是很多音响发烧友手中必备的运放之一。本电路中采用NE5532进行前置放大。电路中J2口接入音频信号,经前置放大后,进入调高低音部分,最后通过TDA2030进行功率放大。该电路中同时也加入了话筒和音频接口,做完该电路后且调试成功后,有兴趣的同学可以接上音源,通过扩音器来享受自己的劳动成果。 四、元器件实物图

功放喇叭保护电路

功放喇叭保护电路 大功率的家用功放的主声道均米用了 OCL电路作功率放大。这种电路出现故障时,其输出端的直流电位常常会偏离零电平,出现较高的正或负的直流电压。输出的直流电流流过扬声器的音圈时,轻者会产生固定磁场,使音圈移位,难以恢复,重者会将其烧毁。另外。 在部分特大功率功放中,由于输出功率非常大,在用户操作不当时,可能会持续输出数安培甚至十几安培的峰值电流,使该声道的最大输出功率远远超过功放的额定输出功率,致使扬声器烧毁。本文以奇声AV-713功放的扬声器保护电路为例介绍其工作原理。功放扬声器保护电路原理框图如图1所示,图中含有了三种保护方式。 (1)直流保护: 当功率放大电路发生故障,其输出端出现的直流电压的绝对值超过设计限度时,保护电路中的直流检测电路即把它检测出来,变成控制信号。控制信号经放大后控制触发器翻转,驱动保护继电器动作,断开功率输出电路,使扬声器得到保护。同时,控制信号还启动指示电路工作,使保护指示灯闪烁报警。(2)过载保护: 当输出电流超过额定输出电流的1倍左右时,过载检测电路输出保护控制信号,控制输出电路断开,保护扬声器及功放。 (3)开机延时接通保护:

通过开机延时电路控制继电器驱动电路的工作状态, 使继电器在开机时延时1—4秒钟接通 扬声器,以避免开机过程中产生的浪涌电流冲击扬声器。使其音圈移位。 具体电路如图2 所示。该电路以Q4、Q5为中心,组成了直流电压取样检测电路。图中的 Q1、Q2等系右 声道功率输出电路(左声道功率输出电路图中未画出 )。右声道的直流电压取样信号经由 R6(左声道取样信号经由R21)衰减、隔离,C2、C3滤波,送往Q4、Q5、R7组成的互补式 直流检测电路进行监测。当右(或左)声道的功率输出电路出现正极性的较大的直流失调电压 时,电流经R6(或 R21) Q4的be 结到地,Q4导通,其集电极输出控制电平,经 R8、D2 送Q7放大后,输往R-S 触发器。同样。功率输出电路中出现负的直流失调电压时,电流经 地、Q5的be 结、R6(或 R21)、OCL 电路中点。Q5导通,也输出控制电平。这种取样检测 方式为互补方式。 R1、R2、R3 R4、Q3等组成了过载检测电路(左声道的过载检测电路未画出)。R1、R2分 别用来对输出级上、下臂功率管的过载情况进行取样。 Q3对输出电路进行过载状态监测。 R1两端的电压与功率管 Q1的发射极电流成正比,该电压经过 R3、R4、R2衰减分压,成 为Q1发射结的正向偏压。调整 R3、R4的阻值,可使此电压在额定输出状态下不能使 Q3 导通。当功放工作异常致使 Q1严重过载时,流过R1的电流大增。从而产生足以使 Q3导 通的正向偏压,使 Q3 导通,输出监控信号,经 Q7 放大后送到触发器,使触发器输出状态 卜 ■ ----------------- ■ ----------------- 一亠 y _ --------------- - ” ----- ----------- ■ ------------------------------------------------------ ... J" — iuin 厂 N 1 0 签£3弼 5M1 4001- HL 355J LFD 1N4I4A o oiOl- A IS+14U 17 IN4OQ2 H8 10k E 4003-

TDA2030A功放芯片电路图

BTL的主要特点是:由两个相同的功放组成,输入信号互为反相。实际采用放大器的同相输入与反相输入,以保证输入信号互为反相,同时还应使两输入信号的幅度相同,这样便可以满足BTL电路形式的基本要求。电路图如图3所示,其中R7 (1 kΩ)与R8(33 Ω)电阻对信号分压后衰减的倍数与U1的放大倍数正好相同,衰减后的信号通过R5加在U2的反相输入端。事实上是由两个运放完成了一路信号放大,实际测得输出电平高出用一个集成电路的1.5倍。即原输出功率为20 W的运放,现输出功率约为50 W。但由于BTL电路特点,选择集成电路时尽可能用参数一致的两个运算放大电路,调整输入信号幅度,可通过输入正弦波用示波器观察两输入信号的幅度,这时调整R7使两输入信号的幅度相同,以保证在提高功率的同时尽可能减小非线性对称性失真。笔者曾见到与图3类似的电路,但其电路中没有R7, R8对信号分压后衰减的电阻,而U2的反相输入端R5(680 Ω)电阻仍接地。表面看来它也满足BTL电路的特点,喇叭也能发声,但用一个集成电路U1也能发出同样响的声音(U1的④脚对地接喇叭),而U2的④脚对地接喇叭却无声,正常应该能发声。事实上,原来由于信号通过U2的④脚与②脚相连的R4 (22 kΩ)电阻时,极大衰减了输入信号,再从680Ω与地之间加到U2的反相端,信号几乎为零。用一个U1也能发出声响的原因是:U2在电源电压作用下对信号形成一个接地通路,与喇叭一端接地相同。 TDA2030A的BTL大功率功放电路原理图 发布: | 作者:-- | 来源: -- | 查看:219次 | 用户关注: 采用4个TDA2030A或LM1875组成双通道的BTL电路。电阻为金属膜电阻,两个大滤波电容为6700U/25V(实测耐压可达40v左右)的红宝石或黑金刚(这两个品牌质量好一点)电解电容,其它电容采用CBB无极性电容。TDA2030A是目前性价比最高的功放集成块之一,内部有完善的过载及过热保护,是入门级功放制作的绝佳选择。TDA2030A的工作电压范围较广,从±6~±22V都可以正常工作。

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

专业功放电路图

专业功放电路图 贝拉利BEILARLY PM-700专业功放 根据贝拉利PM-700功放的实物绘制的一个声道的主功放电路图。Q1、Q2两只2SC2383构成差分输入级,R8、ZD1、C3组成差分放大器的恒流源。Q1的基极增加了R3、R4、RP1、D1、D2辅助电路,一是对输入端进行直流钳位,通过调整RP1可对输出中点进行调整;二是对输入的交流信号进行限幅,使输入信号峰峰值被限制在±0.7V以内,防止输入信号过强。电压放大级Q3、Q4组成第二级差分放大器,Q5、Q6构成集电极负载。恒压偏置管Q7、Q8两管并联使用,Q8由引线连接安装在散热片上,起到温度补偿作用。 该机每个声道的最大输出功率接近1000W,为保证足够的推动电流,电路设置了两级电流放大。第一级Q9、Q10使用一对中功率管,两只中功率管b、c极间设有吸收电容C11、Cl2,进行高频相位补偿防止高频自激。第二级Q11、Q12 则使用一对大功率管。Q11、Q12发射极之间R25、D3将后边七对功率管偏置钳位在很低的水平,上下对管b-e结偏置电压只有±0.3V左右。实际测量功率管的b-e结电压只有±0.1V,Q11、Q12的b-e结电压只有±0.5V。这就是该机的电

路设计独特之处,末端的低偏置使整机的静态功耗降到最低点。不追求理论上的高保真,力求使用中不失真的大功率输出和强负荷的经久耐用。这样的电路设计更适合商业性宣传演出。 一般功放保护电路中只在末级一对功率菅发射极各设置一 只取样电阻,可以说是抽选取样。而该机在每个功率管发射极都设有取样电阻{即R54~R67),任何一只功率管出现过流异常都会使Q27导通,经D8、R70使保护电路启控断开继电器。上下取样信号分别加在Q27的基极和发射极。NPN 管一侧有过流现象时发射极电阻压降增加,升高后正电压经过取样电阻加到Q27基极使其导通。PNP管一侧有过流发生时,将会有负电压加到Q27发射极,也等于抬高其基极电压而导通。D6、D7将Q27基极和发射极对地直流电压钳位,当输出中点发生偏移时Q27也将导通启动保护电路。韵沁专业音响设备制造有限公司 是香港贝拉利专业音响有限公司在中国大陆投资兴建的全 资有限责任公司,面向中国大陆代理制造销售BEIPI厅堂场馆扩声系列、娱乐场所建声系列,电影立体声还音系列BEIPI 功率放大器,HS与ALPHA电影立体声处理器等产品;组装、生产各类中高档专业扬声器系统,舞台机械设备和电气配套

TDA2030A功放电路图

TDA2030A功放电路图,引脚图,电路图 发布时间:2011-5-5 9:49:33 | 来源: 第一价值网| 查看: 1551次| 收藏| 打印 TAG:TDA2030A功放电路图TDA2030A引脚图TDA2030A电路图 一、用TDA2030A做成的OTL形式的功放 OTL功放的形式:采用单电源,有输出耦合电容。如图1所示电路中的R5 (150 kΩ)与R4 (4.7 kΩ)电阻决定放大器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。两个二极管接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。C3(0.22 uF)电容与R6(1 Ω)的电阻是对感性负载(喇叭)进行相位补偿来消除自激,该电路采用36V单电源,输出功率约20 W。 二、用TDA2030A做成的OCL形式功放 OCL功放的形式是采用双电源,无输出耦合电容,如图2所示,由于无输出耦合电容低频响应得到改善,属于高保真电路。双电源采用初级线圈中间点接地、上下电压对称相等的变压器,经过整流滤波后构成±18 V的双电源,输出功率为20 W。 三、用TDA2030A做成的BTL形式功放 BTL的主要特点是:由两个相同的功放组成,输入信号互为反相。实际采用放大器的同相输入与反相输入,以保证输入信号互为反相,同时还应使两输入信号的幅度相同,这样便可以满足BTL电路形式的基本要求。电路图如图3所示,其中R7 (1 kΩ)与R8(33 Ω)电阻对信号分压后衰减的倍数与U1的放大倍数正好相同,衰减后的信号通过R5加在U2的反相输入端。事实上是由两个运放完成了一路信号放大,实际测得

输出电平高出用一个集成电路的1.5倍。即原输出功率为20 W的运放,现输出功率约为50 W。但由于BTL 电路特点,选择集成电路时尽可能用参数一致的两个运算放大电路,调整输入信号幅度,可通过输入正弦波用示波器观察两输入信号的幅度,这时调整R7使两输入信号的幅度相同,以保证在提高功率的同时尽可能减小非线性对称性失真。笔者曾见到与图3类似的电路,但其电路中没有R7, R8对信号分压后衰减的电阻,而U2的反相输入端R5(680 Ω)电阻仍接地。表面看来它也满足BTL电路的特点,喇叭也能发声,但用一个集成电路U1也能发出同样响的声音(U1的④脚对地接喇叭),而U2的④脚对地接喇叭却无声,正常应该能发声。事实上,原来由于信号通过U2的④脚与②脚相连的R4 (22 kΩ)电阻时,极大衰减了输入信号,再从680Ω与地之间加到U2的反相端,信号几乎为零。用一个U1也能发出声响的原因是:U2在电源电压作用下对信号形成一个接地通路,与喇叭一端接地相同。 TDA2030单电源接法电路图 TDA2030是许多电脑有源音箱所采用的Hi-Fi功放集成块。它接法简单,价格实惠。额定功率为14W。电源电压为±6~±18V。输出电流大,谐波失真和交越失真小(±14V/4欧姆,THD=0.5%)。具有优良的短路和过热保护电路。其接法分单电源和双电源两种:单电源接法

基于TDA2030的音频功放设计报告

基于TDA2030的音频功放设计 院(系)名称信息工程学院 专业班级09 普本电信一班学号 学生姓名 指导教师

2012年5月25日 基于TDA2030的音频功放设计报告 1整体设计思路 音频功率放大器主要由前置级、音调级、功率放大级3部分组成。前置级要求输入阻抗高、输出阻抗小、频带宽、噪声小;音调级对输入信号主要起到提升、衰减作用;功率放大级是音频功率放大器的主要部分,它决定输出功率的大小,要求输出功率高,输出功率大的特点。 将功率集成块按一定方式组合,构成音频功率放大集成电路,其频响宽、噪声低、失真小。运用已有的集成电路,可以大大简化了电路的制作过程。 TDA2030是飞利浦公司生产的,实物图如图1 2.集成音频功率放大器TDA2030 TDA2030简介:TDA 2030是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动的减流或截止,使自己得到保护。 TDA2030集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑料大功率管,这就给使用带来不少方便。

TDA2030与4558组成的音箱电路及维修

一、功放电路图 4558D是一片常见的运算放大电路,为8脚双列直插式封装,常用于普及型台式CD、vCD中的话筒放大电路以及DAC(数/模转换)之后的运算放大输出级。 在该前置级运算放大电路中(图2),4558D接成了双电源工作电路,其中⑧脚接副电源的正电压vcc’,④脚接副电源端的负端vss’,为该片电路提供工作电源。左、右声道信号由接口J输入,先分别经过R43、R42后至音量电位器w,同轴调节后的信号分别由c28、c29耦合至前置级运放Ic4的5、3脚,经内部电路放大处理后由⑥⑦与①②脚输出。使用该片运放Ic不仅是为微弱的输入信号提供放大.主要还是起平衡调节的作用。因为多媒体音箱不仅仅只是为接驳电脑使用,同样地可以接驳其他的影音器材。如我们平常使用的磁带、CD 随声听等,而该类器材一般又只能接驳在耳机输出端口。我们知道,该端口是功率放大后的输出端口,若此时直接接入功放级的话,会产生严重的失真。于是该音箱中使用了运放Ic,先由R43、R42对输入信号进行取样,由音量电位器(w)控制好音量后,再分别由C28、C29耦合到Ic4的⑤③脚对取样过来的信号进行放大处理。 由⑥⑦与①②脚输出前置放大级放大后的左、右声道信号,经R、C网络后输入到功率放大级IC2、ICl的①脚,进行功率放大。其中c39、c40与w’相连电路为高音调节电路,其实该电路并非能将高音频域进行提升,而是根据电容通高频的原理,将高频声音信号提取到可变电阻w’,此时调节w’,等于将高频成分不同程度的对地短路,从而模拟高音调节功能。另外,前置放大级输出端⑥⑦与①②脚分别接R41、R40(该两电阻参数一致)合成L、R 信号后至重低音(Bass)调节电位器,经调节大小后输入至Ic5的⑤脚(见图3)。Ic5同样由双电源供电,即⑧脚接Vcc’、④脚接vss’。与Ic4不同的是,Ic5相当于BTL形式的接法,将低音成分更大程度的放大后输入到“低音炮”功放级IC3的①脚,并且耦合到Ic3①脚时采用了大容量的电解电容,而不像左、右声道Ic2、Icl的①脚输入端的无极性小容量电容,进一步地保证了低频信号的“畅通无阻”。 TDA2030A是一片常见的单声道高保真功率放大集成电路,除了在音质方面具有很好的表现之外,其外围电路比较简单,可以说是傻瓜型了。在该电路中,ICl~IC3均接成了OCL的形式,对应各引脚功能如下:①放大输入端、②反馈端、③负电源vss输入、④放大后输出端、⑤正电源端Vcc输入。 至此.由三片相同的功率放大电路,分别对左、右、低旨炮各声道推动。还原出声音。 二、电源电路 如图1.市电经电源控制开关K连接到变压器的初级。变压器次级的中心抽头直接接公共地极,两边引脚经D1~D4桥式整流后,正极相对公共地为正电源端.负极相对地为负电源端。正电源端由C36滤波后输出Vcc,负电源由C37滤波后输出Vss。经实测,该主电源为直流±15V,为三片功放Ic(ICl~IC3)提供工作电源。 另外,主电源vcc端经R22限流、D5稳压、C33滤波后输出副电源端Vcc’,主电源端Vss经R23限流、D6稳压、C17滤波后输出副电源vss’,为运放IC4、IC5提供±5V 的工作电源。其中LED为工作状态指示灯。 三、检修实例 [例1]冷机工作正常,但若干秒后各声道均发出较大的“沙…”尖叫声,断电一段时间后又能正常工作,至若干秒后故障重现。 开箱检查。并没发现什么物理异常现象。考虑到三片放大IC或两片前置放大IC 同时出现热稳定性不良的可能性不大,看来故障主要还是在公共的电源部分,试着将D1~

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

tda2030参数

TDA2030A功放电路图,引脚图,电路图,价格0.82/pcs 发布时间:2011-5-5 9:49:33 | 来源: 第一价值网| 查看: 1551次| 收藏| 打印 TAG:TDA2030A功放电路图TDA2030A引脚图TDA2030A电路图 一、用TDA2030A做成的OTL形式的功放 OTL功放的形式:采用单电源,有输出耦合电容。如图1所示电路中的R5 (150 kΩ)与R4 (4.7 kΩ)电阻决定放大器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。两个二极管接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。C3(0.22 uF)电容与R6(1 Ω)的电阻是对感性负载(喇叭)进行相位补偿来消除自激,该电路采用36V单电源,输出功率约20 W。 二、用TDA2030A做成的OCL形式功放 OCL功放的形式是采用双电源,无输出耦合电容,如图2所示,由于无输出耦合电容低频响应得到改善,属于高保真电路。双电源采用初级线圈中间点接地、上下电压对称相等的变压器,经过整流滤波后构成±18 V的双电源,输出功率为20 W。 三、用TDA2030A做成的BTL形式功放 BTL的主要特点是:由两个相同的功放组成,输入信号互为反相。实际采用放大器的同相输入与反相输入,以保证输入信号互为反相,同时还应使两输入信号的幅度相同,这样便可以满足BTL电路形式的基本要求。电路图如图3所示,其中R7 (1 kΩ)与R8(33 Ω)电阻对信号分压后衰减的倍数与U1的放大倍数正好相同,衰减后的信号通过R5加在U2的反相输入端。事实上是由两个运放完成了一路信号放大,实际测得

TDA2030单电源双通道纯后级功放

TDA2030单电源双通道纯后级功放设计与制作报告一、摘要 后级的输入讯号很单纯,就是承接前级的输出。但后级的负载是喇叭,这就是让许多音响迷,甚至杂志评论写手搞不定之处。后级是前级的负载,是高阻抗负载;喇叭是后级的负载,是低阻抗负载。看起来差不多,只差一个字,但阻抗的一高一低却造成「很容易推」或「推不动」现象。当前级接上高阻抗的后级,它主要提供适切的输出电压,因为后级扩大机的输入阻抗很少低于10KΩ,有这种后级,但不多见,一般都是47KΩ左右。当后级扩大机接上低阻抗的喇叭,它不但要提供适切的电压,也要提供足够的电流。 除少数特例,目前喇叭阻抗很少高过8Ω,甚至还低于4Ω。而1KΩ=1000Ω。差异是不是很大? 所以Hi-End后级,不但讲求大功率输出,动辄数百瓦,每声道独立装箱,还特别注明是大电流设计,当负载阻抗降低一半,输出功率会提升至原来的两倍。若是输出电流能力不足,当负载阻抗降低时(某些喇叭在工作时,例如Dynaudio,它的阻抗会随着讯号频率降低而降低),若扩大机输出电流不够,就会产生切割─clipping 二、引言 如今随着科学技术的迅猛发展,电子产品被应用到了人们工作、生活的各个角落。而在众多电子产品中功放的应用相当广泛,功放技术已经渗透到国民经济的各个行业和日常生活的方方面面,在工业自动化、生产过程控制、信息采集和处理、通信工程、音乐播放、家庭生活、办公教学、家用电器等各个方面得到了广泛的应用。特别是一些家用电器音响几乎都是用功放完成。 大量的音频功放的使用带来了大量的音响的生产。在一些功放的生产以及维修中,对其音响是否规范的检测尤其重要。 在功放生产线上,工人们需要对功放的每个部分进行检测,以确定音响能否发出高品质的音效。为了解决音频功放的检测问题,适应市场需要而设计不同类型的音频功放设备。 三、设计方案 3.1系统框图

各类功放原理图及原理介绍

D类功放的原理 在音响领域里人们一直坚守着A类功放的阵地。认为A类功放声音最为清新透明,具有很高的保真度。但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。B类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功放,因其符合绿色革命 的潮流正受着各方面的重视。 由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相 通之处,进一步显示出D类功放的发展优势。 D类功放是放大元件处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。在理想情况下,D类功放的效率为100% ,B类功放的效率为78.5% ,A类功放的效率才50%或25% (按负载方式而定)。 D类功放实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。20世纪60年代,设计人员开始研究D类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。其中关 键的一步就是对音频信号的调制。 图1是D类功放的基本结构,可分为三个部分: 图1 D类功放基本结构

功放电路TDA2030A

功放集成电路TDA2030详解 音频功放电路TDA2030,采用5 脚单列直插式塑料封装结构,如图所示,按引脚的形状引可分为H型和V型。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、谐波失真和交越失真小等特点。并设有短路和过热保护电路等,多用于高级收录机及高传真立体声扩音装置。意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。 电路特点: [1].外接元件非常少。 [2].输出功率大,Po=18W(RL=4Ω)。 [3].采用超小型封装(TO-220),可提 高组装密度。 [4].开机冲击极小。 [5].内含各种保护电路,因此工作安全可靠。 主要保护电路有:短路、过热、地线偶然开路、电源极性反接(Vsmax=12V)、负载泄放电压反冲等。 极限参数:如表1所示。 表1 TDA2003极限参数(TA=25 ℃) 封装形式:TDA2030为5脚单列直插式,如上图1所示 电气参数:如表2所示

表2:TDA2030电气参数(Vcc=±14V,TA=25℃)

典型应用电路: 各元器件的作用:

注意事项: TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。 热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。 与普通电路相比较,散热片可以有更小的安全系数。万一结温超过时,也不会对器件有所损害,如果发生这种情况,Po=(当然还有Ptot)和Io就被减少。 印刷电路板设计时必须较好的考虑地线与输出的去耦,因为这些线路有大的电流通过。 装配时散热片与之间不需要绝缘,引线长度应尽可能短,焊接温度不得超过260℃,12秒。 虽然TDA2030所需的元件很少,但所选的元件必须是品质有保障的元件。 TDA2030A功放运用电路图,引脚图,电路图 发布时间:2011-5-5 9:49:33 | 来源: 第一价值网| 查看: 1551次| 收藏| 打印 TAG:TDA2030A功放电路图TDA2030A引脚图TDA2030A电路图 一、用TDA2030A做成的OTL形式的功放 OTL功放的形式:采用单电源,有输出耦合电容。如图1所示电路中的R5 (150 kΩ)与R4 (4.7 kΩ)电阻决定放大器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。两个二极管接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。C3(0.22 uF)电容与R6(1 Ω)的电阻是对感性负载(喇叭)进行相位补偿来消除自激,该电路采用36V单电源,输出功率约20 W。

TDA2030A组成的30W功率放大器电路图

TDA2030A组成的30W功率放大器电路图 作者:admin 来源: TDA2030A组成的30W功率放大器电路图 TDA2030A组成的30W功率放大器电路图 TDA2030这样的电路对初学者来说就很适合。功率也可以适用于书房和卧室等空间不是很大的地方。元件也很好找,价格便宜。该电路图如下: 本电路有一点错误之处,但是我不知道怎么在博客里面改图片,所以只能在这里加以说明。TDA2030A有5个引脚,其中引脚定义为: 1、同向输入 2、反向输入

3、负电源 4、输出 5、正电源 所以不管怎么接,TDA2030A的引脚3肯定接低电平,引脚5接高电平。上面的电路图里面第二个运放需要将-15V、+15V换位。 本电路无需调试,只要安装正确即可正常工作。这款电路属于BTL功率放大,B TL是Bridge-Tied-load的缩写,意为桥接式负载。负载的两端分别接在两个放大器的输出端。其中一个放大器的输出是另外一个放大器的镜像输出,也就是说加在负载两端的信号仅在相位上相差180°。负载上将得到原来单端输出的2倍电压。从理论上来讲电路的输出功率将增加4倍。BTL电路能充分利用系统电压,因此BT L结构常应用于低电压系统或电池供电系统中。在汽车音响中当每声道功率超过10 w时,大多采用BTL形式。BTL形式不同于推挽形式,BTL的每一个放大器放大的信号都是完整的信号,只是两个放大器的输出信号反相而已。用集成功放块构成一个BTL放大器需要一个双声道或两个单声道的功放块。但是并不是所有的功放块都适用于BTL形式,BTL形式的几种接法也各有优劣。 电路里面C1与R1构成高通滤波电路,以公式f=1/(2πRC)可以得出在固定高通频率下R、C的值。电路中,如果假设f=100Hz,C值不变,R的值将会减小,则R 得电流将增大,从而输出功率减小,导致喇叭音量减小;所以应该改变C的值,R 值不变。调整R、C的值,可以有效地改善输出语音的质量。

相关文档
最新文档