湛江年预计雷击次数计算书

合集下载

防雷等级计算公式

防雷等级计算公式

建筑物年雷击次数公式:N=k×Ng×Ae
N--建筑物年预计雷击次数
k--修正系数,一般取1;位于河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处
以及特别潮湿的建筑物取1.5;金属屋面没有接地的砖木结构建筑物取1.7;位于山顶上或 Ng--建筑物所处地区雷击大地的年均密度(次/km2/a); Ae--与建筑物截收相同雷击次数的等效面积(km2)
Ng=0.1xTd; Td--年平均雷暴日(d/a)
建筑物年雷击次数公式计算表
序号
参数
表达式
数值
1
宽:
W=
2
长:
L=
3
高:
H=
4 年平均雷暴日:
Td=
5
修正系数:
K=
6 每边扩大宽度:
D=[H(200-H)]1/2= 0
7 雷击年均密度:
Ng=0.1*Td= 0
8
等效面积:
9
1. H<100m
10
Ae(1)= [LW+2(L+W)D+πD2]*10-6
=0
11
Ae(2.1)= Ae(1)-0.5D*(周围建筑物周长之和)*10-6 = 0
12
Ae(2.2)= [LW+(L+W)*D+0.25πD2]*10-6
=0
13
Ae(3.1)= Ae(1)-D*(周围建筑物平行边长之和)*10-6 = 0
14
Ae(3.2)= LW*10-0.6
=0
15
2. H≥100m
20
Ae(6.2)= LW*10-0.6
=0
21 3.各点面积不同 逐点计算后相加
Ae(7)=

建筑物雷电防护等级计算

建筑物雷电防护等级计算

N1=k*Ng*Ae
校正系数K 扩大宽度D (米) 86.60254 等效面积 Ae(平方公 里) 0.03253899 雷击年均密度 Ng(平方公里 *a) 2.075665
年均雷暴日Td (d/a) 30.90
14.00
50.00
2.0
0.13508
入户设施年预计累计次数计算
序 低压架空电源电 高压架空电源电 号 缆长度L1(米) 缆长度L2(米) 0.00 2 有效截收面积 Ae1' 0.000000 500.00 有效截收面积 Ae2' 0.250000 低压埋地电源电 缆长度L3(米) 100.00 有效截收面积 Ae3' 0.050000 高压埋地电源电 架空信号线缆 缆长度L4(米) 长度L5(米) 0.00 有效截收面积 Ae4' 0.000000 500.00 有效截收面积 Ae5' 1.000000
NC=5.8*0.0316227766/C
各类因子之 和C 10.50 可接受的最 大年平均雷 击次数Nc 击次数Nc
0.01747
按防雷装置的拦截效率确定雷电防护等级
E=1-Nc/N
0.993946002
结论: 结论: 应该安装雷电防护装置
A级

建筑物年预计累计次数计算
序 号 1 建筑长度L (米) 35.00 建筑宽度W(米) 建筑高度H(米)









备 注
预计年雷击次数N1(次/a) 总预计年雷 击次数N 击次数N = N1+N2(次 /a) 蓝色单元格是 需要人工填写 的。无金属铠 装或带金属芯 线的光纤电缆, 其有效截收面 积Ae'为0。L是 线路从所考虑 建筑物至网络 的第一个分支 点或相邻建筑 物的长度,单 位为m,最大值 为1000m,当L 未知时,应采 用L=1000m

防雷保护计算(X)

防雷保护计算(X)

NO
NO
NO
NO
YES
结论: 结论:
类防雷建筑物
第三类防雷建筑物
第三类防雷建筑物
第二类防雷建筑物
防雷保护计算
金属屋面的砖木结构建筑物:1.7 河边,山坡下,山地中土壤电阻率较小处,地下水露头处,土山顶部,山谷风口处及特别潮湿的建筑物:1.5。
1
1
中央化验室 65 16 16 0.019 1 0.041
三修 190 14 12 0.029 1 0.062
2.128 成品库 238 30 7 0.031 1 0.066
液氯 72 25 10 0.016 1 0.035
18 6 19 0.014 1 0.029
建筑物特性
1。制造、使用或贮存炸药等大量爆炸物质,且能引起重大损失 2。0区或10区爆炸危险环境 3。1区爆炸危险环境,会造成巨大损失 1。国家级重点文物保护的建筑物 2。国家级特别重要的建筑物 3。制造、使用或贮存爆炸物质,且不能引起巨大损失 4。1区爆炸危险环境,不会造成巨大损失 5。2区或11区爆炸危险环境 6。有爆炸危险的露天钢质封闭气罐 7。预计雷击次数大于0.06次/a的重要公共建筑物 8。预计雷击次数大于0.3次/a的住宅、办公楼等 1。省级重点文物保护的建筑物 2。预计雷击次数大于等于0.012次/a,且小于等于0.06次/a的重要公共建筑物 3。预计雷击次数大于等于0.06次/a,且小于等于0.3次/a的住宅、办公楼 4。预计雷击次数大于等于0.06次/a的一般性工业建筑物 5。21区、22区、23区火灾危险环境 6。年平均雷暴日大于15d/a的地区,高度在15m及以上的高耸建筑物 7。年平均雷暴日小于或等于15d/a的地区,高度在20m及以上的高耸建筑物 YES YES YES YES NO NO NO NO NO NO

五十、防雷的预计雷击次数计算需要注意哪些问题

五十、防雷的预计雷击次数计算需要注意哪些问题

防雷的预计雷击次数计算需要注意哪些问题?平时设计时只能按建筑高度,把建筑近似为长方体,大概计算雷击次数。

按国标50057—2010附录A去详细计算,有一定难度。

另外从实际来讲,附录A也无法代表全部情况,很多情况并未明确。

因此,某些情况下纠结如何精确计算,其实没有必要。

首先明确一个概念,电气规范说的是建筑物的高度,这和建筑专业的建筑高度不是一个概念。

另外建筑物很少有方方正正的,几乎没有严格正方体或者长方体,甚至一些奇形怪状,根本无法准确计算雷击次数,只能大概估算。

对于建筑电气设计来说,雷击次数精确计算并没有多大意义。

首先要搞清楚几个问题:建筑物的高度如何得到的?室内外高差是否考虑?如果一个地块多个建筑物,这一片是个坡度较大的地方,只按建筑高度计算(例如同一个小区,20栋同样参数的高层,建筑高度相同,但实际高度不同,闪电是不会认建筑高度的,如何计算)?屋面是平的?没坡度?没任何凸出?周围建筑物的影响考虑了吗?土壤电阻率大小考虑了吗?下面先看规范要求。

建筑物年预计雷击次数应按下式计算:式中 N——建筑物年预计雷击次数(次/a);k——校正系数,在一般情况下取1;位于河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的建筑物,以及特别潮湿的建筑物取1.5;金属屋面没有接地的砖木结构建筑物取1.7;位于山顶上或旷野的孤立建筑物取2;Ng——建筑物所处地区雷击大地的年平均密度(次/km2/a);Ae——与建筑物截收相同雷击次数的等效面积(km2)。

雷击大地的年平均密度,首先应按当地气象台、站资料确定;若无此资料,可按下式计算:式中 Td——年平均雷暴日,根据当地气象台、站资料确定(d/a)。

规范要求山坡下、土山顶部等按1.5校正,山地或旷野的孤立建筑物按2校正,并未区分山多高,有海拔几百米的山,也有海拔几千米的山,有非常陡峭的山,也有坡度较缓的山,另外山坡范围较大,都按同一个系数?规范本身没要求那么细致,只能大概简单计算,设计人员作为执行者应理解规范意图。

雷电的防护及数值计算

雷电的防护及数值计算

1.6雷电的防护GB50057-94中对雷防提出的总则(第1.0.1条)规定:“为使建筑物(含构筑物,下同)放雷设计因地制宜地采取放雷措施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,做到安全可靠、技术先进、经济合理,制定本规范。

”————注意,这里提的是“防止或减少”而不是一概要求“防止”,同时也提出考虑安全可靠、技术先进和经济的合理要同时考虑。

在标准的条文说明中指出:“有人认为,建筑物安装防雷装置后就万无一失了。

从经济的观点出发,要达到这点是太浪费了,因此特指出“或减少”,以示不是万无一失,因为按照本规范设计的防雷装置的安全度不是100% 。

1.6.1直击雷的防护防直击雷的外部装置包括接闪器(避雷针、避雷带、避雷线、避雷网)、引下线、接地装置,另外也包括屏蔽措施,通过这些装置迅速地将把雷电流泄放放入地。

1.6.2 电涌的防护为保护设备安全和抑制各种雷电感应引起的浪涌过电压,必须采取系统有效的保护措施,即在电源线信号线上加装浪涌抑制器。

1.6.3等电位连接为防护雷电流引起电磁感应和地电位反击的破坏作用,所有允许连接的设备金属外壳,接地的金属管线和导体间应进行的等电位连接。

是防雷电引起的电磁感应、地电位反击的重要措施(但不允许连接的导体之间防反击是以保持足够的距离实现——防闪络)。

从实质上讲电涌保护也是一种瞬间的等电位连接,是用SPD器件把不能连续与地连接的通电导体(电源线、信号线)与地连接起来。

1.6.4屏蔽用于防护雷电引起的电磁脉冲辐射的破坏作用。

1.6.5防闪络措施对于不能采取等电位连接和使用点涌保护器防护时,通过保持距离抑制雷电引起的地点位反击和电磁感应等的破坏作用。

(下图为基站防雷系统图)1.7 雷电流的特性● 每次雷击的电流波形是随机的,差别很大。

● 雷电流波形一般都是前沿陡而后沿时间相对较长的波形,一般前沿时间在几个微秒到几十个微秒,后沿的半值值时间一般在几十到几百微秒。

建筑物年预计雷击次数计算表

建筑物年预计雷击次数计算表

N=k * Ng *Ae
表13
2011年07月
建筑物名称
建筑物防雷等级
1#
第三类防雷建筑
Ng 0.024 Td1.3
Ae=[ L *W 2( L W )* H (200 H ) * H *(200 H )]*106
Ae:与建筑物截收相同雷击次数的等效面积,单位:km2; Ng:建筑物所处地区雷击大地的年平均密度,单位:次/km2a; Td: 年平均雷暴日数,根据当地气象台、站资料确定; k: 校正系数,在一般情况下取1,位于旷野孤立的建筑物取2,金属屋面的砖木结构建筑物取1.7,位 于河边、湖边、山坡下伙山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的建筑 物,以及特别潮湿的建筑物取1.5。
建设单位: 项目名称:
共1页第1页
建筑物年预计雷击次数计算表
年雷暴日 Td(d/a) 楼 50 建筑物高 H(m) 6 建筑物长 L(m) 42 建筑物宽 W(m) 16 校正系数 k 1 平均密度 Ng(次 /km2a) 3.88036 等效面积 年预计雷击次数 N Ae (km2) 0.00840 0.0326

建筑物年预计雷击次数N的简化计算方法

建筑物年预计雷击次数N的简化计算方法[Abstract]Lightning activity is one of the most unpredictable natural events that can cause significant damage to buildings and cause loss of lives. Predicting the number of times that a building is likely to be struck by lightning in a year is important to ensure the safety of people and the building itself. In this paper, we present a simplified method for calculating the expected number of lightning strikes on a building. The proposed method is easy to use and can be helpful for building owners, architects, and engineers to assess the risk of lightning strikes to the building.[Keywords]lightning strikes, building safety, lightning protection[Introduction]Lightning strikes are a frequent phenomenon during thunderstorms and can cause severe damage to buildings. Every year, buildings are struck by lightning leading to power outages, equipment damage, and risk to human life. Therefore, predicting the expected number of lightning strikes on buildings has become increasingly important. This paper presents a simplified method for calculating the expected number of lightning strikes on a building in a year.[Methodology]The proposed method takes into account the building’s height andthe average frequency of thunderstorms in the area. The expected number of lightning strikes on the building can be calculated using the following equation:N=H*(F/S)Where N is the expected number of lightning strikes, H is the height of the building in meters, F is the average frequency of thunderstorms in the area per year, and S is the average area of lightning flashes in meters squared.To obtain F, the average number of thunderstorm days per year can be multiplied by the average duration of thunderstorms in hours. The value obtained is then divided by 365 days to get the average frequency of thunderstorms per year.To obtain S, the average peak currents of lightning flashes during thunderstorms can be used. The peak currents for a highly conductive building can range from 200 kiloamperes to 400 kiloamperes. The average area of lightning flashes for a highly conductive building can be calculated as S=I^(-0.8)*100.[Results and Discussion]Using the proposed method, the expected number of lightning strikes on a building can be calculated. For example, a 50-meter high building located in an area with an average frequency of 15 thunderstorms per year and average peak current of 200 kiloamperes will experience N=50*(15/365)*((200)^(-0.8))*100=0.45 lightning strikes per year.The simplified method proposed in this paper can be useful for building owners, architects, and engineers to evaluate the risk of lightning strikes in their building design and for installing lightning protection systems. The calculated expected number of lightning strikes can also help in insurance purposes for the building.[Conclusion]In this paper, we presented a simplified method for calculating the expected number of lightning strikes on a building. The method takes into account the building’s height and the avera ge frequency of thunderstorms in the area. The proposed method is easy to use and can be useful for building owners, architects, and engineers to evaluate the risk of lightning strikes in their building design and for installing lightning protection systems.[References]1. Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge University Press.2. Mekhiche, M., & Salem, R. (2017). Simplified models for estimating the risk of lightning strikes to tall buildings. Journal of Building Engineering, 10, 175-182.3. National Fire Protection Association. (2018). NFPA 780: Standard for the Installation of Lightning Protection Systems. National Fire Protection Association.[Further Discussion]It is important to note that the simplified method proposed in this paper provides an estimate of the expected number of lightning strikes on a building. This estimate can be affected by various factors such as the building’s location, topology, and the presence of nearby lightning rods or other conductive elements. Therefore, it is recommended to consult with lightning protection experts for more accurate evaluations.In addition, the importance of lightning protection systems cannot be overstated. Lightning rods, grounding systems, and surge protectors are essential components of a comprehensive lightning protection system, which can significantly reduce the risk of lightning strikes to a building. It is crucial to install these systems in accordance with the relevant safety codes and standards, such as the National Fire Protection Association’s NFPA 780.Moreover, building design can also play a role in reducing the risk of lightning strikes. For instance, avoiding tall buildings in areas with high thunderstorm frequency can significantly reduce the potential for lightning strikes. Architectural features such as sloping roofs, rounded edges, and use of nonconductive materials can also decrease the likelihood of lightning strikes.Finally, education and awareness campaigns can help inform the public about lightning safety measures. Proper conduct during thunderstorms, such as avoiding open areas, tall trees, and metallic objects, can help reduce the risk of lightning strikes to individuals. [Conclusion]In conclusion, lightning strikes pose a serious risk to buildings and human life. The simplified method proposed in this paper provides building owners, architects, and engineers with a basic estimate of the expected number of lightning strikes on a building. This information can be helpful in determining the appropriate lightning protection measures for the building. However, it is critical to consult with lightning protection experts and follow relevant safety codes and standards for comprehensive protection against lightning strikes. Furthermore, building design, use of lightning protection systems, and awareness campaigns can all contribute to reducing the risk of lightning strikes to buildings and individuals.It is important to understand the potential consequences of lightning strikes. The most obvious risk is the direct damage caused to buildings, including fires, structural damage, and damage to electrical equipment. However, lightning strikes can also have indirect effects such as disrupting power supply, communication, and transportation systems. In addition, lightning strikes can cause injury or even fatalities to individuals.Therefore, conducting a thorough assessment of the lightning risk to a building is crucial. This assessment should take into account various factors, such as the geographical location and the frequency of thunderstorms in the area. Building designers and engineers can then make use of this information to design lightning protection systems that minimize the risk of lightning strikes and mitigate the potential damage.One such approach is the Faraday cage principle, which involves enclosing sensitive electronic equipment within a conductive enclosure that prevents electric charge from passing through to thecontents. Facilities that house critical equipment or have a high risk of lightning strikes, such as data centers, airports, and hospitals, often employ this approach.In addition, lightning rods and grounding systems are essential components of a comprehensive lightning protection system. Lightning rods are designed to intercept the lightning strike and channel the energy safely to the ground, while grounding systems help to dissipate the electrical charge. Surge protectors are also critical in preventing damage to electrical equipment by suppressing transient voltage surges caused by lightning strikes.Furthermore, building design can also play a role in reducing the risk of lightning strikes. Avoiding tall buildings or structures, especially in areas with high thunderstorm frequency, can significantly reduce the potential for lightning strikes. Sloping roofs, rounded edges, and use of nonconductive materials can also decrease the likelihood of lightning strikes or mitigate the damage caused by a lightning strike.Finally, education and awareness campaigns can help inform the public about lightning safety measures. Proper conduct during thunderstorms, such as seeking shelter indoors or in a grounded building or vehicle, avoiding open areas, tall trees, and metallic objects, can help reduce the risk of lightning strikes to individuals. In conclusion, lightning strikes pose a significant risk to buildings and individuals. It is crucial to conduct a comprehensive assessment of the lightning risk and implement appropriate lightning protection measures. Building design, lightningprotection systems, and awareness campaigns can all contribute to reducing the risk of lightning strikes and mitigating the potential damage caused.Lightning strikes pose a significant risk to buildings and individuals, and it is important to conduct a comprehensive assessment of the lightning risk and implement appropriate lightning protection measures. Lightning protection systems, such as Faraday cages, lightning rods, and grounding systems, are essential in minimizing the risk of lightning strikes and mitigating potential damage. Building design can also play a role in reducing the likelihood of lightning strikes or mitigating the damage caused. Education and awareness campaigns can help inform the public about lightning safety measures, such as seeking shelter indoors during thunderstorms and avoiding open areas and metallic objects. Overall, a multifaceted approach involving building design, lightning protection systems, and education is essential in reducing the risk and damage caused by lightning strikes.。

2010建筑物防雷设计年计算雷击次数计算表

建筑物年计算雷击次数经验公式
公式:N = K N g A e
N建筑物年预计雷击次数(次/a)
K校正系数,在一般情况下取1在下列情况下取下列数值:
位于旷野孤立的建筑物2金属屋面的砖木结构建筑物 1.7位于河边、湖边山坡下或山地中土壤电阻率较小处、地下水露头
处、土山顶部、山谷风口等处的建筑物,以及特别潮湿的建筑物 1.5
1. 2D范围内无其它建筑
下列情况应划为二类防雷建筑:
各种国家级的建筑、特级和甲级大型体育馆、1区21区2区22区爆炸危险场所
N >0.05 的部、省级办公建筑物及其它重要或人员密集的公共建筑物以及火灾危N >0.25 的住宅、办公楼等一般性民用建筑物和工业建筑
下列情况应划为三类防雷建筑:
0.01 ≤ N ≤ 0.05的部、省级办公建筑物及其它重要或人员密集的公共建筑物以
0.05 ≤ N ≤ 0.25的住宅、办公楼等一般性民用建筑物和工业建筑
省级重点文物保护建筑和省级档案馆
年平均雷暴日数:
浙江省
杭州40
宁波40
金华61.9
嘉兴40
遂昌56.3
龙泉64.9
温州51
衢州57.6
2. 2D(100米以上为2H)范围内有等高或低的其它建筑,与其平行的长度Wp(米)
危险场所
公共建筑物以及火灾危险场所
员密集的公共建筑物以及火灾危险场所。

建筑物电子信息系统防雷等级计算(含雷击次数计算)


C4电子信息系统设备所在雷电防护区(LPZ)的因子 A类电子信息系统 0.5 设备在LPZ2或更高曾雷电防护区内 3 B类电子信息系统 1.0 设备在LPZ1内 2.5 C、D类电子信息系统 1.5~2.0 设备在LPZ0B内 1.0 C3电子信息系统设备耐冲击类型和抗冲击过电压能力因子 C5电子信息系统发生雷击事故的后果因子 0.5 信息系统业务中断不会产生不良后果 一般 0.5 1.0 信息系统业务原则上不允许中断,中断无严重后果 较弱 1.0 1.5~2.0 信息系统业务不允许中断,中断会产生严重后果 相当弱 3.0
1.本工程防雷建筑物为 三 类 结果 2.本工程建筑物雷电防护等级为 C 级 3.注
1.0 1.5 1.7 2.0 一般情况 河、湖边,山坡下或山地中土壤电阻率较小,地下水露头处,土山顶部潮湿处 金属屋面的砖木结构 位于旷野孤立
各 类 因 子 说 明
0.5 1.0 1.5 2.0 2.5 C1建筑材料结构因子 屋顶和主体结构均为金属材料 屋顶和主体结构均为钢筋混凝土材料 砖混结构 砖木结构 木结构 C2重要程度因子 0.8 1.0 1.2 1.4 C6区域雷暴等级因子 少雷区 多雷区 高雷区 强雷区
6.2000 0.0100 0.0200 4.9900 0.3340 0.1497 0.4837
设备损坏可接受的最大e 防雷装置拦截效率 E 0.0446 0.8066
1.2 埋地 注:1.L是线路从所考虑建筑物至网络的第一个分支点或相邻 建筑物的长度,单位m,最大值1000m,当L未知,L=1000m. L ds 2.ds表示埋地引入线缆计算截收面积时的等效宽度, 1000 100 单位m其数值等于土壤电阻率,最大值取500. 100 100 K-- 校正系数

年预计雷击次数

3.0.2在可能发生对地闪击的地区,遇下列情况之一时,应划为第一类防雷建筑物:1 )凡制造、使用或贮存火炸药及其制品的危险建筑物,因电火花而引起爆炸、爆轰,会造成巨大破坏和人身伤亡者。

2)具有 0区或 20区爆炸危险场所的建筑物。

3)具有 1区或 21区爆炸危险场所的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。

3.0.3在可能发生对地闪击的地区,遇下列情况之一时,应划为第二类防雷建筑物:1)国家级重点文物保护的建筑物。

2)国家级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站和飞机场、国宾馆,国家级档案馆、注:飞机场不含停放飞机的露天场所和跑道。

3)国家级计算中心、国际通信枢纽等对国民经济有重要意义的建筑物。

4)国家特级和甲级大型体育馆。

5)制造、使用或贮存火炸药及其制品的危险建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤6)具有 1区或 21区爆炸危险场所的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。

7)具有 2区或 22区爆炸危险场所的建筑物。

8)有爆炸危险的露天钢质封闭气罐。

9)预计雷击次数大于 0.05次/a的部、省级办公建筑物和其他重要或人员密集的公共建筑物以及火灾危险场10)预计雷击次数大于 0.25次/a的住宅、办公楼等一般性民用建筑物或一般性工业建筑物。

3.0.4 在可能发生对地闪击的地区,遇下列情况之一时,应划为第三类防雷建筑物:1)省级重点文物保护的建筑物及省级档案馆。

2)预计雷击次数大于或等于 0.01次/a,且小于或等于 0.05次/a 的部、省级办公建筑物和其他重要或人员密集的公共建筑物,以及火灾危险场所。

3)预计雷击次数大于或等于 0.05次/a,且小于或等于 0.25次/a 的住宅、办公楼等一般性民用建筑物或一般性工业建筑物。

4)在平均雷暴日大于 15d/a的地区,高度在 15 m及以上的烟囱、水塔等孤立的高耸建筑物;在平均雷暴日小于或等于 15 d/a的地区,高度在 20 m及以上的烟囱、水塔等孤立的高耸建筑物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年预计雷击次数计算书
工程名:广东湛江
计算者:黄磊
计算时间:2014.10.31
参考规范:《建筑物防雷设计规范》GB50057―2010

1.已知条件:
建筑物的长度L = 50.0m
建筑物的宽度W = 50.0m
建筑物的高度H = 50.0m
当地的年平均雷暴日天数Td =94.6天/年
校正系数k = 1.0
不考虑周边建筑影响。
2.计算公式:
年预计雷击次数: N = k*Ng*Ae = 0.4106
其中: 建筑物的雷击大地的年平均密度: Ng = 0.1*Td = 0.1*94.6 = 9.4600
等效面积Ae为: 0.0434
3.计算结果:
根据《防雷设计规范》,该建筑应该属于第二类防雷建筑。
附录:
二类:N>0.05 省部级办公建筑和其他重要场所、人员密集场所 。
N>0.25 住宅、办公楼等一般性民用建筑物或一般性工业建筑。
三类:0.01<=N<=0.05 省部级办公建筑和其他重要场所、人员密集场所。
0.05<=N<=0.25 住宅、办公楼等一般性民用建筑物或一般性工业建筑。

相关文档
最新文档