5.3二次根式的加法和减法(1)

合集下载

5.3.1二次根式的加法和减法

5.3.1二次根式的加法和减法



答案: - 2 7 -5 2
( 2 ) 2 3 - 5 8 - 75 - 18 .


答案: -7 2 - 3 3



8 18 .

Hale Waihona Puke 8 18= 2 2 3 2 (化成最简二次根式)
=
2 3
2 (分配律)
= 5 2.
在进行二次根式的加减运算时, 通常应先将每个 二次根式化简,然后再将被开方数相同的二次根式的 系数相加减,但被开方数不变.
例1 计算:
( 1 ) 5 8 - 2 27 + 18 ; ( 2 ) 2 18 - 50 + 1 45. 3
d
解 设大圆和小圆的半径分别为R,r,面积分别 为 S1 ,S 2 ,由 S1 πR2 ,S2 πr 2 可知 S1 S2 R= ,r = . 则 π π S1 S2 d Rr π π 763.02 150.72 3.14 3.14
243 48 9 3 4 3 5 3.
5.3.1
做一做
计算:
(1) 2 5 + 3 5;
(2) 5 2 - 3 2 ;
2 5 + 3 5 = 2+ 3 5 = 5 5, 5 2 - 3 2 = 5- 3 2 = 2 2 .
动脑筋
下图是由面积分别为8和18的正方形ABCD和 正方形CEGH拼成. 求BE的长.
因为正方形ABCD 和CEGH的边长分别为 8 和 18 , 所以BE的长度为

( 1 ) 5 8 - 2 27+ 18
= 10 2 - 6 3+3 2 = 13 2 - 6 3.

湘教版八年级数学上册第五章《二次根式》教案

湘教版八年级数学上册第五章《二次根式》教案

第5章二次根式5.1 二次根式第1课时二次根式的概念及性质1.了解二次根式的概念.2.掌握二次根式的基本性质.3.会判断二次根式,能求简单的二次根式中的字母的取值范围.4.经历二次根式的基本性质、运算法则的探究过程,培养学生从具体到抽象的概括能力.5.经历观察、比较、总结和应用数学等活动,感受数学活动充满了探索性与创造性.体会发现的快乐,并提高应用的意识.【教学重点】二次根式的概念及意义.【教学难点】利用“a(a≥0)”解决具体问题.一、情景导入,初步认知1.什么叫做一个数的平方根?如何表示?2.什么是一个数的算术平方根?如何表示?3.16的平方根是什么? 算术平方根是什么?4.0的平方根是什么?算术平方根是什么?5.-7有没有平方根?有没有算术平方根?【教学说明】评价学生与本节课相关的旧知识的掌握情况.二、思考探究,获取新知1.说一说:(1)5的平方根是什么?正实数a的平方根是什么?(2)运用运载火箭发射航天飞船时,火箭必须达到一定的速度,才能克服地球引力,从而将飞船送入环地球运行的轨道,而第一宇宙速度u与地球半径R之间存在如下关系:u 2=gR ,其中重力加速度常数g ≈9.5m/s 2.如已知地球半径R ,则第一宇宙速度v 是多少?我们已经知道:每一个正实数a 有且只有两个平方根,一个记作a ,称为a 的算术平方根,另一个是-a . 【归纳结论】我们把形如a 的式子叫作二次根式,根号下的数叫作被开方数.2.思考二次根式“a ”中被开方数a 能取任意实数吗?【归纳结论】只有当被开方数是非负实数时,二次根式才在实数范围内有意义.对于非负实数a,由于a 是a 的一个平方根,因此(a )2=a(a ≥0)3.做一做:填空.22272 1.25,(),===⋯⋯根据上述结果猜想,当a ≥0时,2a = . 【归纳结论】2a =a(a ≥0) 4.议一议:当a<0时,2a =a 是否依然成立?为什么?【归纳结论】二次根式的性质:【教学说明】学生小组交流期间师巡回指导,引导学生小结形成新知,理解新知;引导学生对二次根式的性质做出合理的解释.三、运用新知,深化理解1.教材P155例1、P156例2、例3.2.已知一个正方形的面积是5,那么它的边长是(B )A .5B .5C .15D .以上皆不对 3.()25x --x 有(B )个.A .0B .1C .2D .无数4.下列式子,哪些是二次根式,哪些不是二次根式:5.当x 是多少时,31x - 在实数范围内有意义?【分析】由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,31x -才能有意义.6.当x 是多少时,223x x x++ 在实数范围内有意义?7.当x 1231x x ++在实数范围内有意义? 【分析】1231x x +++在实数范围内有意义,23x + 中的2x+3≥0和11x +中的x+1≠0.8.已知a 、b 为实数,且521024a a b -+-=+ ,求a 、b 的值.答案:a=5,b=-4【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材第159页“习题5.1”中第1 、2 题.学生已学过平方根、立方根、实数等概念及求法,对实数运算与性质有初步感受,为本节知识打下了基础.本节知识是前面相关内容的发展,同时是后面学习的直接基础,起到了承上启下的作用.通过复习引入新知,注重将新知识与旧知识进行联系与对比.随后从学生熟悉的四个实际问题出发,用已有的知识写出这四个问题的答案,并分析所得的结果在表达式上的特点,由此引入二次根式的概念,对于二次根式的一些结论,让学生参与思考、探索、学会分类讨论的方法,在教学过程中让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密,以此充分调动学生学习的兴趣.第2课时二次根式的化简1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.【教学重点】会把二次根式化简为最简二次根式.【教学难点】准确运用化二次根式为最简二次根式的方法.一、情景导入,初步认知1.什么叫二次根式?使二次根式有意义的条件是什么?2.当a≥0时,a叫什么?当a<0时,a有意义吗?【教学说明】复习上节课的内容,为本节课的教学作铺垫.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?2.化简下列二次根式(118(220(372【教学说明】化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外.(注意:从根号下直接移到根号外的数必须是非负数)3.化简下列二次根式4.观察上面几个二次根式化简的结果,它们有什么特点?【归纳结论】我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后的结果化为最简二次根式.【教学说明】引导学生计算,观察计算结果,总结规律.三、运用新知,深化理解1.下列二次根式中哪些是最简二次根式?哪些不是?为什么?【分析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.,不是最简二次根式.因为解:最简二次根式有1545=⨯=⨯=,45595935被开方数中含能开得尽方的因数9,所以它不是最简二次根式.2.化简216x(x>0)6.化简:7.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm的铁桶中,当铁桶装满水时,玻璃容器中的水面下降了20cm,铁桶的底面边长是多少厘米?【分析】根据倒出的水的体积等于铁桶的体积,列出方程求解即可.解:设正方形铁桶的底面边长为x,则10x2=30×30×20,x2=1800,解得x=302(厘米).答:正方形铁桶的底面边长是302厘米.【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P160“习题5.1”中第4、5、8 题.学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动.正是在这一教育思想的指导下,促进学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动.互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振.5.2 二次根式的乘法和除法第1课时二次根式的乘法⨯=(a≥0,b≥0).1.使学生掌握二次根式乘法法则a b ab2.使学生掌握2a=a(a≥0),并能加以初步应用以化简二次根式.3.通过猜想,体验探究二次根式的乘法法则,实践应用,巩固法则.4.培养良好的学习习惯,体验成功的喜悦.【教学重点】会利用积的算术平方根的性质及简单的二次根式的乘法运算公式对一些式子进行化简.【教学难点】二次根式中乘法与积的算术平方根的性质的关系及应用.一、情景导入,初步认知一块正方形的木板面积为200cm22=1.414,你能不用计算器以最快的速度求出正方形木板的边长吗?【教学说明】通过实际问题引入新课.二、思考探究,获取新知1.积的算术平方根的性质是什么?a b a b=a≥0,b≥0)··2.试一试:并观察结果,你能发现什么规律?⋅⋅()与;()与14949216251625【教学说明】让学生计算,由学生总结,(1)(2)两式均相等.【教学说明】组织学生计算,验证猜想.让学生自主探究,通过类比得到规律,让学生体验到成功的喜悦,激发学生学习的兴趣.⨯=(a≥0,b≥0),老师【归纳结论】二次根式乘法的运算公式:a b ab应引导学生关注a≥0,b≥0这个条件,若没有这个条件,上述法则不能成立.因a b在实数范围内却没有意义,乘为当a<0,b<0时,虽然ab有意义,而,法法则显然不能成立.3.计算.三、运用新知,深化理解1.教材P161例1、例2.2.下列各式正确的是(D)8.已知正方形A,矩形B,圆C的面积均为628cm2,其中矩形B的长是宽的2倍,如果π取3.14,试比较它们的周长L A,L B,L C解完本题后,你能得到什么启示?解:略.【教学说明】训练学生对待计算题也要认真分析,找出合理快捷的方法解决问题.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第1、4 题.这一堂课的教学对我的启发很大,好像又回到了初一年级,学生对数的认识是一个很难的问题,很多同学在数的认识中有着很大的欠缺.对根式的认识,特别是对根式的性质的认识总是转换不过来,没有办法只有花上很大的一段时间进行巩固学习,少数同学对负数中的符号问题容易出现错误.今后,应充分给学生训练时间,合理利用学案,让学生把知识掌握好.第2课时二次根式的除法1.会利用二次根式的除法法则进行二次根式的除法运算.2.经历探索二次根式除法以及商的算术平方根的过程,掌握其应用方法.3.培养学生分析问题和逆向思维的能力,体会合作交流的乐趣,感悟数学的应用价值.【教学重点】二次根式除法运算.【教学难点】探索二次根式除法法则.一、情景导入,初步认知1.积的算术平方根的性质是什么?2.二次根式乘法法则是什么?用语言怎样表达?用式子怎样表示?【教学说明】复习旧知,为学习新知做准备.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?【教学说明】发现规律,归纳出二次根式的除法公式.三、运用新知,深化理解1.教材P163例4、P164例5、例6.【教学说明】巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第2、3、4 题.这节课原本希望学生能在一节课内就体会到先局部化简再计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就可以.5.3二次根式的加法和减法第1课时二次根式的加减运算1.知道二次根式加减运算的步骤,2.会用合并同类二次根式正确进行二次根式的计算.3.经历探究二次根式加减法法则的过程,体会类比的思想方法.4.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美.【教学重点】二次根式的加减法运算.【教学难点】被开方数是分数(式)或含字母的二次根式加减运算.一、情景导入,初步认知1.下列根式中,哪些是最简二次根式?2.计算下列各式:(1)2x+3x (2)3x-2y+y【教学说明】复习整式加减法的内容,为下面探究二次根式加减法的解法做铺垫.二、思考探究,获取新知1.二次根式的加减运算能否依据整式的加减法运算进行?【教学说明】在此过程中,使学生理解掌握二次根式加减法的解法,并体会类比的思想方法.2.如图,是由面积分别为8和18的正方形ABCD和正方形CEGH拼成,求BE的长.3.你能根据上面的计算过程总结二次根式加减法运算的步骤吗?【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】通过例题由浅入深,层层深入,激发学生求知的欲望.在二次根式加减法的整个教学环节中,要及时纠正学生的错误认识.三、运用新知,深化理解1.教材P168例1、例2.2.下列二次根式中,能与127合并的二次根式是(B)7.有一艘船在点O处测得一小岛上的电视塔A在北偏西60°的方向上,船向西航行20海里到达B处,测得电视塔在船的西北方向.问再向西航行多少海里,船离电视塔最近?(结果保留根号)答案:()1031+【教学说明】独立完成,之后相互交流,纠错.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第1、2 题.将法则的教学与整式的加减比较学习.在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.巩固本节内容,作业分层布置,使不同层次学生都有发展和提高.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美,通过题目练习,复习同类二次根式的概念,温故而知新.第2课时二次根式的混合运算1.使学生会熟练地进行二次根式的加、减、乘、除混合运算.2.讲练结合,通过例题由浅入深,层层深入,从例题的讲解中帮助学生寻找解题的方法、规律及注意点.3.培养学生进行类比的学习思想和理解运算律的广泛意义.【教学重点】二次根式的混合运算.【教学难点】由整式运算知识迁移到含二次根式的运算.一、情景导入,初步认知1.二次根式有哪些性质?2.已学过的整式的乘法公式和法则有哪些?3.怎样化简二次根式?【教学说明】进一步梳理和巩固已学过的知识,为本节课的教学作准备.二、思考探究,获取新知1.甲、乙两个城市间计划修建一条城际铁路,其中有一段路基的横截面设计为上底宽42m,下底宽62m,高6m的梯形,这段路基长500 m,那么这段路基的土石方大小为多少立方米呢?路基的土石方大小等于路基横截面面积乘以路基的长度,所以,这段路基的土石方为:【教学说明】从上面的解题过程可以看到,二次根式的混合运算是根据实数的运算律进行的.2.计算:【教学说明】引导学生类比实数的运算进行计算.从上面的运算可以看到,二次根式相乘,与多项式的乘法相类似,我们可以利用多项式的乘法公式,对某些二次根式的乘法教学简便运算.三、运用新知,深化理解1. 教材P170例4、P171例5.4.下面的三个大三角形中各有三个小三角形,每个大三角形中的四个数都有规律,请按左、右每个大三角形内填数的规律,在中间的大三角形的中间,填上恰当的数.432【教学说明】学生先做,教师之后挑选部分进行点评.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第3、4、6题.本节课是二次根式加减的第二节课,它是在二次根式加减的基础上的进一步学习,利用二次根式加减法解决一些实际问题.在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则.2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力.本节课秉着以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.章末复习1.了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则.2.用二次根式的意义和性质进行求取值范围、化简和运算.3.会初步运用二次根式的性质及运算解决简单的实际数学问题.4.经历梳理本章所学内容,形成知识体系,培养学生归纳和概括能力.5.通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又应用于实际的辩证唯物主义思想.【教学重点】运用二次根式的意义和性质进行求取值范围、化简和运算;梳理整章知识,形成二次根式知识体系.【教学难点】运用分类讨论数学思想解决本节的有关问题,是本节复习课的难点,这就要求学生有严密的数学思维.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.二次根式的概念:我们把形如a的式子叫作二次根式,根号下的数叫作被开方数.2.二次根式的意义:只有当被开方数是非负实数时,二次根式才在实数范围内有意义.3.二次根式的性质:4.最简二次根式的概念:我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后结果化为最简二次根式.5.二次根式乘法的运算公式:6.二次根式的除法运算公式:7.二次根式的加减运算方法:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列式子一定是二次根式的是(C)m 有意义,则m能取的最小整数值是(B)2.31A.m=0 B.m=1 C.m=2 D.m=33.下列二次根式中属于最简二次根式的是(A)4.化简:【教学说明】使学生通过二次根式的化简及化简依据的说明,引导学生回忆二次根式的性质.进而让学生明白二次根式的化简的依据和二次根式的计算的依据一样,源自二次根式的性质.四、复习训练,巩固提高【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P174和P175“复习题5”中第4、5、6、8、12题.从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化.整堂课始终把学生摆在第一位,让他们主动去学习.真正把课堂交给学生,让他们变成学习的主体.层层问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程.在这种学习过程中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力.当然本节课也有不足之处,在处理某些题的时候没有能注意学生能力的差异,基础比较薄弱的学生可能没有真正的把握.因此通过这节课,我要在以后的教学过程中注意分层作业,让每一个同学都能体验成功的喜悦.31 / 31。

湘教版八年级上册5.3.1 二次根式的加减课件PPT

湘教版八年级上册5.3.1  二次根式的加减课件PPT

33

×√

合作交流
下列各组根式各有什么特征?
(1 ) 2,32, 22,15 2,2 2..
被开方数都是2
3
(2) 3,53,63,173,2 3...
被开方数都是3 13
(3) 2, 8,5 18 , 32 , 1...
化简后,被开方数都是2
2
1、同类二次根式: 几个二次根式化成最简二次根式以后,
43
注意: 5
3
3
判断一组式子是否为同类二次根式,只需看化简
后的被开方数是否相同,与最简二次根式前面的
系数及符号无关(“一同”两“无关”)
1.在下列各组根式中,是同类二次根式的是
(B )
A . 2, 12
B . 27 , 1
3
C. 4ab, ab2 D. a1, a1
2. 与 12 是同类二次根式的是( D )
系数相加减,二次根式不变 .
注:不是同类二次根式不能合并。
练习:1.计算:
(1)( 12 - 51)-(3112 4)8
43
3
33
3
1
2
(2)( 8 - 2 0 . 25 ) - ( 1 + 50 +
72 )
8
3
- 31 2 - 1
3
2
4
9x6
x2x
1
3
4
x
3x
课堂小结
1.同类二次根式的定义? 2.二次根式加减运算的步骤? 3.如何合并同类二次根式? 合并同类二次根式与合并同类项类似.
二次根式的 加减
复习回顾
二次根式计算、化简的结果符合什么要求
(1)被开方数中不含分母;

巴彦县七中八年级数学上册 第5章 二次根式5.3 二次根式的加法和减法第1课时 二次根式的加法和减

巴彦县七中八年级数学上册 第5章 二次根式5.3 二次根式的加法和减法第1课时 二次根式的加法和减

3.如下图 , 将边长为1的正方形OAPB沿x轴正方向连续翻转2020次 , 点P依
次落在点P1 , P2 , P3 , … , P2020的位置 , 记Pi(xi , yi) , i=1 , 2 , 3 , … , 2020 , 那么点P2020的横坐标x2020=_______20;19如果xn=xn+1 , 那么xn+2= __n_+__1_(请用含n的式子表示).
第5章 二次根式
5.3 二次根式的加法和减法
第1课时 二次根式的加法和减法
1.(4 分)下列各式计算正确的是( C )
A. 2 + 3 = 5
B.2+ 2 =2 2
C.3 2 - 2 =2 2
D.
12- 2
10 =
6-
5
2.(4 分)(蓬溪县模拟)计算 48 +2 3 - 75 的结果是(A )
6.(4 分)若 x,y 都是无理数,且 x+y=3, 则 x,y 的值可以是_x_=__1_+____2__,__y_=__2_-___2_____.
7.(4 分)我们规定⊗的意义是:当 a>b 时,a⊗b=a+b; 当 a≤b 时,a⊗b=a-b,其他运算符号的意义不变. 按上述规定计算:( 3 ⊗1)-[3⊗ 12 ]=_3__3__-__2____.
4.如下图 , 在平面直角坐标系中 , 有假设干个整数点 , 其顺序按图中〞→” 方向排列 , 如(1 , 0) , (2 , 0) , (2 , 1) , (3 , 2) , (3 , 1) , (3 , 0) , … , 根据这个规律 可得 , 第88个点的坐标为________.(13 , 3)
整点 例4 : 在平面直角坐标系中 , 横、纵坐标都为整数的点称为整点.如下 图 , 一组正方形的四个顶点恰好落在两坐标轴上 , 请你观察每个正方形 四条边上的整点回答以下问题 : (1)经过x轴上点(5 , 0)的正方形的四条边上的整点个数是__2_0__ ; (2)经过x轴上点(n , 0)(n为正整数)的正方形的四条边上的整点个数记为 m , 那么m与n之间的关系是m__=__4_n__.

二次根式的加减法

二次根式的加减法

二次根式的加减法二次根式是数学中的一种特殊类型,由一个根号和一个数构成。

在这篇文章中,我们将讨论二次根式的加减法运算。

通过理解二次根式的性质和运算规则,我们能够有效地计算和简化这类数学表达式。

一、二次根式的定义二次根式是指具有形如√a的数学表达式,其中a为一个非负实数。

根号下的数称为被开方数,√a读作a的二次根。

例如,√4和√9分别等于2和3,因为2²等于4,3²等于9。

这些数都是被开方数的平方根。

二、二次根式的加法与减法原则1. 加法原则:当两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行加法运算。

例如,√5 + 2√5 = 3√5解释:这里的√5和2√5具有相同的根号下数5,所以可以将它们合并为3√5。

2. 减法原则:与加法类似,在两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行减法运算。

例如,3√7 - √7 = 2√7解释:这里的3√7和√7具有相同的根号下数7,所以可以将它们合并为2√7。

三、示例与应用让我们通过几个示例来进一步了解二次根式的加减法运算。

示例1:计算:√8 + 3√2解答:√8 = √4 × 2 = 2√2所以,√8 + 3√2 = 2√2 + 3√2 = 5√2示例2:计算:5√10 - 2√10解答:5√10 - 2√10 = 3√10示例3:计算:√18 + 4√3 - 2√12解答:√18 = √9 × 2 = 3√2√12 = √4 × 3 = 2√3所以,√18 + 4√3 - 2√12 = 3√2 + 4√3 - 2√3 = 3√2 + 2√3四、简化与合并在进行二次根式的加减法运算后,我们可以进一步将结果进行简化与合并。

具体而言,可以将相同根号下数的二次根式合并为一个根号下,并且对应的系数进行加减运算。

例如,2√5 + 3√5 = (2+3)√5 = 5√5在这个步骤中,我们将2√5和3√5合并为5√5,并对应的系数2和3进行加法运算。

二次根式的加减(知识讲解)-八年级数学下册基础知识专项讲练(沪科版)

二次根式的加减(知识讲解)-八年级数学下册基础知识专项讲练(沪科版)

专题16.7 二次根式的加减(知识讲解)【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.特别说明:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)特别说明:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.特别说明:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.特别说明:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、二次根式➽➼概念➽➼同类二次根式✭✭分母有理化1.判断下列二次根式中哪些是同类二次根式:举一反三:【变式1a的值.【点拨】本题考查同类二次根式,掌握同类二次根式的定义,即“被开方数相同的几个最简二次根式是同类二次根式”正确解答的前提.【变式2】分别求出满足下列条件的字母a的取值:(1)(2)2.【阅读材料】把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化.通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的..=【理解应用】(1) 化简: ∵∵ (2)2020++ 2020++【点拨】本题考查了分母有理化,正确的计算是解题的关键.举一反三:【变式1)3x x ≤【变式2【点拨】本题考查根式的运算,解题的关键是熟练掌握根式的运算及根式分母有理化.类型二、二次根式➽➼二次根式的加减运算-+-+.3.计算:38|32|12举一反三:【变式1】计算:6-【变式2】计算:(1)(2) )011+类型三、二次根式➽➼二次根式的混合运算4.计算下列各式.(1)1)举一反三:.【变式1|1【分析】先运用二次根式乘法法则计算,并化简二次根式,去绝对值符号,最后合并同类二次根式即可.【点拨】本题考查二次根式的混合运算,化简绝对值,熟练掌握二次根式的运算法则是解题的关键. 【变式2】计算:(1)1 (2))21+.类型四、二次根式➽➼二次根式的化简求值5.解答下列各题(1) 已知2x =,2y =.求22x xy y ++的值.(2) 若2y =,求y x 的平方根.【答案】(1) 19; (2) 3±.【分析】(1)分别求出22,,x y xy ,再代入到代数式求值即可;举一反三:【变式1】已知x =y 22205520x xy y ++的值.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.【变式2】已知3x =+3y =-(1) x y +=______;x y -=______;xy =______.(2) 根据以上的计算结果,利用整体代入的数学方法,计算式子223x xy y x y -+--的值.【点拨】本题考查了二次根式的化简求值问题,正确对所求式子变形是解本题的关键.类型五、二次根式➽➼应用6.阅读材料并回答问题肖博睿同学发现如下正确结论:材料一:若0A B ->,则A B >;若0A B -=,则A B =;若0A B -<,则A B <;材料二:完全平方公式:(1)()2222a ab b a b ++=+;(2)()2222a ab b a b -+=-.(1)(2) 2912x x ++___________()2______2=+;(3) 试比较142x x y ⎛⎫- ⎪⎝⎭与()2y x y -的大小(写出相应的解答过程). )解:又32>(322-)解:根据题意,)解:4又()22x y -142x x y ⎛- ⎝【点拨】本题考查利用作差法解代数式比较大小,整式混合运算、合并同类项、完全平方公式因式分解、平方式的非负性等知识,读懂材料,掌握作差法比较代数式大小的方法是解决问题的关键.举一反三:【变式1】设一个三角形的三边分别为a ,b ,c ,p =12(a +b +c ),则有下列面积公式:S S (1) 一个三角形的三边长依次为3,5,6,任选以上一个公式求这个三角形的面积;(2)任选以上一个公式求这个三角形的面积.解题的关键.【变式2】某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为,宽AB,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为m,宽为1)m.(1)长方形ABCD的周长是多少?(2)除去修建花坛的地方,其他地方全修建成通道,通通上要铺上造价为2元的地砖,5/m要铺完整个通道,则购买地砖需要花费多少元?答:购买地砖需要花费660元.【点拨】本题考查二次根式的应用,长方形的周长和面积,平方差公式.解题的关键是掌握二次根式的混合运算顺序和运算法则及其性质.。

二次根式加减运算法则公式

二次根式加减运算法则公式1. 什么是二次根式?二次根式是指某个数的平方根,其中这个数可以是整数、分数或者解析式的形式。

例如√16、√(4/9)、√(x+1) 都是二次根式。

2. 二次根式加减法则对于二次根式的加减运算,需要遵循一定的法则,以下是二次根式加减法则:1. 对于同类项的二次根式,即根号里面的数相同的根式,可以直接合并,例如√2+√2=2√2。

2. 对于不同类项的二次根式,则不能直接合并,需要进行化简,即将其转化为同类项的形式后再合并。

3. 化简的方法一般有提公因式、有理化分母等,但需要保证等式两边的值相等。

3. 实例分析为了更好地了解二次根式加减法则,下面举几个例子进行分析:1. 化简√10+2√5-√80将√10 和√5 提取公因式得到√10+2√5-√80=√2(5+10-40)=√2(-25)=-5√2。

因此,√10+2√5-√80=-5√2。

2. 化简√(2/5)+√(3/20)先将分母提出来,即√(2/5)+√(3/20)=√(2)/√(5)+√(3)/√(20)。

然后将分母有理化,即分别用√(5) 和√(20) 乘以相应分子分母。

化简后的结果是:√(2)/√(5)+√(3)/√(20)=√(40)/5+√(15)/10。

3. 化简√3-√7+√12将√3和√12提取公因式,得到√3-√7+√12=√3+2√3-√7-2√3+√12=(√3+2√3+√12)-(2√3+√7)因此,√3-√7+√12=3√3-√7-2√3+√12=√3-√7+√12。

4. 总结二次根式是基础数学中的重要概念,对于二次根式的加减运算,也有一定的规则和方法。

只有掌握了二次根式的加减法则,才能更好地处理涉及到二次根式的问题。

湘教版八年级数学上册第5章测试题及答案

湘教版八年级数学上册第5章测试题及答案5.1 二次根式一、选择题1.若二次根式有意义,则x的取值范围是( )A. x≠1B. x≥1C. x<1D. 全体实数2.若是整数,则自然数n的值有()A. 7个B. 8 个C. 9 个D. 10个3.若在实数范围内有意义,则的取值范围是()A. B. C. D.4.等式成立的条件是()A. x≠3B. x≥0C. x≥0且x≠3D. x>35.化简的结果是()A. (m﹣5)B. (5﹣m)C. m﹣5D. 5﹣m6.计算等于()A. 45B. 55C. 66D. 707.下列四个等式:①=4;②(﹣)2=16;③()2=4;④=4.其中正确的是()A. ①②B. ③④C. ②④D. ①③8.下列变形,正确的是()A. (2)2=2×3=6 B .C. D.二、填空题9.若二次根式有意义,则x的取值范围是________.10.若1<x<2,则=________.11.已知y= + ﹣3,则2xy的值为________.12.已知0≤x≤3,化简=________.13.当x=-1时,二次根式的值是________.14.将化成最简二次根式的结果为________.三、解答题15.阅读材料,解答问题.例:若代数式的值是常数2,则a的取值范围是.分析:原式=|a﹣2|+|a﹣4|,而|a|表示数x在数轴上的点到原点的距离,|a﹣2|表示数a在数轴上的点到数2的点的距离,所以我们可以借助数轴进行分析.解:原式=|a﹣2|+|a﹣4|.在数轴上看,讨论a在数2表示的点左边;在数2表示的点和数4表示的点之间还是在数4表示的点右边,分析可得a的范围应是2≤a≤4.(1)此例题的解答过程用了哪些数学思想?请列举.(2)化简.16.已知,求(x+y)4的值.17.已知为整数,试求自然数x的值.18.已知x,y为实数,且,化简.19.已知a、b为实数,在数轴上的位置如图,求|a﹣b|+的值.参考答案一、选择题1.B2.D3.D4.D5.B6.C7.D8.D二、填空题9.x≤2 10.1 11.﹣15 12.3 13.2 14.三、解答题15.解:(1)数形结合思想,分类讨论思想.(2)原式=|3﹣a|+|a﹣7|.①当a<3时,原式=3﹣a+7﹣a=10﹣2a;②当3≤a≤7时,原式=4;③当a>7时,原式=a﹣3+a﹣7=2a﹣10.16.解:∵与有意义,∴,解得x=2,∴y=﹣3,∴(2﹣3)4=1.17.解:根据题意,得21﹣x≥0,解得x≤21.则自然数x的值是5或12或17或20或21.18.解:依题意,得,∴x﹣1=0,解得x=1.∴y<3,∴y﹣3<0,y﹣4<0,∴=3﹣y﹣=3﹣y﹣(4﹣y)=﹣1.19.解:由图知,a<0,b>0,∴a﹣b<0,∴|a﹣b|+=|a﹣b|+|a|=(b﹣a)+(﹣a)=b﹣a﹣a=b﹣2a.5.2 二次根式的乘法和除法一、选择题1.下列二次根式,最简二次根式是()A. B. C. D.2.下列二次根式,与的积为无理数的是()A. B. C. D.3.下列根式是最简二次根式的是()A. B. C. D.4.在根式:①,②,③,④中,最简二次根式是()A. ①②B. ③④C. ①③D. ①④5.计算:的结果是()A. 9B. 3C. 2D. 3二、填空题6.计算的结果是________.7.化简的结果为________.8.若一个长方体的长为cm,宽为cm,高为cm,则它的体积为________cm3.9.计算• (a≥0)=________.三、解答题10.把下列二次根式化成最简二次根式.(1);(2);(3);(4).11.化简:4x2.参考答案一、选择题1.C2.B3.C4.C5.B二、填空题6.27.8.129.4a三、解答题10.解:(1)==2;(2)==3;(3)==;(4)==.11.解:4x2=4x2÷12×3=x2=xy.5.3 二次根式的加法和减法一、选择题1.下列计算正确的是()A. B. C. D.2.下列二次根式可以与合并的是()A. B. C. D.3.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A. 10B. 12C. 10D. 154.下列根式与是同类二次根式的是()A. B. C. D.5.化简(﹣2)2015•(+2)2016的结果为()A. -1B. -2C. +2D. --26.在算式的□中填上运算符号,使结果最大,这个运算符号是( )A. +B. -C.D.二、填空题7.已知x= +1,则x2﹣2x﹣3=________.8.已知一个三角形的面积是20,一边长为2 ,那么该条边上的高为________.9.计算:(+4)2013(﹣4)2014=________.10.已知,,则=________.11.在△ABC中,BC边上的高h= cm,它的面积恰好等于边长为cm的正方形的面积,则BC的长为________.12.有一块长,宽的长方形木板,则它的周长是________.13.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于________.三、解答题14.计算:﹣42﹣|1﹣|+.15.解方程:(x﹣1)=(x+1).16.如果把棱长分别为3.51cm, 2.26cm的两个正方体铁块熔化,制成一个大的正方体铁块,那么这个大正方体铁块的棱长是多少?(用一个式子表示,最后结果精确到0.01m)17.若a=1﹣,先化简,再求的值.18.一个三角形的三边长分别为、、.(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.参考答案一、选择题1.B2.B3.D4.C5.D6.D二、填空题7.-1 8. 4 9.﹣+4 10.8 11.2 12. 10 m 13.-9三、解答题14.解:原式=﹣16+1﹣+2=﹣16+1﹣+2=﹣15+.15.解:移项,得(﹣)x=+,解得x=5+2.16.解:∵这个大正方体的体积为(3.513+2.263 ),∴这个大正方体的棱长为=3.80(cm) .答:这个大正方体铁块的棱长约是3.80 cm.17.解:= + .∵a=1﹣<1,∴原式= + = .把a=1﹣代入,得= = =(1+ )2=3+2 .18.解:(1)+ + = + + ×=+ += .(2)根式内取偶数的完全平方数,如3x=36时,x=12,此时三角形的周长为15.。

二次根式的基本运算

二次根式的基本运算二次根式是高中数学中的重要内容,它在数学中发挥着重要的作用。

在这篇文章中,我们将讨论二次根式的基本运算。

对于二次根式的加减乘除,我们将逐一探讨其运算规则和示例。

一、二次根式的加法运算要进行二次根式的加法运算,首先要保证根号下的数相同。

如果根号下的数相同,我们可以直接将系数相加。

例如:√2 + √2 = 2√2√3 + 2√3 = 3√3对于不同的根号下的数相加,我们无法简化,只能保留原样,表达为:√2 + √3二、二次根式的减法运算二次根式的减法运算与加法类似,也要保证根号下的数相同。

如果根号下的数相同,我们可以直接将系数相减。

例如:√5 - √2 = √5 - √22√3 - √3 = √3对于不同的根号下的数相减,我们同样无法简化,保留原样即可,表达为:√5 - √3三、二次根式的乘法运算要进行二次根式的乘法运算,我们可以运用分配律的规则,将系数和根号下的数分别相乘。

例如:√2 * √3 = √62√5 * 3√2 = 6√10对于相同根号下的数相乘,我们可以将系数相乘,根号下的数保持不变。

例如:2√5 * 3√5 = 6 * 5 = 30四、二次根式的除法运算二次根式的除法运算需要运用到有理化的方法。

具体方法是将分母有理化,即乘以分母的共轭式,并利用乘法法则进行运算。

例如:√6 / √2 = (√6 * √2) / (√2 * √2) = √12 / 2 = √12 / 2√2 = √32√10 / √5 = (2√10) / (√5) = (2√10 * √5) / (√5 * √5) = 2√50 / 5 = 2 *√(25 * 2) / 5 = 2 * √50 / 5 = 2 * 5√2 / 5= 2√2综上所述,二次根式的基本运算包括加法、减法、乘法和除法。

对于加法和减法,我们只需保证根号下的数相同,将系数相加或相减即可。

对于乘法和除法,我们要运用分配律和有理化的方法进行计算。

二次根式的加法与减法课件


(3)3 3-2 2+ 3- 2 4 3-3 2
作业
❖ 习题9.2的1(3)(4)、2题
拓展提升
❖把二次根式 23-a与 8 分别化成最简二次根式后, 被开方式相同.
❖(1)如果a是正整数,那么符合条件的a有哪些? ❖(2)如果a是整数,那么符合条件的a有多少个?最大
值是什么?有没有最小值?
(3) 2 3
先化为最简二次根式, 把同类二次根式的系数相加减,做为结果的系数, 根号及根号内部都不变。
你有什么发现?
归纳总结
二次根式加减法法则:
目标2.通过具体题目的运算,得到二次根式 的加法与减法的运算步骤及注意问题.
m a n a =(m n) a
二次根式相加减,应先把各个二次根式化为最简二次根式, 然后把其中的同类二次根式分别合并(. 不是同类二次根式的不能合并).
2、4 2- 2=43 2 3、2+ 3= 5
× ( )为结果的系数; × 2、指数和被开方式都不变;
( )3、不是同类二次根式的不能合并;
× 4、3 2- 1 2=2 51 22 ( )4、系数是带分数的要化为假分数,若
× 2
22
是一个二次根式与一个多项式的积,则
5、a 5+b 5=(aa++bb)5 5 ( )多项式加括号.
2.字母和字母的指数有何变化? 不改变
3.不是同类项的能否合并?
不能合并
温故知新
目标1. 类比“合并同类项”的知识, 推导二次根式的加法与减法运算法则。
2、化简下列二次根式
化成最简二次根式后,
8 __2__2__; 12 _2__3__; 被开方式相同的二次根
18 ___3 _2___; 27 _3_3___; 式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档