二次根式的加法和减法(课堂PPT)

合集下载

二次根式的加减-PPT-课件资料

二次根式的加减-PPT-课件资料

运算原理
运算律同适用
运算顺序
与实数的运 算顺序一样
布Байду номын сангаас作业
教科书第13页练习第2,3题. 第15页习题16.3第1-3题 .
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用
知识讲解
典型示例
例1
归纳:确定可以合并的二次根式中字母取值的方法: 利用被开方数相同,指数都为2,列关于待定字母的 方程求解即可.
知识讲解
练一练
知识讲解
加减法的运算步骤: (1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)合——把被开方数相同的二次根式合并.
第 十六章 二次根式
二次根式的加减
(第1课时)
精品模版-助您成长
学习目标
1 了解二次根式的加、减运算法则.(重点) 2 会用二次根式的加、减运算法则进行简单的运算.(难点)
新课导入
知识回顾
1.同类项的概念: 所含字母相同,并且相同字母的指数也相同的项 叫做同类项.
2.合并同类项的概念: 把多项式中的同类项合并成一项,叫做合并 同类项.
3.合并同类项法则: 合并同类项后,所得项的系数是合并前各同类项 的系数的和,且字母连同它的指数不变.
新课导入
问题引入
问题1 满足什么条件的根式是最简二次根式? (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式.

15.3 二次根式的加减运算课件(共19张PPT)

15.3 二次根式的加减运算课件(共19张PPT)
归纳总结:
二次根式的加减法: 二次根式的加减运算,其实就是将被开方数相同的项进行合并.为此,首先应将每个二次根式化为最并.
一化简二找相同的被开方数三合并.
例2 计算下列各式:
二次根式的加减法运算的步骤:(1)将每个二次根式都化为最简二次根式,若被开方数中含有带分数,则要先化成假分数;若含有小数,则要化成分数,进而化为最简二次根式;(2)原式中若有括号,要先去括号,再应用加法交换律、结合律将被开方数相同的最简二次根式进行合并.
15.3 二次根式的加减运算
第十五章 二次根式
学习目标
1.掌握二次根式加减法法则.2.熟练进行二次根式的加减混合运算.
学习重难点
掌握二次根式加减法法则.
难点
重点
熟练进行二次根式的加减混合运算.
复习巩固
最简二次根式需要满足的条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.
归纳总结:
随堂练习
C
.
6
拓展提升
D
D
归纳小结
1.二次根式的加减运算步骤:一化简二找相同的被开方数三合并.
2.二次根式加减法 首先应将每个二次根式化为最简二次根式,然后将被开方数相同的最简二次根式的项进行合并.
同学们再见!
授课老师:
时间:2024年9月15日
新知引入
知识点 二次根式的加减运算
做一做
1.计算下列各式:2.请将你的做法和大家进行交流.
含相同二次根式
合并
就像整式合并同类项那样,被开方数相同的最简二次根式也可以合并.
归纳:
可合并的二次根式的条件:(1)最简二次根式;(2)被开方数相同.
例题解析
例1 计算下列各式:

《二次根式的加减法》PPT课件 (共19张PPT)

《二次根式的加减法》PPT课件 (共19张PPT)
3.见善如不及,见不善如探汤。 ——《论语》 译:见到好的人,生怕来不及向他学习,见到好的事,生怕迟了就做不了。看到了恶人、坏事,就像是接触到热得发烫的水一样,要立刻离开,避得远远的。
4.躬自厚而薄责于人,则远怨矣。 ——《论语》 译:干活抢重的,有过失主动承担主要责任是“躬自厚”,对别人多谅解多宽容,是“薄责于人”,这样的话,就不会互相怨恨。 5.君子成人之美,不成人之恶。小人反是。 ——《论语》 译:君子总是从善良的或有利于他人的愿望出发,全心全意促使别人实现良好的意愿和正当的要求,不会用冷酷的眼光看世界。或是唯恐天下不乱,不会在别人有失败、 错误或痛苦时推波助澜。小人却相反,总是“成人之恶,不成人之美”。 6.见贤思齐焉,见不贤而内自省也。 ——《论语》 译:见到有人在某一方面有超过自己的长处和优点,就虚心请教,认真学习,想办法赶上他,和他达到同一水平;见有人存在某种缺点或不足,就要冷静反省,看自己是 不是也有他那样的缺点或不足。
A. 32 B. 24 C. 125 D. 6 1
27
3.如果最简二次根式 mn2 2与
是同类二次根式,求m、n 的值.
mn
考考你
45计算: (1) 75 2 8 200 (2)2 20 3 45 80 (3)2 48 ( 27 243) (4)(5 75 4 12) (5 108 3 27)
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

合作探究
问题2
形成知识
怎样计算
8 + 18

如果看不出 化,先看算式 3
3 2-
8 + 18 22
能否化简,我们不妨把问题简
能否化简.
2
2 =( 3 - 1 ) 2 = 2
用分配 律合并
整式 加减
你能得到这样的两个二次根式加减的方法吗? 将同类二次根式用分配律合并.
合作探究
算式
形成知识
8 + 1 8 与算式 3 22
合作探究 形成知识
例1
( ( 1)
计算:
8+ 3)
8+ 48 +
6 ;
3) 18 = 4
(4 ( 2)
6 = 8
2 -3
6 +
6) 2
3 6
2 .
解: ( 1) (
=
3+3
2;
思考:(1)中,每一步的依据是什么? 第一步的依据是:分配律或多项式乘单项式; 第二步的依据是:二次根式乘法法则; 第三步的依据是:二次根式化简.
( 48 +
2 0 )( 12 -
5 )= 4
3+2
5-2
3+
5 =2
3 +3 5
化成最简 二次根式
合并被开方 数相同的二 次根式
自主学习 复习引入
思考:二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
的结果是
B.
20 3
330 2 3
30 3
3 C.

二次根式的加法与减法课件

二次根式的加法与减法课件

(3)3 3-2 2+ 3- 2 4 3-3 2
作业
❖ 习题9.2的1(3)(4)、2题
拓展提升
❖把二次根式 23-a与 8 分别化成最简二次根式后, 被开方式相同.
❖(1)如果a是正整数,那么符合条件的a有哪些? ❖(2)如果a是整数,那么符合条件的a有多少个?最大
值是什么?有没有最小值?
(3) 2 3
先化为最简二次根式, 把同类二次根式的系数相加减,做为结果的系数, 根号及根号内部都不变。
你有什么发现?
归纳总结
二次根式加减法法则:
目标2.通过具体题目的运算,得到二次根式 的加法与减法的运算步骤及注意问题.
m a n a =(m n) a
二次根式相加减,应先把各个二次根式化为最简二次根式, 然后把其中的同类二次根式分别合并(. 不是同类二次根式的不能合并).
2、4 2- 2=43 2 3、2+ 3= 5
× ( )为结果的系数; × 2、指数和被开方式都不变;
( )3、不是同类二次根式的不能合并;
× 4、3 2- 1 2=2 51 22 ( )4、系数是带分数的要化为假分数,若
× 2
22
是一个二次根式与一个多项式的积,则
5、a 5+b 5=(aa++bb)5 5 ( )多项式加括号.
2.字母和字母的指数有何变化? 不改变
3.不是同类项的能否合并?
不能合并
温故知新
目标1. 类比“合并同类项”的知识, 推导二次根式的加法与减法运算法则。
2、化简下列二次根式
化成最简二次根式后,
8 __2__2__; 12 _2__3__; 被开方式相同的二次根
18 ___3 _2___; 27 _3_3___; 式

《二次根式的加减》课件

《二次根式的加减》课件

VS
详细描述
在进行二次根式的加减运算时,有时需要 对二次根式进行合并或简化。学生在合并 或简化过程中,容易出错,导致计算结果 错误。例如,将$sqrt{5} + sqrt{2}$错误 地合并为$sqrt{7}$,或将$sqrt{4} sqrt{9}$错误地简化为$3 - 2$。
PART 05
练习与巩固
2023 WORK SUMMARY
《二次根式的加减》 ppt课件
REPORTING
目录
• 二次根式的加减概述 • 二次根式的加减运算方法 • 二次根式的加减运算实例 • 二次根式的加减易错点解析 • 练习与巩固
PART 01
二次根式的加减概述
二次根式的加减定义
定义
二次根式的加减运算是指将具有 相同被开方数的二次根式进行合 并或分离的过程。
计算
$(sqrt{5} + 2sqrt{2})(sqrt{5} 2sqrt{2})$
计算
$(sqrt{3} + sqrt{2})^{2}$
计算
$(sqrt{5} - sqrt{3})^{2}$
综合练习题
解方程
$3sqrt{2}x = 4sqrt{3}x$
解方程
$(sqrt{3} + sqrt{2})x = 5$
THANKS
感谢观看
REPORTING
解方程
$(sqrt{5} - sqrt{3})x^{2} - (sqrt{5} + sqrt{3})x = 0$
解方程组
${begin{array}{l}sqrt{2}x - sqrt{6}y = 4 sqrt{3}x + sqrt{5}y = 7 end{array}$

二次根式的加减ppt课件

通过加减法可以简化复杂的二次根式 ,使其更易于理解和计算。
解决实际问题
在解决一些实际问题时,如物理、工 程、建筑等领域,需要使用二次根式 的加减法来计算结果。
02
二次根式的加减法运算
根式的合并同类项
合并二次根式中的同类项
在二次根式的加减法中,需要将具有相同根指数和被开方数 的项进行合并,简化表达式。
在几何图形中,周长的计算也需要使用到二次根式加减法运算。例如,在矩形、三角形、 多边形等图形中,需要使用到周长公式进行计算。
04
二次根式的加减法注意事项
根式加减法的限制条件
根式加减法仅适用于 被开方数相同的二次 根式。
根式加减法要求根号 内的表达式必须有意 义,即不能有虚数次 方根。
被开方数相同的二次 根式才能进行加减运 算。
计算 $2sqrt{2} - sqrt{3}$ 计算 $3sqrt{2} + 2sqrt{3}$
提高练习题
01
计算 $(sqrt{2} + sqrt{3})^2$
02
计算 $(2sqrt{2} - sqrt{3})^2$
03
计算 $(sqrt{2} - sqrt{3})^2$
04
计算 $(3sqrt{2} + 2sqrt{3})^2$
二次根式下的数必须是非负的 。
二次根式具有非负性,即 $sqrt{a^2} = |a|$。
根式的加减法规则
合并同类二次根式
只有同类二次根式才能进行加减 运算。同类二次根式是指被开方 数相同的二次根式。
二次根式的加减法
将同类二次根式的系数相加减, 被开方数和根号符号保持不变。
根式加减法的意义
简化二次根式
函数中的根式加减

二次根式加减ppt课件


答案及解析
计算
化简
$sqrt{27} + sqrt{3} = 3sqrt{3} + sqrt{3} = 4sqrt{3}$
$2sqrt{3} - sqrt{2} = sqrt{3} - sqrt{2}$
比较大小
$sqrt{25} = 5$,因为 $5 > 3$,所以 $sqrt{25} > 3$
判断正误
01
02
03
识别同类二次根式
首先需要识别出表达式中 的同类二次根式,即具有 相同被开方数的二次根式 。
合并同类二次根式
将同类二次根式进行合并 ,即将它们的系数相加减 ,根号下的被开方数保持 不变。
举例说明
将表达式中的 $sqrt{2}$ 和 $sqrt{2}$ 合并为 $2sqrt{2}$。
$sqrt{8} + sqrt{18} = 2sqrt{2} + 3sqrt{2} = 5sqrt{2}$,不等于 $2sqrt{2}$,所以判 断为错。
THANKS
感谢观看
sqrt{2}}{sqrt{2} times sqrt{2}} = frac{sqrt{6}}{2}$。
二次根式的化简技巧
利用平方差公式
对于形如 $sqrt{a^2 - b^2}$ 的表达式,可以利 用平方差公式进行化简。
利用完全平方公式
对于形如 $sqrt{a + b}$ 或 $sqrt{a - b}$ 的表达 式,可以利用完全平方公式进行化简。
二次根式的加减法规则
总结词
掌握二次根式的加减法规则是进行运 算的关键。
详细描述
二次根式的加减法需先将各项化为最 简二次根式,然后合并同类二次根式 。

二次根式的加法和减法PPT课件11张

课前反馈
如图,学校要砌一个正方形花坛,若两 个正方形的面积分别为27cm2、12cm2, 则两正方形的周长和为多少?
两个正方形的周长和为:
4 27 4 12
以上是什么运算? 如何计算?
学习目标
• 1、知道什么是同类二次根式,会辨别两 个根式是否是同类二次根式。
• 2、学会通过合并同类二次根式,进行二 次根式的加法ห้องสมุดไป่ตู้减法运算。
4- 2 2
• C、
D、
2、如果最简二次根式
的值是 2 。
可以合并,那么
• 3、计算
(1) 90 - 2 20 5 4


90 2
20 5
4
5
5
(2() 24 1) 2 2 ( 1 6)
2
38
解:
( 24
1)2
2 (
1
6)
2 38
3 10 2 2 5 5 2 5 2 6 1 2 2 6 1 2 6
(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
一化 二找 三合并
讨论
2 3?
仿照前一题,你能算出这个题吗? 有什么发现?
类比 迁移 感悟
交流提升
• 1、下列计算正确的是( C )
• A、 3 3 - 3 2 B、 2 3 6
2 2 23 2
5
2
34
3 10 4 5 2 5 3 10 2 5
5 63 2 34
梳理巩固
1.几个二次根式化成最简二次根式后,如果它们的被开 方式相同,那么,这几个二次根式称为同类二次根式.
2、 二次根式的加减即为对同类二次根 式的合并。

二次根式的加减运算 PPT优秀课件

步骤:
第一步:把每个二次根式 化为最简二次根式。 第二步: 对能合并 的二次根式进行合并。
x2
3分钟
总结:
像 3, 12, 75 这样的二次根式,化简后 被开方数 相同 我们把它们叫做同类二次根式。
因此对于二次根式的加减运算, 首先是将每个二次根式化为最简二次根式 ,
然后 是 将被开方数相同的最简二次根式的项进行合并 。
1.预习下一节 2.完成《中考考什么》本节的习题
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
• • • • • •
• • • • • • •
● 一个不注意小事情的人,永远不会成功大事业。──卡耐基 ● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 ──爱因斯坦 ● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果 ● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有 益。──高尔基 ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列 宁 ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 ● 完成工作的方法,是爱惜每一分钟。──达尔文 ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
例1:计算:
比较二次根式的加减与
12 12
27
整式的加减,你能得出
18;什么结论?
2 2
3解:12ຫໍສະໝຸດ 9x 12x
1 x
x
27 18二次根式的加减实
4 33 33 2
4 3 3 3 2
质是合并同类二次 根式.
2 2
3
9x x
1 x
x
整式的加减的实质 是合并同类项.
2 9x x 1 x
交流 归纳 (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
一化 二找 三合并
14
2.计算: 先化简,后合并
(1)2 7 6 7
(1) 4 7
(2) 80 20 5
(2)3 5
(3) 18 ( 98 27 )
1 (4)( 24 0.5 ) ( 6 )
3
x
先化简,后合并
2 x x x
2 11 x
0
12
计算: 8 18 4 2如何合并
2 2 3 2 4 同2类二次
2 3 4 2 根式?
9 2
与合并同类项类似,把同类二次根式的系 数相加减,做为结果的系数,根号及根号内部 都不变,
总结二次根式加减运算的步骤
13
二次根式加减法的步骤:
5
例题解析
例: 下列各式中,哪些是同类二次根式?
12
48
18
50
23 43 32 52
1
22
32 42
45
35 23
11 3
2
3
注意:判断一组式子是否为同类二次根式,只需看化
为最简二次根式后的被开方数是否相同,与最简二次
根式前面的因式及符号无关.
6
1.在下列各组根式中,是同类二次根式的
是( B )

22 2 2 2; 错
3 8 18 4 9 2 3 5 错
2
17
练习:计算
(1)3 2 3 2 2 3 3
解:原式 (3 2 2 2)( 3 3 3)
22 3
强调:
(2) 8 18 12
先化简,
解:原式 4 2 9 2 43
再合并
2 2 3 2 2 3
5 22 3
8
(3)10 2 3 3
(4)3 6 1 2 4
15
注意:不是同类二次根式的二次根式
(如 2 与 3)不能合并
练习 1.判断:下列计算是否正确?为什么?
1 8 3 8 3;
F
2 4 9 4 9;
F
33 2 2 2 2
T
16
练习 判断:下列计算是否正确?为什么?
1 2 3 5;
下列3组根式各有什么特征?
(1) 2,3 2, 2 2,15 2,2 2 3
(2) 3,5 3,6 3,17 3, 2 3 13
(3) 2, 8,5 18 , 32 , 1 2
4
几个二次根式化成最简二次根式以 后,如果被开方数相同,这几个二 次根式就叫做同类二次根式.
判断同类二次根式的关键是什么? (1)化成最简二次根式, (2)被开方数相同,根指数相同(都等于2)
18
1.同类二次根式的定义?
2.二次根式加减运算的步骤? 3.如何合并同类二次根式?
合并同类二次根式与合并同类项类似.
19
小结
1.同类二次根式是相对于一组二次根式而言的.判 断几个二次根式是否为同类二次根式,首先要把这几
个二次根式化为最简二次根式,然后再看它们的被开
方数,如果被开方数相同,那么原来的几个二次根式
列火车共运多少?2__x__+__3__x_=__5__x__吨
(2)两列火车分别运煤2x吨和3y吨,问这两
列火车共运多少?_(__2_x___+__3_y__)_吨__
以下问题你能用同样的方法计算吗?
13 2 4 2
2 5 2
3 8 18 4 2
10
同类二次根式可以像同类项那样合并。
一般的,二次根式相加减, 先把各个二次根式分别化 简,然后在合并同类二次 根式。有括号时,先去括 号。
它们的长分别为2米和3米。如何求这两 块玻璃的面积的和?
你3会计 算12
吗?试一试。
8
对于(1),两个矩形的和为
2(平2 方3米2)
根据乘法分配律可得 2 2 3 2 2 3 2 5 2
同样地,对于(2)
3 12 3 4 3 3 2 3
1 2 3
3 3
9
(1)两列火车分别运煤2x吨和3x吨,问这两
1
二次根式计算、化简的 结果符合什么要求?
(1)被开方数不含分母;
分母不含根号;
(2)被开方数中不含能开得尽 方的因数或因式.
2
把下列各根式化简
(1) 12 (2) 48
23 43
(5) 1 2
2
2
(6) 32
42
(3) 18 (4) 50
32 52
(7) 45 (8) 11 3
35 23 3
3
A . 2 , 12
B. 2, 1
2
C. 4ab , ab2 D. a 1, a 1
2. 与 12 是同类二次根式的是( D )
A. 32 B. 24 C. 125 D. 6 1
27
3.如果最简二次根式 mn2 2 与 m n 是同类二次根式,求m、n 的值.
7
议一议
(1)如图,两块矩形玻璃的宽都是 米,2
2 就是同类二次根式.
2.同类二次根式不一定是最简二次根式.如:
8
50 等.
3.几个二次根式相加减先把各个二次根式化成最简二 次根式,再把同类二次根式分别合并.
20
相关文档
最新文档