20.1多边形的内角和同步练习

合集下载

人教八年级数学上册第11章《多边形的内角和》同步练习及(含答案)(1)

人教八年级数学上册第11章《多边形的内角和》同步练习及(含答案)(1)

人教八年级数学上册第11章《多边形的内角和》同步练习及〖含答案〗(1)一﹨选择题1.九边形的内角和为().A.1 260°B.1 440°C.1 620°D.1 800°2.一个多边形的内角和为720°,那么这个多边形的对角线共有().A.6条B.7条C.8条D.9条3.如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC =140°,则∠1+∠2等于().A.140°B.40°C.260°D.不能确定二﹨填空题4.一个多边形每个外角都是60°,这个多边形是____边形,它的内角和是____度,外角和是____度.考查目的:考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.5.一个多边形的内角和等于1 440°,则它的边数为__________.6.若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.三﹨解答题7.一个多边形除了一个内角之外,其余内角之和为2670°,求这个多边形的边数和少加的内角的大小.8.若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.参考答案一﹨选择题1.考查目的:考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.答案:A.解析:运用多边形内角和公式计算:180°×(9-2)=1260°,故选A;2.考查目的:本题主要考查多边形的内角和与对角线公式,解题时需审题仔细.答案:D.解析:一个多边形的内角和为720°,即180°×(n-2)=720°,解得n=6,所以该多边形是六边形,六边形有条对角线,故选D.3.考查目的:考查四边形的内角和与邻补角问题,解题时需要综合考虑.答案:A.解析:方法一:因为四边形内角和是360°,且∠B+∠ADC=140°,所以∠DAB+∠DCB =220°,∠1+∠2+∠DAB+∠DCB=180°×2,所以∠1+∠2=360°-220°=140°;方法二:可求出与∠B,∠ADC同顶点的两外角和为220°,根据四边形外角和是360°,得出∠1+∠2=360°-220°=140°;方法三:连接BD,根据三角形一个外角等于和它不相邻的两内角和,求出∠1+∠2的度数.二﹨填空题4.考查目的:考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.答案:六,720,360.解析:因为每个外角都是60°,所以360°÷60°=6,所以是六边形.根据内角和公式计算出内角和是720°,外角和是恒值为360°(也可以由每个外角都是60°,得每个内角都是120°,进而得到内角和是720°);5.考查目的:本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.答案:10.解析:根据多边形内角和公式列出以n为未知数的方程(n-2)×180°=1 440°,解方程得n=10.所以这个多边形为十边形.6.考查目的:考查学生利用解方程思想再结合四边形的内角和来共同完成本题.答案:60°,80°,100°,120°.解析:设每一份为,那么四个角分别为3,4,5,6.根据四边形内角和是360°,列出方程3+4+5+6=360°,解得=20°,然后求出各角;也可以用360°÷18=20°,每一份是20°,然后求解.三﹨解答题7.考查目的:考查学生多边形的边数只能是整数,由多边形内角和公式(n-2)×180°可知,n-2是正整数,所以多边形的内角和必定是180°的整数倍,因此:当所给内角和是少计算一个角的情况时,因为少加了角,所以得到的整数部分加2比实际的角个数少1,所以用所给内角和除以180°,整数部分加3才是边数,180°减余数部分就是少加的角的度数,这是易错点,要注意.答案:因为2 670°÷180°=14……150°,所以n-2=14+1,n=17.所以这个多边形的边数是17.少加的内角是180°-150°=30°.所以这个多边形的边数是17,少加的内角是30°.解析:因为这个多边形的内角和少加了一个内角,所以内角和实际要大于2670°,并且加上这个角后就是180°的整数倍,2 670°÷180°=14……150°,所以n-2=14,n=16,因少加一个角,所以实际有16+1=17个角,所以边数是17条,少加的内角是180°-150°=30°.8.考查目的:考查学生多边形的边数只能是整数,由多边形内角和公式(n-2)×180°可知,n-2是正整数,所以多边形的内角和必定是180°的整数倍,因此:当所给内角和是多计算一个角的情况时,用所给内角和除以180°,因为多加的角大于0°小于180°,所以得到的余数部分就是多加角的度数,得到的整数部分加2就是边数,这是易错点,要注意.答案:由题意,得600°÷180°=3……60°,所以n-2=3,n=5.所以这个多边形的边数是5.所以这个多边形的内角和为:180°×(5-2)=540°.所以这个多边形的边数是5,内角和是540°.解析:由已知可知,600°是多加了一个外角后的内角和,减去多加的角就应是180°的整数倍,因此600°÷180°=3……60°,因此n-2=3,所以n=5,这个多边形为五边形,边数是5,代入多边形内角和公式即可求出内角和.因为多加了一个角,并且多加的角是余数60°,也可以用600°减去余数(60°)得到内角和度数.。

八年级数学上册多边形的内角和同步训练

八年级数学上册多边形的内角和同步训练

11.3.2 多边形的内角和
1.一个多边形的外角和是内角和的2
5,这个多边形的边数为( )
A .5
B .6
C .7
D .8
2.一个n 边形的内角和为1 080°,则n =__ __.
3.如果一个多边形的每个外角都是30°,那么这个多边形的内角和为_ _.
4.已知一个多边形的内角和是它的外角和的4倍.求: (1)这个多边形是几边形?
(2)这个多边形共有多少条对角线?
5.一个多边形切去一个角后,形成的另一个多边形的内角和为 1 080°,那么原多边形的边数为( )
A .7
B .7或8
C .8或9
D .7或8或9
6.已知n 边形的内角和θ=(n -2)×180°.
(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,
求出边数n.若不对,说明理由.
(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.
7.如图1139(1),有一个五角星形图案ABCDE,你能说明∠A+∠B+∠C+∠D+∠E=180°吗?如果A点向下移动到BE上(如图1139(2))或BE的另一侧(如图11-3-9(3)),上述结论是否依然成立?请说明理由.
(1) (2) (3)
图11-3-9
参考答案
【分层作业】
1.C 2.8 3.1 800° 4.(1)十边形(2)35条
5.D 6.(1)甲的说法对,乙的说法不对,甲同学说的边数n是4. (2)x=2 7.成立,理由略.。

八年级数学下册《多边形的内角和与外角和》补充习题(二)(含答案)

八年级数学下册《多边形的内角和与外角和》补充习题(二)(含答案)

多边形的内角和与外角和补充习题(二)一、填空题1.如果一个多边形从一个顶点出发只能引5条对角线,则它是__________边形。

2.如果一个多边形的内角都相等,而内角和它相邻的外角的差是100 °,那么这个多边形的不边数是__________。

3.一个多边形的内角和等于1440°,则它的边数是________。

4.一个多边形的内角和等于外角和的k倍,则这个多边形的边数是________。

5.如果多边形每个内角都等于150°,则它的内角和是_____________。

6.一个四边形的一对内角互补,相邻的三个内角的度数为3:7:6,则四个内角分别为_________。

二、选择题7.如果n边形的边数每增加一条,那相应的内角和就增加()A.360°B.270°C.180°D.90°8.过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数是()A.9 B.10 C.11 D.129.一个凸n边形的n个内角中,锐角的个数最多是()A.4 B.3 C.2 D.不能确定10.一个多边形的每一个外角都相等,且小于40°,那么这个多边形的边数最少是()A.8 B.9 C.10 D.11三、解答题11.多边形的内角和与某一个外角总和为1350°,求这个多边形的边数。

12.已知四边形的一个外角等于与它不相邻的三个内角之和的14,求这个外角的度数。

13.如图22-83,在梯形ABCD中,若△AOB、△COD都是等腰三角形,则梯形ABCD是等腰梯形吗?为什么?14.一个多边形的内角和等于它的外角和的4倍,它是几边形?15.有两个正多边形,它们的边数之比为1:2,且第二个正多边形的内角比第一个正多边形的内角大15°,求这两个正多边形的边数。

16.一凸多边形,除去一个内角外,其余内角的和是2750°,求它的边数。

八年级数学多边形内角和填空题专项练习(含答案)

八年级数学多边形内角和填空题专项练习(含答案)

多边形内角和填空题专项练习1、一个凸多边形的内角和与外角和相等,它是______边形.2、正九边形的一个外角等于 .3、若一个多边形的内角和是外角和的5倍,则这个多边形是 边形.4、六边形的外角和等于 °.5、正十二边形每个内角的度数为 .6、一个正多边形的每一个内角都等于160°,则这个正多边形的边数是 .7、已知正n边形的一个外角是45°,则n=____________8、如图,AD是正五边形ABCDE的一条对角线,则∠BAD= .9、如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2= 度.10、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为。

11、一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .12、正十二边形的内角和是 . 正五边形的外角和是 .13、如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了______米.14、一个多边形的每个内角都等于150°,则这个多边形是 边形.15、一个多边形截去一个角后,形成多边形的内角和为720°,那么原多边形的边数为___16、一个多边形的内角和等于它的外角和的3倍,它是______边形.17、如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为1的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3,四边形与各圆重叠部分面积之和记为S4,….n边形与各圆重叠部分面积之和记为S n.则S2017的值为 .(结果保留π)18、如图是由射线AB、BC、CD、DE、EA组成的图形,∠1+∠2+∠3+∠4+∠5= .19、若凸边形的内角和为1260°,则从一个顶点出发引的对角线条数是__ __。

多边形的内角和与外角和练习题及其完整答案

多边形的内角和与外角和练习题及其完整答案

多边形的内角和与外角和➢基础巩固题一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是________.6.用正n边形拼地板,则n的值可能是_______.二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A.5B.6C.7D.89.若正n边形的一个外角为60°,则n的值是( )A.4B.5C.6D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.➢ 强化提高题16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的23, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.EF DB C A➢ 课外延伸题19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?➢中考模拟题22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少?一、1、42、540°3、354、156°5、116、3,4,6二、7、C8、C9、C10、A11、B12、B三、13、1080°14、1015、80° 816、5 540°17、15(延长三边相交)19、4,820、最少五边形,最多七边形22、∠A=140°∠B=100°∠C=40°∠D=80°23、18 130°24、6n+6 39。

2022年人教版八年级上册《多边形的内角和2》同步练习(附答案)

2022年人教版八年级上册《多边形的内角和2》同步练习(附答案)

11.3.2 多边形的内角和1.n 边形的内角和=________度,外角和=_______度。

2.从n 边形(n>3)的一个顶点出发,可以画_______条对角线,.这些对角线把n 边形分成______三角形,分得三角形内角的总和与多边形的内角和_______。

.3.如果一个多边形的内角和与它的外角和相等,那么这个多边形是____边形。

4.如果一个多边形的内角和等于它的外角和5倍,那么这个多边形是____边形。

°,那么n=____。

°,这个多边形是______边形。

每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是_____度,其内角和等于______度。

8.假设一个多边形的内角和是1800°,那么这个多边形的边数是_______。

9.假设一个多边形的边数增加1,那么它的内角和 〔 〕.°°10.当一个多边形的边数增加时,其外角和 〔 〕11.某学生在计算四个多边形的内角和时,得到以下四个答案,其中错误的选项是〔 〕°°°°12.分别画出以下各多边形的对角线,并观察图形完成以下问题:〔1〕试写出用n 边形的边数n 表示对角线总条数S的式子:__________。

〔2〕从十五边形的一个顶点可以引出________条对角线,十五边形共有______条对角线:〔3〕如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数。

.13.n 边形的内角和等于______度。

任意多边形的外角和等于______度。

41,这个多边形是______边形。

15.如果十边形的每个内角都相等,那么它的每个内角都等于______度,每个外角都等于______度。

°,那么这个多边形是______边形。

°,那么这个多边形的对角线的条数是〔 〕18.如果一个多边形的内角和是它的外角和的n 倍,那么这个多边形的边数是〔 〕A.n B.2n-2 C.2n D.2n+2 19.一个多边形截去一个角〔不过顶点〕后,形成的多边形的内角和是2520°,那么原多边形的边数是〔 〕A.13 B.14 C.15 D.13或15 20.假设两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数。

多边形的内角和计算练习题

多边形的内角和计算练习题一、选择题1、一个多边形的内角和是 720°,则这个多边形是()A 四边形B 五边形C 六边形D 七边形2、如果一个多边形的内角和是外角和的 3 倍,那么这个多边形的边数是()A 8B 9C 10D 113、下列角度中,不能成为多边形内角和的是()A 600°B 720°C 900°D 1080°4、一个多边形的内角和比它的外角和的 2 倍还大 180°,这个多边形的边数为()A 7B 8C 9D 105、若一个多边形的每一个外角都等于 40°,则这个多边形的边数是()A 7B 8C 9D 10二、填空题1、一个多边形的内角和是 1800°,则它是_____边形。

2、若一个多边形的每一个内角都等于 150°,则这个多边形是_____边形。

3、一个多边形的每一个外角都是36°,则这个多边形是_____边形。

4、若一个多边形的内角和与外角和的总和为 1800°,则这个多边形是_____边形。

5、一个多边形的边数增加 1,则内角和增加_____度。

三、解答题1、已知一个多边形的内角和与外角和的差为 1080°,求这个多边形的边数。

2、若一个多边形的内角和是外角和的5 倍,求这个多边形的边数。

3、一个多边形的每一个内角都比相邻的外角大 36°,求这个多边形的边数。

4、一个多边形除一个内角外,其余内角之和是 2570°,求这个内角的度数以及多边形的边数。

5、小明在计算一个多边形的内角和时,少算了一个内角的度数,结果得出内角和为 600°,你能帮他算出这个多边形的内角和以及少算的那个内角的度数吗?6、如图,在四边形 ABCD 中,∠A = 140°,∠D = 80°。

(1)∠B +∠C =?(2)若四边形 ABCD 的内角和为 360°,求∠B 和∠C 的度数分别是多少?7、一个多边形截去一个角后,形成的新多边形的内角和为2520°,求原多边形的边数。

人教版八年级数学上册11.3.2《多边形的内角和》同步训练习题

人教版八年级数学上册11.3.2《多边形的内角和》同步训练习题一.选择题(共7 小题)1.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形2.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形3.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60° B.72° C.90° D.108°4.(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.85.(2015•葫芦岛)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.60° B.65° C.55° D.50°6.(2015•苏州模拟)如图,∠1,∠2,∠3,∠4 是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是()A.80°B.100°C.108°D.110°7.(2015•绵阳模拟)某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2 米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14 米B.15 米C.16 米D.17 米二.填空题(共7 小题)8.(2015•淮安)五边形的外角和等于°.9.(2015•资阳)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是.10.一个多边形的每一个外角都是36°,则这个多边形的边数是.11.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= .12.(2015•淄博)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 度.13.(2015 春•晋江市期末)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.14.(2015 春•龙岗区期末)如图,小明将若干个全等的正五边形巧妙地排成环状,则他要完成这一圆环共需个全等的五边形.三.解答题(共5 小题)15.(2015 春•镇江校级期末)一个多边形的内角和是它的外角和的5 倍,求这个多边形的边数.16.(2015 春•长春期末)在一个正多边形中,一个内角是它相邻的一个外角的3 倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.17.(2015 秋•周口校级月考)看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?18.(2015 秋•盐津县校级月考)如图所示,在△ABC 中,∠A=60°,BD、CE 分别是AC、AB 上的高,H 是BD、CE 的交点,求∠BHC 的度数.19.(2014 春•江阴市期末)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图甲,∠FDC、∠ECD 为△ADC 的两个外角,则∠A 与∠FDC+∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?如图乙,在△ADC 中,DP、CP 分别平分∠ADC 和∠ACD,则∠P 与∠A 的数量关系.探究三:若将△ADC 改为任意四边形ABCD 呢?已知:如图丙,在四边形ABCD 中,DP、CP 分别平分∠ADC 和∠BCD,则∠P 与∠A+∠B 的数量关系.探究四:若将上题中的四边形ABCD 改为六边形ABCDEF 呢?如图丁则∠P 与∠A+∠B+∠E+∠F 的数量关系.探究五:如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,则∠F= ;(用α,β表示)(2)如图②,α+β<180°,请在图中画出∠F,且∠F= ;(用α,β表示)(3)一定存在∠F 吗?如有,直接写出∠F 的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.人教版八年级数学上册11.3.2《多边形的内角和》同步训练习题参考答案一.选择题(共7 小题)1.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形选C【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360 度,利用360 除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.3.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60° B.72° C.90° D.108°【考点】多边形内角与外角.【分析】首先设此多边形为n 边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n 边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.4.(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.【点评】此题考查了多边形的内角和与外角和,熟练掌握内角和公式及外角和公式是解本题的关键.5.(2015•葫芦岛)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.60° B.65° C.55° D.50°【考点】多边形内角与外角;三角形内角和定理.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE 的平分线在五边形内相交于点O,∴∠PDC+∠PCD= (∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.6.(2015•苏州模拟)如图,∠1,∠2,∠3,∠4 是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是()A.80°B.100°C.108°D.110°【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可求得与∠AED 相邻的外角,从而求解【解答】解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360﹣4×70=80°,∴∠AED=180﹣∠5=180﹣80=100°.故选B.【点评】本题主要考查了多边形的外角和定理,任何多边形的外角和是360°.7.(2015•绵阳模拟)某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2 米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14 米B.15 米C.16 米D.17 米【考点】多边形内角与外角.【分析】第一次回到原处正好转了360°,正好构成一个正八边形.【解答】解:机器人转了一周共360 度,360°÷45°=8,共走了8 次,机器人共走了8×2=16米.故选:C.【点评】本题考查了多边形的外角,是一个实际问题,要理解“回到原处”就是转了360 度.二.填空题(共7 小题)8.(2015•淮安)五边形的外角和等于 360 °.9.(2015•资阳)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是 8 .【考点】多边形内角与外角.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.10.(2015•镇江二模)一个多边形的每一个外角都是36°,则这个多边形的边数是 10 .【考点】多边形内角与外角.【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.11.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= 240°.【考点】多边形内角与外角;三角形内角和定理.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360 度即可求得∠1+∠2 的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2 后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点评】主要考查了三角形及四边形的内角和是360 度的实际运用与三角形内角和180 度之间的关系.12.(2015•淄博)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 36 度.【考点】多边形内角与外角;平行线的性质.【分析】首先求得正五边形内角∠C 的度数,然后根据CD=CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.13.(2015 春•晋江市期末)把一块含60°的三角板与一把直尺按如图方式放置,则∠α= 120 度.【考点】多边形内角与外角.【分析】三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD 即得∠α的度数.【解答】解:如图:∵在四边形ABCD 中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.【点评】本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD 即得∠α的度数.14.(2015 春•龙岗区期末)如图,小明将若干个全等的正五边形巧妙地排成环状,则他要完成这一圆环共需 10 个全等的五边形.【考点】多边形内角与外角.【分析】首先根据n 边形的内角和为:(n﹣2)×180°,求出五边形的内角和是多少,进而求出正五边形的每一个内角的度数是多少;然后求出∠1 的度数是多少,再用360°除以∠1 的度数,即可求出他要完成这一圆环共需多少个全等的五边形.【解答】解:如图1,,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴正五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∴他要完成这一圆环共需10 个全等的五边形.故答案为:10.【点评】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n 边形的内角和为:(n﹣2)•180°(n≥3,且n 为整数),并能求出∠1的度数是多少.三.解答题(共5 小题)15.(2015 春•镇江校级期末)一个多边形的内角和是它的外角和的5 倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°和外角和定理列出方程,然后求解即可.【解答】解:设多边形的边数为n,由题意得,(n﹣2)•180°=5×360°,解得n=12,所以,这个多边形是十二边形.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.16.(2015 春•长春期末)在一个正多边形中,一个内角是它相邻的一个外角的3 倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.【考点】多边形内角与外角.【分析】(1)设这个多边形的每一个外角的度数为x 度,根据题意列出方程解答即可;(2)根据多边形的外角和计算即可.【解答】解:(1)设这个多边形的每一个外角的度数为x 度.根据题意,得:3x+x=180,解得x=45.故这个多边形的每一个外角的度数为45°;(2)360°÷45°=8.故这个多边形的边数为8.【点评】此题考查多边形的外角和内角,关键是根据多边形的内角和和外角和定理计算.17.(2015 秋•周口校级月考)看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?【考点】多边形内角与外角.【分析】(1)n 边形的内角和是(n﹣2)•180°,因而内角和一定是180 度的倍数,依此即可作出判断;(2)多边形的内角一定大于0,并且小于180 度,因而内角和再加上一个内角的值,这个值除以180 度,所得数值比边数n﹣2 要大,大的值小于1.则用2014 除以180 所得值,加上2,比这个数小的最大的整数就是多边形的边数;(3)用2014°﹣1980°即可.【解答】解:(1)∵n 边形的内角和是(n﹣2)•180°,∴内角和一定是180 度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13 边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.【点评】考查了多边形的内角与外角,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.18.(2015 秋•盐津县校级月考)如图所示,在△ABC 中,∠A=60°,BD、CE 分别是AC、AB 上的高,H 是BD、CE 的交点,求∠BHC 的度数.【考点】多边形内角与外角.【分析】根据高的定义得∠ADB=∠AEC=90°,于是利用四边形内角和为360°可计算出∠EHD,然后根据对顶角相等得到∠BHC 的度数.【解答】解:∵BD、CE 分别是△ABC 边AC、AB 上的高,∴∠ADB=∠AEC=90°,而∠A+∠AEH+∠ADH+∠EHD=360°,∴∠EHD=180°﹣60°=120°,∴∠BHC=120°.【点评】本题考查了四边形的内角和以及三角形高的意义,解答此类题的关键是利用四边形的内角和为360°.19.(2014 春•江阴市期末)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图甲,∠FDC、∠ECD 为△ADC 的两个外角,则∠A 与∠FDC+∠ECD 的数量关系∠FDC+∠ECD=180°+∠A .探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?如图乙,在△ADC 中,DP、CP 分别平分∠ADC 和∠ACD,则∠P 与∠A 的数量关系∠P=90°+∠A .探究三:若将△ADC 改为任意四边形ABCD 呢?已知:如图丙,在四边形ABCD 中,DP、CP 分别平分∠ADC 和∠BCD,则∠P 与∠A+∠B 的数量关系∠P=(∠A+∠B).探究四:若将上题中的四边形ABCD 改为六边形ABCDEF 呢?如图丁则∠P 与∠A+∠B+∠E+∠F 的数量关系∠P=(∠A+∠B+∠E+∠F)﹣180°.探究五:如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,则∠F= ∠F=(α+β)﹣90°;(用α,β表示)(2)如图②,α+β<180°,请在图中画出∠F,且∠F= ∠F=90°﹣(α+β);(用α,β表示)(3)一定存在∠F 吗?如有,直接写出∠F 的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可;探究五:①根据四边形的内角和定理表示出∠BCD,再表示出∠DCE,然后根据角平分线的定义可得∠FBC= ∠ABC,∠FCE= ∠DCE,三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC=∠FCE,然后整理即可得解;②同①的思路求解即可;③根据∠F 的表示,∠F 为0 时不存在.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP 分别平分∠ADC 和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+ ∠A;探究三:∵DP、CP 分别平分∠ADC 和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B);探究四:六边形ABCDEF 的内角和为:(6﹣2)•180°=720°,∵DP、CP 分别平分∠EDC 和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F)=(∠A+∠B+∠E+∠F)﹣180°即∠P= (∠A+∠B+∠E+∠F)﹣180°.故答案为:探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+ ∠A;探究三:∠P=(∠A+∠B).探究四:∠P=(∠A+∠B+∠E+∠F)﹣180°;探究五:①,②.【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。

人教版初二上册数学同步练习卷:多边形的内角和

人教版初二上册数学同步练习卷:多边形的内角和一、填空题1.从n 边形的一个顶点动身,可以引____条对角线,它们将n 边形分为____个三角形, n 边形的内角和是 ,外角和是 。

2.多边形的边数每添加1,它的内角和就添加 _________,外角和 ________。

3.一个四边形的一组对角互补,那么另一组对角_________ .4.一个多边形的每一个内角都等于108°,那么这个多边形的边数是 _________ .5.正十二边形每个内角的度数为 _________ .6.假设一个正多边形的一个外角是60°,那么这个正多边形的边数是 _________ .7.假定一个多边形内角和等于1260°,那么该多边形边数是 _________ .8.一个多边形的内角和是外角和的2倍,那么这个多边形的边数为 _________ .9.如图,在四边形ABCD 中,∠A=45°.直线l 与边AB ,AD 区分相交于点M ,N ,那么∠1+∠2= _________ .10、一个多边形的内角和与外角和的差为1080°,那么这个多边形是_____ 边形.二、选择题的度数为〔 〕三、解答题19.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数. 20. 如图,四边形ABCD 中,B ∠和C ∠的平分线交于点O .求证:1()2BOC A D ∠=∠+∠.21. 一个多边形截去一个角〔不过顶点〕后,所构成的一个多边形的内角和是2520°,求A B CD O原多边形的边数。

22.假定多边形的一切内角与它的一个外角的和为600°,求边数和内角和.23.假定一个多边形除了一个内角外,其他各内角之和为2570°,求这个内角的度数。

11.3.2多边形的内角和一、填空题1.n -3,n -2,(n -2)1800,3600 2.1800,不变 3.互补 4.5 5.1500 6.67.9 8.6 9.2250 10.10二、选择题11.D 12.A 13.A 14.C 15.D 16.C 17.B 18.A三、解答题19.解:设多边形的边数为n ,依据题意得〔n -2〕•180°=360°,解得n=4.20.解: ∵OB 和OC 区分为∠ABC 、∠BCD 的平分线,∴∠OBC+∠OCB=21〔∠ABC+∠BCD 〕, ∵四边形ABCD 中,∠ABC+∠BCD=360°-〔∠A+∠D 〕,∴∠O=180°-〔∠OBC+∠OCB 〕=180°-21〔∠ABC+∠BCD 〕=180°-21[∠360°-〔∠A+∠D 〕]= 21〔∠A+∠D 〕 21.解:设内角和是2520°的多边形的边数是n .依据题意得:〔n -2〕•180=2520,解得:n=16.那么原来的多边形的边数是16-1=15.22.解:设边数为n ,一个外角为α,那么〔n -2〕•180+α=600,∴n=600−α 180 +2.∵0°<α<180°,n 为正整数,∴600−α 180 为正整数,∴α=60°,∴n=5,此时内角和为〔n -2〕•180°=54023.解:设这个内角度数为x°,边数为n ,那么〔n -2〕×180-x=2570,180•n=2930+x ,∵n 为正整数,∴n=17,∴这个内角度数为180°×〔17-2〕-2570°=130°.。

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)1.如果四边形ABCD中∠A+∠C+∠D=280°,那么∠B的角度是多少?选项:A.80° B.90° C.170° D.20°2.如果一个多边形的内角和为1080°,那么这个多边形有多少条边?选项:A.9 B.8 C.7 D.63.内角和等于外角和的两倍的多边形是什么形状?选项:A.五边形B.六边形C.七边形D.八边形4.六边形的内角和是多少度?5.正十边形的每个内角的度数是多少?每个外角的度数是多少?6.图中有多少种不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?为什么?8.求下列图形中x的值:9.在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC。

BE与DF有什么位置关系?为什么?10.有10个城市进行篮球比赛,每个城市派出3个代表队参加比赛,规定同一城市间的代表队不进行比赛,其他代表队都要比赛一场。

按照这个规定,所有代表队需要打多少场比赛?11.在一个五边形的每个顶点处以1为半径画圆,求圆与五边形重合的面积。

12.(1) 已知一个多边形的内角和为540°,那么这个多边形是什么形状?选项:A.三角形 B.四边形 C.五边形 D.六边形 (2) 五边形的内角和是多少度?13.一个多边形的每个顶点处取一个外角,这些外角中最多有几个钝角?选项:A.1个 B.2个 C.3个 D.4个14.(1) 四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?猜想并探索:n边形有几条对角线?(2) 一个n边形的边数增加1,对角线增加多少条?15.如果一个多边形的边数增加1,那么这个多边形的内角和会增加多少度?如果将n边形的边数增加1倍,那么它的内角和会增加多少度?16.壁虎想捕捉一只害虫,它在油罐下底边A处,害虫在油罐上边缘B处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形的内角和
一、选择
1.若一个多边形有14条对角线,则这个多边形的边数是()
A.10
B.7
C.14
D.6
2.下列哪一个度数可以作为某一个多边形的内角和()
A.240°
B.600°
C.540°
D.2180°
3.六边形的外角和是()
A.1080°
B.720°
C.540°
D.360°
4.内角和等于外角和2倍的多边形是()
A.五边形
B.六边形
C.七边形
D.八边形
5.一个多边形的每一个外角都是45°,则这个多边形的内角和为()
A.360°
B.1440°
C.1080°
D.720°
6.一个多边形的内角和比他的外角和的3倍少180°,这个多边形的边数是()
A.5
B.6
C.7
D.8
7.过一个多边形的一个顶点可以引9条对角线,那么这个多边形的内角和是()
A.1620°
B.1800°
C.1980°
D.2160°
8.多边形的变数由3增加到n(n>3),其外角度数之和是()
A.增加
B.保持不变
C.减小
D.变成(n-3)•180°
9.当多边形每增加一条边时,它的()
A.外角和与内角和都增加180°
B.外角和与内角和都增大180°
C.外角和增大180°,内角和不变
D.外角和不变,内角和增大180°
二、填空
10.若一个多边形的每一个外角都是30°,则这个多边形的内角和等于______________度。

11.一个多边形的每个外角都相等,且比它的内角小140°,则个多边形是_____边形。

12.如图,分别以四边形ABCD的四个顶点为圆心,半径为R作四个互不相交的圆,则图
中阴影部分的面积之和是_____________。

13.内角和与外角和相等的多边形是_____________边形。

14.若一个内角和与外角和的比试4:1,它的边数是____________,顶点个数是 _________________,对角线的条数是___________________.
15.若一个四边形的四个内角度数之比为1:3:4:2,则这四个内角的 度数分别是_______________。

二、 解答题
16.如图,求∠A+∠B+∠C+∠D+∠E+∠F 的值。

17.一个多边形的每个内角都相等,都等于150°,求这个多边形的边数?
A B C D
E F 第16题图
参考答案
一、 选择
1.B
2.C
3.D
4.B
5.C
6.C
7.B
8.B
9.D
二、填空
10.1800 11.十八 12.2R π 13.四 14.10,10,35 15.36°,108°,144°,72°
三、解答题 16.连接BC ,可得∠FOC=∠E+∠F=∠FBC+∠ECB 所以∠A+∠B+∠C+∠D+∠E+∠F 得值等于四边形 ABCD 的内角和即360°。

17.解:因为多边形的外角和都等于360°,当每个外角
都等于45°时,多边形的边数为360°÷45°=8.
由题意可知每个外角都小于45°,当被除数不变
除数变小时,商反而增大,所以这个多边形的边数
最小值为9.
18.解:设边数为n ,这个内角的度数为x ,则(n-2)•180°-x=2750°, 所以n-2=
180
50151802750++=+x x 因为n-2是正整数,且0<x <180,所以x=130°,n=18. A
B C D E
F 第16题图 O。

相关文档
最新文档