毕业设计(论文)-buck变换器双闭环控制仿真研究[管理资料]

合集下载

基于Buck电路的双闭环控制系统设计的仿真研究

基于Buck电路的双闭环控制系统设计的仿真研究
进 行 仿 真 , 验 证 电压 电流 双 闭环 控 制 参 数 设 计 的可 行 性 。
2 . 1求 取 平 均 量 图1 B u c k 电路 结 构 拓 扑
工作状态 1 :如 图1 所示,当功率开关管v 导通 ,二极 管D截
1 设计 步 骤
( 1 ) 对B u c k 电路 的控 制 对 象进 行 建 模 。 ( 2 ) 设 计 电压 电流 双 闭环 控 制 的补 偿 网 络 。
性 、时 变等特点 ,为此本 文通过 基本建模法对 系统进行 交流小信号分析 ,用该 方法获得控制对 象的传递 函数 ,并利用补偿 网络 形成 电压电流双闭环控制 系统 ,通过MA T L A B 对控制方 法进行仿真 ,验证补偿 网络参数设计 的可行性 。
【 关键词 】 变换器;建模;交流小信号
至时 ,即在开 关周期 ( 0 ,d )时间 内,电感 电压 “ ( f ) 和 电容
电流 f c ( O 分别是 :
| ) =工
( f )
( f )
( 2 - 1 )
c o n v e r t e r ,a n d DC/ DC c o n v e r t e r i S n o n l i n e a r ,t i me . v a r y i n g c h a r a c t e r i s t i c s . I n t h i s P a D e r , we c n a t h r o u g h he t b a s i c mo d e l i n g me t h o d o f t h e
E L E C T R ONI C S W OR L D・ 技 术 交 流
基 于 Buck电 路 的 双 闭 环 控 制 系 统 设 计 的 仿 真 研 究

毕设-Buck变换器双闭环控制仿真研究PPT

毕设-Buck变换器双闭环控制仿真研究PPT

开环Buck电路的建模及仿真
图1
开环Buck电路在MATLAB中模型
图1是开环Buck电路在Simulink中搭建的仿真模型,使用开 关器件是MOSFET。
图2
输出电压波形
图3
输出电流波形
对于图2、图3仿真波形,显然不满足设计要求,在对滤波电感、电容进行调 节时,可以发现这样的规律:电感越小,超调越大,越稳定;电容越小,超调越小, 纹波越大。因此,需要在稳定度,超调量,纹波电压之间进行折衷,对电感、电容 进行调节。因此需要对电路进行闭环调节,本设计采用PI和PID两种控制校正方式。
Lf
+
Cf
R Uo
-
-
Buck变换器可将不可控的直流输入变为可控的直流 输出,广泛应用于可调直流开关电源及直流电机驱动中。 其电路是由一个功率晶体管开关Q与负载串联构成的。驱 动信号Ub周期的控制功率晶体管Q的导通与截止,当晶体 管导通时,若忽略其饱和压降,输出电压Uo等于输入电 压;当晶体管截止时,若忽略晶体管的漏电流,输出电 出电压、电流波形知,各项指标都达到了较高的控制精度。
总结
虽然本文针对Buck变换器双闭 环控制仿真研究进行了相关的理论 分析和仿真研究,但由于本人水平 及经验的限制,本次设计还有很多 不到位的地方,值得我在今后的学 习研究中去完善。
谢谢 观看
图6
输出电流波形
PID控制方法的仿真设计
图7 加PID校正后仿真电路
本文采用凑试法确定PID调节参数 ,凑试法是通过闭环运行或模拟,观 察系统的响应曲线,然后根据各调节参数对系统响应的大致影响,反复凑试 参数,以达到满意的响应,从而确定PID的调节参数。增大比例系数一般将 加快系统的响应,这有利于减小静差。但过大的比例系数会使系统有较大的 超调,并产生振荡,使稳定性变坏。减小有利于加快系统响应,使超调量减 小,稳定性增加,但对于干扰信号的抑制能力将减弱。在凑试时,可参考以 上参数分析控制过程的影响趋势,对参数进行先比例,后积分,再微分的整 定步骤。其具体步骤如下: 首先整定比例部分。将比例系数由小调大,并观察相应的系统响应,直 至得到反应快、超调小的响应曲线。如果系统没有静差或静差小到允许的范 围之内,并且响应曲线已属满意,那么只需要用比例调节器即可,最优比例 系数可由此确定。当仅调节比例调节器参数,控制精度还达不到设计要求时, 则需加入积分环节。整定时,首先置积分常数为一个较小值,经第一步整定 得到的比例系数会略为增大,然后增大积分常数,使系统在保持良好动态性 能的情况下,静差得到消除。在此过程中,可根据响应曲线的好坏反复修改 比例系数和积分常数,直至得到满意的效果和相应的参数。应该指出,在整 定中参数的选定不是惟一的。事实上,比例、积分和微分三部分作用是相互 影响的。从应用角度来看,只要被控制过程的主要性能指标达到设计要求, 那么比例、积分和微分参数也就确定了。最终得到的一组较理想的参数为 P=2.2,I=88,D=0.001。

Buck电路闭环控制器设计仿真

Buck电路闭环控制器设计仿真

Buck电路闭环控制器设计仿真————————————————————————————————作者:————————————————————————————————日期:Buck 电路闭环控制器设计15121501 曾洋斌作业要求:1、 建立Buck 电路的状态平均模型,设计系统闭环控制器;2、 分析稳态误差产生原因,并提出改进措施,并进行仿真;3、完成作业报告。

4、Buck 电路参数:输入电压为20V ,输出电压5V ,负载电阻4欧姆,电感1×10-3H ,电容5×10-4F ,开关频率20kHz 。

一、Buck 电路的状态平均模型根据题目所给参数,容易计算得其占空比为25%,Buck 电路如图1所示:SV VTR VDi VDCLV oV图1:Buck 电路根据状态空间平均法建模步骤如下: 1、列写状态方程、求平均变量设状态方程各项如下:[()()]T L o i t v t =x()s u v t = ()VD y i t =则有状态方程如下:x =Ax +BuT y =C x(1)列写[0,1S d T ]时间内的状态方程如图2所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示:11011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,11[0]T L =B ,1[00]T =CSV VTR VDi VDCLV oV图2:开关VT 导通状态(2)列写[1S d T ,S T ]时间内的状态方程如图3所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示:21011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,2[00]T =B ,2[10]T =C SV VTR VDi VDCLV oV图3:开关VT 关断状态因此,在[0,1S d T ]和[1S d T ,S T ]两个时间段内分别有如下两种状态方程:[0,1S d T ]: 11x x u =+A B ,1T y x =C [1S d T ,S T ]: 22x x u =+A B ,2T y x =C根据平均状态向量:()()1SSt T T tSx t x d T ττ+=⎰可得: ()()()()()()()()()112211SSSSSSS t dT t T T tt dT St dT t T tt dT Sx t x d x d T x u d x u d T ττττττττττ++++++=+=+++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰⎰A B A B又根据建模的低频假设和小纹波假设,可得到如下近似:()()ST x t x τ≈ ()()ST u t u τ≈将这两个近似式回代原方程得:''11211121()[()()]()[()()]()SSST T T x t d t d t x t d t d t u t =+++A A B B同理可得:'1121()[()()]()SST T T T y t d t d t x t =+C C因此有:X =AX +BU ,T Y =C X其中1112(1)d d =+-A A A ,1112(1)d d =+-ΒΒΒ,1112(1)T T T d d =+-C C C2、求解稳态方程及动态方程 (1)求解稳态方程根据电感伏秒平衡以及电容电荷平衡,稳态时有0X =,令大写表示稳态值,即:11,,,x X y Y d D u U ====则有方程组⎧⎨⎩TAX +BU =0Y =C X解方程组得:-1X =-A BU T -1Y =-C A BU由前面求得的两个时间段状态方程系数矩阵得:1011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,1[0]T D L =B ,11[10]T D =-C以下令'111D D =-。

基于SG3525的两相BUCK变换器

基于SG3525的两相BUCK变换器

毕业论文(设计)基于SG3525的两相BUCK变换器Two - phase BUCK Converter based on SG3525姓名:学号:系另壯物理与信息工程学院专业:电气工程及其自动化年级:___________ 2013级指导教师:2017年3月27日摘要H前,越来越多的设备已不仅仅可由单一电源供电,而要多个电源配合供电来保障大功率设备的正常工作。

本文介绍以SG3525为核心,主体电路采用两路BUCK电路成相互配合的开关电源电路,介绍了SG3525芯片的工作原理及通过11脚,14脚两脚推挽输出,两脚相位差180度,通过控制2脚电压,来控制输出电压的占空比,从而影响负载的的电圧。

当11脚和14脚的输出电流达到5至10亳安就可以驱动光耦A312O,直接驱动mos管的栅极。

从而驱动主电路。

最后比较采样电压来决定改变占空比进行电压调整。

当两路电源有一个支路出现故障时,另一路可以继续供电,保证了系统的正常工作, 提高了供电的可靠性。

关键词:SG3525;PWM,开关电源AbstractAt present, the transition from unilateral power supply to multilateral power supplies is a big progress for power consumption equipment.lt make sure of normal operation under high-power condition.This article describes a switching power supply circuit which is made of the SG3525 as the core and two BUCK circuits as the main circuit.In additionjt introduces how the SG3525 chip works and how to control the push-pull output through the 11 pin and the 14 pin.What the difference between two pins is 180 degrees,to control the bilateral voltage and the duty cycle of output power is a method of controlling the effect on load voltage.When the output current of the 11 pin and 14 pin reaches 5~10 mA.the A3120 OC will be drove, and after that the mos tube gate will be drove.So then it will drive the main circuit to work.Afterward.it will adjust the voltage by means of comparing the sampling voltage and correcting the duty cycle.If an error occurred in one branch of bilateral power supplies,the other would continue to work.That will ensure the system to work normally and improve the reliability of power supply.Key words:SG3525; PWM, switching power supply目录中英文摘要 (II)1.2开关电源技术发展概况 (1)1.3本文的主要内容 (1)2硬件介绍 (3)2.1SG3525引脚功能及特点简介 (3)2.2PWM控制基本原理 (4)3系统设计 (6)3.1实现功能 (6)3.2总系统框图 (6)3.3DC/DC降压变换器方案 (6)4电路设计 (6)4.1电路参数的设计 (7)4. 2主电路的设计 (7)421单相Buck电路与两相的对比 (7)422主电路图 (8)4.2.3工作原理 (8)4.2.4推挽输出 (8)4.2.5SG3525 输出波形 (9)4.3器件参数的选取 (9)4.3.1开关管的选择 (9)4.3.1电容的计算 (11)4.3.3电感的选择 (11)4.3.4续流二极管的选择 (11)4.4驱动电路的设计 (12)441驱动类型的选择 (12)4.4.2 光耦A3120 (12)4.4.3驱动光耦A3120电路 (14)4.5SG3525电路的设计 (14)451 SG3525外围设计 (15)4.5.2器件的选取.............................................................. -15 - 5系统测试与分析. (16)5.1测试工具 (17)5.4数据釆集 (17)5.4」SG3525的输出波形和光耦A3120的输出波形 (17)5.4.2二极管的波形 (19)5.4.3负载电压数据记录 (19)5.5数据分析 (20)6总结 (21)6.1工作总结 (22)6.2不足和展望 (22)致谢 (23)附录 (24)附录一:器件清单 (25)附录二:原理图 (26)附录三:PCB图 (27)附录四:实物图 (28)1引言1.1选题背景及实际意义电源设备在工业发展、农业生产、电子发明、动力管理技术及灯光使用、电冰箱等日常生活各个方面经常被使用,是电子设备和机电设备的基础。

【毕业设计】基于Buck结构的DCDC转换器建模与仿真

【毕业设计】基于Buck结构的DCDC转换器建模与仿真

【毕业设计】基于Buck结构的DCDC转换器建模与仿真目录摘要 (1)Abstract (2)1 绪论 (3)1.1电力电子技术的概述 (3)1.2开关电源的研究现状和发展趋势 (4)1.3 Buck斩波电路的研究意义 (6)1.4 论文的主要研究内容 (6)2 Buck斩波电路的原理 (8)2.1 Buck变换器的连续导电模式 (9)2.2 Buck变换器电感电流不连续的导电模式 (12)2.3 电感电流连续的临界条件 (13)2.4 纹波电压ΔU O及电容计算142.5参数的计算 (14)3 Buck斩波电路的建模 (17)3.1开关电路的建模 (17)3.1.1理想开关模型 (17)3.1.2状态空间平均模型 (19)3.1.3小信号模型 (20)3.2系统的传递函数 (22)3.2.1降压斩波电路的传递函数 (22)3.2.2 PWM比较器的比较函数 (24)3.2.3调节器的传递函数 (25)4 控制电路的设计 (27)4.1电压模式控制电路的设计 (27)4.1.1电压调节器的结构形式 (27)4.1.2电压调节器的参数 (28)4. 2 控制电路结构 (29)5 Buck斩波电路的控制仿真研究 (30)5.1 Matlab简介 (30)5.2 Buck斩波电路主电路的仿真 (30)5.3 Buck斩波电路的PID控制算法的仿真 (32)6全文总结及展望 (35)参考文献 (36)附录1:主电路仿真模型 (37)附录2:主电路仿真波形图 (39)附录3:PID仿真图 (40)致谢 (41)摘要随着电子产品与人们工作和生活的关系日益密切,便携式和待机时间长的电子产品越来越受到人们的青睐,它们对电源的要求也越来越高。

DC-DC开关电源芯片是一种正在快速发展的功率集成电路,具有集度高,综合性能好等特点,具有很好的市场前景和研究价值。

论文在研究开关电源技术发展现状和前景的基础上,设计一种Buck型DC-DC开关电源的设计。

基于Buck变换器的双环开关调节系统的设计和仿真

基于Buck变换器的双环开关调节系统的设计和仿真

基于Buck变换器的双环开关调节系统的设计和仿真作者:夏伟薛勇杨杰来源:《电子世界》2013年第12期【摘要】Buck电路是一种降压斩波器,降压变换器输出电压平均值Vo等于占空比乘以输入电压Vin。

通常电感中的电流是否连续,取决于负载的大小,所以简单的BUCK电路输出的电压不稳定,一旦负载突变会造成严重后果。

加入闭环控制系统,输出电压经采样环节后和参考电压比较,同时在此基础上引入电流反馈,得到的误差信号送至控制器,控制器输出信号送至PWM环节和锯齿波时钟信号比较,改变占空比d即可调节开关变换器的输出电压,达到稳定电压的目的。

【关键词】Buck电路;闭环控制;PWM环节1.引言随着电力电子技术的迅速发展,高频开关电源变换器已广泛应用于计算机、电信、航空航天等领域。

其核心是电能形式的变换和控制,并通过电力电子电路实现其应用。

Buck变换器是开关电源变换器中最常见的一种,主要应用于低压大电流领域,有众多拓扑。

但简单的Buck电路输出电压不稳定且会受到负载和外部的干扰。

为了达到稳定输出电压的目的,在电压反馈的基础上引入电流反馈实现双环控制,获得较好的动态性能。

2.Buck变换电路控制系统的基本原理2.1 单闭环调节系统的设计和主电路模型具有电压控制的Buck变换器开关调节系统如图1所示,主电路为Buck变换电路[1],控制电路采用电压负反馈。

在负反馈电路中,输出电压U经采样后与给定的参考电压U比较,得到误差信号Ue送至控制器,控制器输出信号Uc送至PWM环节,与PWM环节中的振荡器产生的锯齿波时钟信号比较,使比较器输出周期不变,脉冲宽度即占空比d受Uc调制的一系列脉冲信号,再通过驱动器将脉冲信号放大,控制变换器的功率开关器件的导通与关断。

由于电压和负载发生变化,或系统受到其他因素干扰使输出电压发生波动时,通过负反馈回路[2]可调节开关变换器的功率器件在一个开关周期内的导通时间,达到稳定输出电压的目的。

2.2 双环开关调节系统的设计为了克服单环系统在控制和环节上的延迟,在电压反馈的基础上引入电流反馈实现双环控制,可获得较好的动态性能。

Buck电路的闭环设计及仿真分析

Buck电路的闭环设计及仿真分析

Buck电路的闭环设计及仿真分析一、本文概述随着电力电子技术的飞速发展,电源转换技术已成为现代电子设备不可或缺的一部分。

其中,Buck电路作为一种基本的直流-直流(DC-DC)转换器,因其结构简单、效率高、调节范围宽等优点,在电子设备中得到了广泛应用。

然而,为了确保Buck电路在各种环境和负载条件下的稳定性和高效性,闭环设计显得尤为重要。

本文旨在探讨Buck电路的闭环设计方法,并通过仿真分析验证设计的有效性。

文章首先简要介绍了Buck电路的基本原理和应用背景,然后重点阐述了闭环设计的重要性及常用方法。

在闭环设计部分,文章详细分析了反馈网络的选取、控制策略的制定以及功率级和控制级的协同工作等问题。

同时,结合具体的设计实例,阐述了闭环设计在实际应用中的具体实现过程。

为了验证设计的有效性,文章采用了仿真分析的方法。

通过搭建基于MATLAB/Simulink的仿真模型,对设计的Buck闭环电路进行了全面的仿真分析。

仿真结果证明了闭环设计的有效性,同时也为实际电路的制作和调试提供了重要参考。

文章对闭环设计的Buck电路进行了总结,并指出了未来研究方向和潜在的应用前景。

通过本文的研究,旨在为从事电源转换技术研究和应用的工程师和学者提供有益的参考和启示。

二、Buck电路的基本原理Buck电路,也称为降压转换器,是一种基本的直流-直流(DC-DC)转换电路,其主要功能是将较高的直流电压降低到所需的较低直流电压。

其名称来源于电路中开关元件(如MOSFET或晶体管)的操作,类似于"bucking"(减少或抑制)输入电压。

Buck电路的基本构成包括一个开关(通常是MOSFET),一个电感(或称为线圈),一个二极管(也称为整流器或续流二极管),以及一个输出电容器。

在开关打开时,电流通过电感从输入源流向输出,此时电感储存能量。

当开关关闭时,电感释放其储存的能量,通过二极管向输出电容器和负载供电。

Buck电路的工作原理基于电感的电压-电流关系。

Buck变换器毕业论文

Buck变换器毕业论文

Buck变换器毕业论文基于ARM的Buck变换器制作摘要电子技术近年来发展迅猛,直流开关电源广泛应用于个人计算机、电信通信、电力系统、航空航天和生物医疗等领域,对开关电源的性能、功率密度、工作效率和可靠性都提出了更高的要求。

BUCK变换器在电池供电的计算机,消费类产品等需多电源供电的电子系统中有着广泛的应用,小型化成为必然的要求。

本文对Buck变换器的整体电路和硬件电路进行了讨论。

首先,对Buck变换器的背景,发展状况进行阐述。

其次,对Buck变换器的硬件设计进行了介绍,STM32处理器的简介和内部主要结构介绍,还有对变换器中的主要电路进行介绍,功率及驱动电路、电源电路、保护电路、软开关电路及控制、电流传感器的电路原理。

再次,对整体电路进行一些简单的描述。

最后,在附录中,本文还将给出一些必要的系统设计资料,供参考之用。

关键词:Buck变换器,ST,M32处理器,硬件电路,整体电路Based on the arm of the changes made a buckAbstractElectronic technology development in recent years,the dc power supply has the wide application in personal computers and telecom communications,the electrical system,air space and biological and medical fields,switching power supplies of power,performance, efficiency and reliability have made a higher demands.Buck change in the battery power of computer,and many consumer products have the power supply of electronic systems are widely used,advocate small-size become inevitable.To buck this transformation of the electrical circuits and hardware circuit discussed.First,buck to change the background and development in the paper.Secondly,the buck from the hardware design,stm32processors,and internal structure,and to introduce major changes in the main circuits to introduce,power and driven circuit,power supply circuits,the protection circuit and the electrical and control,the principle of the circuit.current sensors.Thirdly,the circuit to make some brief description.Finally,in the annex,this will also give some necessary system design,data for reference only.Key words:Buck changes,hardware circuit stm32processor,the circuit目录1绪论 (1)1.1课题背景介绍 (1)1.2课题研究状况 (1)1.3课题研究方法 (2)2STM32处理器 (3)2.1STM32处理器介绍 (3)2.2高级控制定时器(TIM1) (4)2.2.1简介 (4)2.2.2主要特性 (4)2.3通用定时器(TIMx) (5)2.3.1概述 (5)2.3.2主要特性 (5)2.3.3功能描述 (6)2.4模拟/数字转换(ADC) (7)2.4.1介绍 (7)2.4.2主要特征 (7)2.4.3引脚描述 (8)2.4.4功能描述 (9)3系统硬件设计 (11)3.1Buck电路的开关过程分析 (11)3.2功率及驱动电路设计 (12)3.2.1IR2110简介 (12)3.2.2IR2110内部结构和特点 (12)3.3电源电路及保护电路设计 (13)3.3.1电源电路设计 (14)3.3.2保护电路设计 (14)3.4软开关电路及控制电路设计 (18)3.5电流传感器的电路设计 (21)3.5.1电流传感器的介绍 (21)3.5.2工作原理 (21)3.5.3模拟霍尔传感器SS495介绍 (22)结论 (25)致谢 (26)参考文献 (27)附录Buck变换器硬件电路图 (28)1绪论1.1课题背景介绍开关电源技术的发展、应用领域的扩大,别是近几年便携式电子产品的飞速发展,使高效率、高可靠性、高精度、高功率密度成为开关电源的发展方向,对集成电路设计提出了挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)说明书题目:Buck变换器双闭环控制仿真研究系名信息工程系专业自动化学号 6011XXXXXXX学生姓名 XXX指导教师 XXX2015年6月5日毕业设计(论文)任务书题目:Buck变换器双闭环控制仿真研究系名信息工程系专业自动化学号 6011XXXXXX学生姓名 XXX指导教师 XXX职称副教授2014年12月15日一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。

)便携式电子产品的广泛应用,推动了开关电源技术的迅速发展。

因为开关电源具有体积小、重量轻以及功率密度和输出效率高等诸多优点,已经逐渐取代了传统的线性电源,随之成为电源芯片中的主流产品。

随着开关电源技术应用领域的扩大,对开关电源的要求也日益提高,高效率、高可靠性以及高功率密度成为趋势,这就对开关电源芯片设计提出了新的挑战。

其中对于非隔离的DC/DC开关电源,按照电路功能划分,有降压式(BUCK)、升压式(BOOST),还有升降压式(BUCK-BOOST)等。

其中品种最多,发展最快的当属降压式(BUCK)。

我国目前能源紧缺,而电源行业又是一个与能源消耗密切相关的行业,因此我们在设计DC/DC开关电源产品时,转换效率必须作为一个重要的指标加以考虑。

V锂离子电池作为电源的消费类电子产品市场不断扩大,且功能和性能变得更多和更高,对适用于这类产品的BUCK变换器的性能提出了更高的要求。

因此研究BUCK变换器的控制具有重要的理论和现实意义。

二、参考文献[1] 丘涛文. 开关电源的发展及技术趋势[J]. 电力标准化与技术经济,2008,17(6):58-60.[2] 张乃国. 一种脉冲频率调制型稳压电路的研究[J]. 电源世界,2007,10(4):21-23.[3] 刘树林,输出本质安全型Buck-Boost DC-DC变换器的分析与设计,中国电机工程学报,2008,28(3): 60-65.[4] 马丽梅,Buck-boost DC-DC变换器的控制,河北工业大学学报,2008,37(4) :101-105.[5] 刘树林,Buck-Boost变换器的能量传输模式及输出纹波电压分析,电子学报,2007,20(5) :838-843.[6] 彭力,新型大功率升降压型DC-DC变换器控制研究,船电技术,1999,3(1) :26-28.[7] 钟久明,Buck-Boost变换器的本质安全特性分析及优化设计西安科技大学硕士学位论文 2006.[8] 高飞,蒋赢,赵小妹等,一种新型Buck-Boost变换器,电力电子技术2010 22(4):50-52.[9] Xu Jianping,Yu circuit model of switches for SPICEElectronics,Letters,1988,,,437-438.[10] Xu Jianping,Yu Juebang,Zeng simulation of switched DC-DCInternational Symposium on Circuits and Systems,1991,,,3032-3026.[11] 王海鹏,王立志,王卓. 基于1394的数据传输电路[J]. 现代电子技术,2009,32(21):52-54.[12] 王久和. 电压型PWM整流器的非线性控制[M]. 第1版,北京: 机械工业出版社, 2008.[13] 师娅,唐威. 一种电流型PWM控制芯片的设计[J]. 微电子学与计算机,2007,24(8):145-148.三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。

)对直流Buck变换器进行数学建模,利用Simulink研究双闭环PID控制算法,实现变换器电压的鲁棒输出。

具体内容要求如下:1.熟悉Buck变换器双闭环控制的工作原理及电路设计2.掌握MATLAB/Simulink软件的使用3.掌握对Buck变换器双闭环控制的数学建模4.验证双闭环控制的工作原理,采用Simulink对电路做仿真分析5.完成毕业设计论文。

指导教师(签字)年月日审题小组组长(签字)年月日天津大学仁爱学院本科生毕业设计(论文)开题报告摘要BUCK电路是一种降压斩波器,降压变换器输出电压平均值Uo总是小于输出电压U D。

通常电感中的电流是否连续,取决于开关频率、滤波电感L以及电容C的数值。

简单的BUCK电路输出的电压不稳定,会受到负载和外部的干扰,加入补偿网络,可实现闭环控制。

通过采样环节得到所需电压/电流信号,再与基准值进行比较,然后通过闭环控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK电路闭环控制系统。

Buck电路的闭环控制有电压环控制、电流环控制以及二者结合的双闭环控制,此处采用双闭环控制:电流内环,电压外环。

根据相关的电路设计适当的补偿网络对电路进行校正,提高电路系统输出性能。

本文首先概述了开关电源技术及DC/DC变换器控制方法的发展趋势,接着介绍了BUCK变换器的电路结构、工作原理及控制原理。

最后进行了Buck变换器双闭环控制的仿真研究,其中首先介绍了电流内环结构和电压外环结构,然后利用Matlab进行了仿真验证。

关键词:Buck变换器;建模与仿真;双闭环控制;MATLABABSTRACTBUCK circuit is a step-down chopper, whose converter output voltage Uo is always lower than the average output voltage UD. Whether the current in the inductor is continuous depends on the value of the switching frequency, the filter inductance L and capacitance C generally.Simple unstable BUCK circuit voltage subjects to electric burden and outside interference, adding the compensation network, thus, enabling closed-loop control. Obtained by sampling part of the required voltage/current signal , compared with a reference value again, then get the feedback signal by the closed loop controller, with the triangular wave . I compared to obtain a modulated switching waveform with the triangular wave as a switching signal to achieve a closed-loop circuit BUCK control system. The closed-loop control of Buck circuit has the voltage loop control, the current loop control and the double closed-loop control, double closed-loop control is used here: current inner loop control and voltage outer loop control. According to the relevant circuit design appropriate compensation network to correct the circuit, so as to improve the output performance of the circuit system.This paper first summarizes the Switching Mode Power Supply technology and the development trend of DC/DC converter control method, then introduces the BUCK converter circuit structure, working principle and control principle. Finally, the simulation research on the double closed-loop control of buck converter, which first introduced the current inner loop and voltage outer loop structure, and then simulate them by MATLAB.Keyword:Buck converter;modeling and simulation;double closed-loop control;MATLAB目录第一章绪论 (1)课题研究背景 (1)课题发展现状 (1)本文研究内容及结构 (3)第二章 Buck变换器基本原理 (4)Buck变换器工作原理 (4)Buck变换器工作模态分析 (4)2.3 Buck变换器外特性 (7)第三章 Buck变换器主电路设计 (9)占空比D (9)滤波电感Lf (9)滤波电容Cf (11)开关管Q (11)续流二极管D (12)第四章 Buck变换器双闭环控制 (13) (13)电流内环设计 (13)电压外环设计 (15)第五章 Buck变换器闭环系统的仿真 (21)开环Buck电路的建模及仿真 (21)闭环Buck电路的建模及仿真 (22)PI控制方法的仿真 (23)PID控制方法的仿真 (25)第六章总结与展望 (25)参考文献 (29)外文资料中文译文致谢第一章绪论课题研究背景随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。

任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。

传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。

这种传统稳压技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、可靠性高等优点。

相关文档
最新文档