基于ANSYS的松耦合变压器三维仿真研究

合集下载

ANSYS10.0软件在松耦合变压器中的三维仿真分析过程介绍

ANSYS10.0软件在松耦合变压器中的三维仿真分析过程介绍

ANSYS10.0 软件在松耦合变压器中的三维仿真分析
过程介绍
当今变压器领域已经发展到很成熟的阶段,轻量、高效、高密度是当今变压器发展目标。

在变压器产品研发中,利用有限元仿真软件,可以方便地改变变压器的结构参数,观察这些参数对变压器的影响。

ANSYS 是世界上着名的大型通用有限元分析软件,也是中国用户最多、应用最广泛的有限元分析软件,它融结构、热、流体、电磁、声学等专业的分析于一体,可广泛应用于机械制造、石油化工、轻工、造船、航天航空、汽车交通、电子、土木工程、水利、铁道等各种工业建设和科学研究。

引言
作为旋转导向智能钻井系统核心部件的可控偏心器,其原理是利用电机泵产生推动翼肋伸缩的动力,当采用电机泵动力时,电机泵的能量来源于井下涡轮发电机。

由于可控偏心器的机械结构决定了电机泵要安装在不旋转套上,而发电机要安装在旋转的主轴上,这样就涉及到旋转和不旋转之间的能量传输问题。

以前一直采用的是接触式滑环能量传输方式,由于接触式滑环存在安装不方便、旋转时易磨损、易受到井下钻井液、水的腐蚀以及泥浆的影响等缺陷,迫切需要一种新的非接触式能量传输方式松耦合电能传输技术。

作为松耦合电能传输技术的核心部分松耦合变压器,对它的研究则显得尤为重要。

基于PSCAD-ANSYS的变压器绕组振动特性仿真研究

基于PSCAD-ANSYS的变压器绕组振动特性仿真研究

基于PSCAD-ANSYS的变压器绕组振动特性仿真研究杨贤;王丰华;何苗忠;林春耀【摘要】To further understand the vibration mechanism of transformer winding,the whole simulation of winding vibration response under short circuit was made based on the co-simulation of PSCAD and ANSYS software.The short-circuit current was obtained based on the electro-magnetic transient analysis of PSCAD software under sudden short-circuit impact.Then the simulation of magnetic field and mechanical field excited by the short circuit current was achieved and the transformer vibration characteristics excited by the electro-dynamic force was acquired.The data communication mechanism has been elegantly designed and implemented to combine the electrical model and vibration model,which makes the co-simulation more intergratded and rigorous.With the developed simulation model,the vibration response of a power transformer in the 110kV substation was calculated and the effectiveness of the proposed simulation method was verified.When sudden short-circuit was occurred,the vibration response of transformer winding was increased greatly and then reduced gradually,which was similar to the variation trend of short-circuit current.The frequency component of vibration signals are more complicated.%为进一步理解和掌握短路冲击下变压器绕组的振动特性,本文基于PSCAD-ANSYS联合仿真实现了变压器突发短路下振动响应的全过程分析,即根据PSCAD软件计算得到的变压器绕组短路电流,在ANSYS软件中使用电磁场和机械场模块计算了变压器绕组的电动力和振动响应.其中,两个软件之间的电流和时间等关键信息的交换通过数据通信接口方式实现.以某110kV变电站为例对变压器突发短路下的振动响应进行计算分析,结果表明,所提出的联合仿真方法能够有效计算突发短路时变压器绕组的振动特性.突发短路时,变压器振动响应与短路电流变化趋势类似,绕组振动在短路故障发生后先达到最大值,然后伴有一定的衰减分量,振动信号频谱分量更加丰富.【期刊名称】《电工电能新技术》【年(卷),期】2017(036)011【总页数】6页(P51-56)【关键词】变压器绕组;突发短路;振动响应;联合仿真;PSCAD;ANSYS【作者】杨贤;王丰华;何苗忠;林春耀【作者单位】广东电网公司电力科学研究院,广东广州510080;电力传输与功率变换控制教育部重点实验室,上海交通大学,上海200240;电力传输与功率变换控制教育部重点实验室,上海交通大学,上海200240;广东电网公司电力科学研究院,广东广州510080【正文语种】中文【中图分类】TM411变压器是电力系统中的关键设备之一,其运行可靠性与稳定性直接关系到电力系统的安全运行。

基于ANSYS Workbench的变压器铁芯——绕组振动仿真

基于ANSYS Workbench的变压器铁芯——绕组振动仿真
Keywords:finite element analysis(FEA);transformer;vibration; core—winding;themodal character istic;
amplitude f requenc Nhomakorabea characteristics
0 引 言 随着 电力系统容量 的增 大 ,电力变 压器 的可靠 运行 与
(Faculty of Information Engineering and Automation,Kunming University of Scienc and Technology,Kunming 650500,China)
Abstract: In order to realize real—time monitoring on transformer working condition,and f ind out breakdowns timely,it is needed for transformer core—winding vibration simulation to determine the optimal measuring point
电 力 系 统 的 安 全 密 切 相 关 。 电 力 变 压 器 铁 芯一绕 组 故 障 已经成为导致变压 器损坏的最主要原 因 ,因此 ,需 要对变 压 器铁芯一绕组进行仿 真分析 ,选择 振动最强点作为 测点对 变 压器工作状态进行 实时监测 ,及 时排除故障 ,使 变压器可 以安全稳定工作 。
姚 敏 ,赵振 刚 ,高丽慧 ,郭丽君 ,李 英娜 ,李 川
(昆 明 理 工 大 学 信 息 工 程 与 自动 化 学 院 。云 南 昆 明 650500)

基于ANSYS软件的油浸式变压器温度场有限元仿真计算

基于ANSYS软件的油浸式变压器温度场有限元仿真计算

基于ANSYS软件的油浸式变压器温度场有限元仿真计算薛飞;陈炯;周健聪;李忠【摘要】应用传热学和流体力学原理分析了变压器内部生热以及散热机制,建立了流固耦合的变压器温度场有限元分析模型,并在此基础上选取了适当的边界条件及求解参数,在综合考虑非线性热源以及随温度变化的油动力粘度的前提下,采用有限元分析软件ANSYS计算了变压器内部的温度场分布,确定了热点的温度及位置.【期刊名称】《上海电力学院学报》【年(卷),期】2015(031)002【总页数】5页(P113-116,126)【关键词】油浸式变压器;热点温度;温度场;流固耦合;有限元;ANSYS软件【作者】薛飞;陈炯;周健聪;李忠【作者单位】上海电力学院电气工程学院,上海200090;上海电力学院电气工程学院,上海200090;国网四川省电力公司资阳供电公司,四川资阳641300;国网四川省电力公司资阳供电公司,四川资阳641300【正文语种】中文【中图分类】TM411;TM743随着电力建设的不断推进,电力设备朝着大型化方向发展,但大型变压器的内部温升控制问题一直是近年来困扰电网运行部门的技术难题之一.《GB/T 1094.7—2008油浸式电力变压器负载导则》中明确指出:“绕组最热区域内达到的温度,是变压器负载值的最主要限制因素,故应尽一切努力来准确地确定这一温度值”.[1]当热点温度超过指定限值时,会加速绝缘老化,缩短变压器寿命,影响变压器的正常运行.因此,开发合适的温度场计算技术,准确计算绕组热点温度及位置是亟待解决的问题.目前,计算变压器热点温度的依据一般是实验结果和实践经验,但其误差较大,不能反映最热点温度和变压器内部整个温度的分布,并且难以确定热点的准确位置.[2]因此,笔者从传热学和流体力学理论出发,结合强大的有限元分析软件ANSYS,建立了油浸式变压器的有限元分析模型,分析并计算了变压器稳态运行下的温度场分布,较为准确地定位出热点的位置.1 发热及传热原理1.1 变压器的热源变压器内部的热量主要由损耗转化而来,包括绕组损耗和铁心损耗,可以表示为:[3]式中:PT——总损耗;PC——铁心损耗;PL——绕组损耗.绕组中的损耗包括直流电阻损耗、涡流损耗及杂散损耗等,其中直流电阻损耗占主要部分,可表示为:式中:I2R——绕组的电阻损耗;PW——绕组中的涡流损耗;PZ——杂散损耗.铁心损耗主要由铁心中的磁滞损耗和涡流损耗构成,可以表示为:式中:P1——铁心中的磁滞损耗;P2——铁心中的涡流损耗;δh——磁滞损耗系数;δe——涡流损耗系数;f——电流频率,Hz;Bm——磁通密度的最大值,Wb/m2.绕组的涡流损耗和直流电阻损耗产生的热量直接作用于绕组,从而引起绕组温度升高,并且也是变压器内部热量的主要来源.1.2 传热机理分析对于油浸式变压器来说,运行中所产生的热量主要以传导和对流方式进行传递,其热量散失过程如图1所示.图1 变压器内部传热原理示意热量的传递过程分为4个部分:一是铁心、绕组产生热量,经内部传导,热量传递到与油接触的外表面;二是外表面的热量经过对流传递到油,油温逐渐升高;三是变压器油向上流动,接触油箱壁,油温下降,油向下流动;四是冷油回到底部又重新流入绕组,形成了闭合的对流路线.油箱壁对空气的辐射传热可忽略不计.因此,热传递在变压器内部固体间表现为热传导,在固体与油之间表现为对流.通过适当假设以及参照能量守恒定律可得出热传导的数学模型[4]假设如下.(1)绕组为各向同性的连续介质.(2)导体的密度、比热容和导热率均为常物性.(3)导体内部有热源且均匀分布.q v为单位体积的生热率,V为导体体积,则qv=P/V.所得微分方程式如下:式中:a——热扩散率,即导温系数;λ——导热系数;c——比热;ρ——密度.在不考虑时变的稳态传热时,式(4)可简化为:对流主要取决于对流换热系数、固体与油流温度差、换热表面积,实际工程中采用牛顿冷却公式:[2]式中:hf——对流换热系数;S——换热表面积;tw——固体表面温度;tf——油流温度.由于对流过程中油的导热系数、比热及密度都是温度的函数,因此正确确定hf是计算变压器内部温度场的关键.[5]2 ANSYS模型的建立ANSYS软件是融合电场、磁场、温度场于一体的大型通用有限元分析软件.其强大的多物理场耦合计算功能使其在跨领域多变工程中得到广泛的使用.[6] ANSYS Workbench Environment(AWE)作为新一代多物理场协同 CAE仿真环境,集建模、有限元分析、优化设计3大模块于一体,为设计人员提供了系统级的解决方案.本文就是利用Workbench对油浸式变压器内部流固耦合的环境进行仿真分析.2.1 确定边界条件及物性参数本仿真过程为稳态求解,即发热和散热达到热平衡.固体所用的比热、导热系数及材料密度均为常数,油的物性参数采用拟合输入,见表1.热源密度为常数,环境温度及初始油温为20℃.表1 变压器油物性参数油的物性数拟合公式动力粘度μ μ=11.71exp(-0.02T)密度ρ ρ=894-0.6(T-273)比热 C C=807.163+3.58T本文所模拟的油浸式变压器只考虑自然对流,并且忽略油箱壁对空气的辐射散热,因此用到两类边界条件,即第1类边界条件和第3类边界条件.油与铁心、绕组及油箱壁之间是典型的对流换热,属第3类边界条件,满足:式中:λ——导热系数;n——法方向.由于油箱的几何形状比较规则,因此自然对流换热系数hf可取均值.式中:Nu——努塞尔数;Ra——瑞利数,Ra=GrPr;G r——格拉晓夫数;α——热膨胀系数,α =1/T;β——运动粘度,m2/s;H——特征尺寸,m;Δt——温差,℃;C,n——比热和法方向,数值由试验确定;Pr——普郎特数.油流与绕组的对流散热比较复杂,由于各绕组的生热率、几何形状及空间位置都不同,使得它们与油之间的hf相差较大,不能采用均值.事实上,油流可分为层流和湍流,两者换热效果相差较大,可通过雷诺系数Re来判断:式中:v——流体流速;ρ——流体密度;L c——特征尺寸;μ——动力粘度.当Re<2 300时,流动为层流,反之为湍流.对于油箱壁面则用到了传热学中的第1类边界条件,即规定流体边界上的温度为常数20℃.2.2 仿真模型及网格划分本文所选变压器为三相对称,且各相关量的变化成轴对称,即温度场的分布在变压器内部沿圆周方向没有梯度变化,这里选用其中一相,作1/4三维轴对称圆柱体模型进行温度场计算.模型的参数如下:油箱尺寸为820 mm×800 mm×500 mm;铁心导热系数为40 W/mK;生热率为9 651.39 W/m3;绕组导热系数为336W/mK;低压绕组平均生热率为28 954.17 W/m3;高压绕组平均生热率为12 578.81 W/m3.网格划分的方式对分析结果影响较大,本模型为流固耦合模型,因此采用完全非结构化分段划分方法,[7]在耦合交界面以及温度梯度较大的部位网格较细,这样在保证精度的前提下又不至于过分影响系统的计算效率.网格划分后的局部模型如图2所示.图2 模型上端部网格划分2.3 程序计算流程仿真计算流程如图3所示.需要注意的是,要先建立流体场分析模型,在此基础上再建立固体模型,添加材料属性和划分网格.计算结束后对每一次的计算结果进行收敛性以及精度的判断,当精度未达到要求时,返回修改流场参数及网格参数,然后再次进行迭代计算,直到达到足够精度为止.[8]图3 仿真计算流程2.4 仿真结果及分析利用ANSYS软件计算了在环境温度20℃下,额定容量为2 500 kW且在额定负荷运行下的变压器的温度场分布情况,其轴截面温度场分布如图4所示.图4 温度场分布从图4可以看出,铁心及绕组的温度分布都不均匀,下部温度低,上部温度高;最低温度出现在铁心的下端部分,最热点则出现在低压绕组内侧轴向80% ~85%处,其温度为85.7℃,低于变压器所规定的参考温度98℃.[1]从传热学及流体力学的角度考虑,热量从绕组的内侧以一定的传导系数向外传热,在绕组表面与油接触后进行对流换热,沿轴向向上流动,因此要带走一部分热量;同时,绕组上端部散热效果比下端部差,从而使得上面温度高于下面温度;高压绕组在外层,散热效果比低压绕组好,因此温度低于低压绕组.3 结语本文采用ANSYS软件对油浸式变压器进行了建模与仿真,考虑油粘滞度随温度的变化及非线性的绕组发热功率,最后得到变压器内部温度场分布图,并结合传热学及流体力学的原理对所得结果进行了分析.经与经验测量结果及 IEEE推荐方法计算值对比发现,计算精度可满足工程要求,同时也为热点位置的定位提供了理论依据. 参考文献:【相关文献】[1]中国电器工业协会.GB/T 1094.7—2008油浸式电力变压器负载导则[S].北京:中国标准出版社,1994.[2]傅晨钊,汲胜昌,王世山.变压器绕组温度场的二维数值计算[J].高电压技术,2002,28(5):10-12.[3]陈伟根,苏小平,周渠,等.基于顶层油温的变压器绕组热点温度计算改进模型[J].重庆大学学报,2012,35(5):69-75.[4]曲德宇,刘文里,韩波.干式变压器绕组温度场的二维数值分析[J].变压器,2011,48(12):21-25.[5]崔伟,张喜乐,李永刚,等.基于Fluent软件的干式变压器绕组热点温度计算与分析[J].电力科学与工程,2011,27(1):32-35.[6]温波,刘爽,冯加奇,等.油浸式电力变压器绕组温度场的二维仿真分析[J].变压器,2009,46(9):35-38.[7]杜莉,王秀春.油浸式变压器内流场和温度场的数值模拟研究[J].变压器,2012,49(1):19-22.[8]李季,罗隆福,许加柱.电力机车主变压器油箱三维温度场有限元分析[J].高电压技术,2005,31(8):21-23.。

基于松耦合变压器的效率测试系统设计

基于松耦合变压器的效率测试系统设计

基于松耦合变压器的效率测试系统设计丰江波;李岩松;赵蒙蒙;李柏江;刘君【摘要】设计能够输出频率连续可调且满足电压需求的最大传输效率测试系统,从而确定出松耦合变压器对应的最佳工作频率,对于非接触式电能传输系统的效率最大化有着重要意义.从松耦合变压器传输特性出发,对主电路,功率放大电路,高频变压器进行设计,对于整个传输效率系统进行了详细的设计计算,包括选择磁芯材料、确定磁芯结构和型号.最后,搭建实验平台,分别对功率放大电路与整个系统的输出性能和带负载能力进行了实验测试,在满足课题要求的前提下确定了松耦合变压器传输效率最高时对应的最佳工作频率.【期刊名称】《电测与仪表》【年(卷),期】2018(055)013【总页数】6页(P111-116)【关键词】松耦合变压器;高频变压器;传输效率;工作频率【作者】丰江波;李岩松;赵蒙蒙;李柏江;刘君【作者单位】华北电力大学电气与电子工程学院,北京102206;华北电力大学电气与电子工程学院,北京102206;华北电力大学电气与电子工程学院,北京102206;华北电力大学电气与电子工程学院,北京102206;华北电力大学电气与电子工程学院,北京102206【正文语种】中文【中图分类】TM4330 引言传统的电能传输方式存在着接触电火花、导线漏电、机械磨损等问题,易受粉尘、污物等环境因素影响[1-2]。

磁感应耦合式无线输电技术利用发射线圈产生的交变磁场将电能耦合到接收线圈,从而实现对负载的无线电能传输。

它因利用松耦合变压器来进行无直接接触式电能传输而具备方便、安全、适应性强等优势,已受到了电气、电工等方面的广泛关注,并已广泛应用到航空航天、石油矿井、水下作业等特殊领域[3-5]。

非接触式电能传输系统的核心部件是松耦合变压器(可分离变压器),原、副边存在磁导率很小而磁阻很大的空气气隙,使其耦合系数远小于1,传输效率很难达到要求,而这个弊端通常需要提高输入电压的频率来改善。

基于ANSYSMaxwell的750kV自耦变压器直流偏磁仿真_刘渝根

基于ANSYSMaxwell的750kV自耦变压器直流偏磁仿真_刘渝根
2 1 8
高电压技术 第 3 9卷 第1期 2 0 1 3年1月3 1日
,V H i h V o l t a e E n i n e e r i n o l . 3 9,N o . 1, J a n u a r 3 1, 2 0 1 3 g g g g y
基于 A N S Y S M a x w e l l的7 5 0k V 自耦变压器直流偏磁仿真
[ ] 5 6 -
, 直流电流通过中性点流入变压器绕组
时会产生直流偏磁现象 , 铁芯因高度半周过饱和而
) 。 基金资助项目 :国家创新研究群体基金 ( 5 1 0 2 1 0 0 5 P r o e c t s u o r t e d b F u n d f o r I n n o v a t i v e R e s e a r c h G r o u s o f C h i n a j p p y p ( ) 5 1 0 2 1 0 0 5 .
1 变压器场路耦合模型的建立
1 . 1 基本理论 电磁 分 析 问 题 实 际 上 是 求 解 给 定 边 界 下 的 M a x w e l l方程组问题 , M a x w e l l方程组是研究和分析 变压器内部 M 电磁现象的一个基本依据 , a x w e l l方
] 1 9 程的微分形式满足[
0 引言
我国电能资源的供需分布不均 , 为满足大功率、 远距离跨区输电的要求 , 高压直流输电在中国电网 中的地位越来越重要
[ ] 1 3 -
增加了变压器的无功 使励磁电流产生较大的谐波 , 消耗, 造成变压器振动增强 , 金属结构件和油箱局部
] 7 1 0 - , 过热, 对变压器的稳定运行带来极大影响[ 因此
D C B i a s S i m u l a t i o n o f 7 5 0k V A u t o t r a n s f o r m e r B a s e d o n A N S Y S M a x w e l l

基于ANSYS Maxwell的耦合电感仿真研究

基于ANSYS Maxwell的耦合电感仿真研究

基于ANSYS Maxwell的耦合电感仿真研究作者:沈瑶石琳张岩亮来源:《中国教育信息化·基础教育》2020年第11期摘要:随着计算机技术的飞速发展,电路仿真软件已经成为重要的实验教学辅助手段。

文章介绍了利用仿真软件实现电路实验教学改革的思路和方法,通过制定仿真与实践相结合的实验任务,使单一的验证型实验具有研究性、探索性、开放性和设计性,变被动完成任务为主动实践验证猜想,从而有效培养学生自主学习能力,并提升其创新能力。

最后针对耦合电感实验中存在的问题,利用ANSYS Maxwell软件对线圈建模,分别通过参数扫描分析和场路耦合模型研究互感的影响因素及互感的屏蔽,直观的结果加深了学生对实验现象的理解,充分展现了仿真软件在实践教学中的积极作用。

关键词:耦合电感;互感;ANSYS Maxwell;教学改革中图分类号:TM13; ; ; ; ; ;文献标志码:B; ; ; ; ; 文章编号:1673-8454(2020)22-0093-04一、引言电路实验作为电气信息类专业的一门重要的专业基础实验课,多年来已经形成了一套完整的传统实验项目和实验方法,这些传统实验项目对培养学生的基本实验技能、巩固所学理论知识,是基本的、重要的和必不可少的。

但由于实验室条件的限制,传统实验教学方式限制了学生实践能力的培养,学生在实验过程中缺乏创新,不利于培养全方面应用型人才。

实验教师在实验教学中处于主导地位,应不断探索新的实验教学技术与教学手段,改变教学方法,弥补实验教学条件的不足,为实验教学注入活力,提高实验教学效果。

早在2004年,西安交通大学电路课程在全国同行中首批被评为国家级精品课程,实验课程建设也是精品课程建设的一部分。

2016年建立了电路实验微信公众平台,制作了一整套电路实验图文和视频信息,推进了学校信息化实践教学平台的建设,实现了实验教学资源开放共享。

2017年末实验室更新了一批老旧实验设备,但有关实验内容及教学方法的改革还未涉及,而目前我校电路实验教学中存在众多问题,学生实验积极性不够,实验内容简单,实验教学方式单一,教学效果不佳,迫切需要进行改革。

基于ANSYS Workbench的变压器铁芯—绕组振动仿真

基于ANSYS Workbench的变压器铁芯—绕组振动仿真

基于ANSYS Workbench的变压器铁芯—绕组振动仿真姚敏;赵振刚;高丽慧;郭丽君;李英娜;李川【摘要】为实现对变压器工作状态的实时监测,及时排除故障,需要对变压器铁芯—绕组进行振动仿真,根据振动情况确定最优测点.利用有限元分析法对S13—12500/35型油浸式电力变压器,在夹紧和松动2种状态下,铁芯—绕组的模态特征进行仿真分析,对比夹紧状态下铁芯—绕组振动的幅频特征.仿真结果表明:铁芯—绕组振动最强的位置主要分布在上夹件的中部和下表面左右两侧的4个端角、上铁轭的中部及三相绕组的上部;在正常预紧力下的主要响应频带在300 Hz以上,振幅频谱能量主要集中在100,300~350 Hz附近.本文为变压器振动情况的测点选择和阈值设定提供了理论依据.%In order to realize real-time monitoring on transformer working condition,and find out breakdowns timely,it is needed for transformer core-winding vibration simulation to determine the optimal measuring point according to vibration.So use finite element analysis(FEA)method on modal characteristics of S13—12500/35 type of oil-immersed power transformer core-winding in clamping state and loose state,and contrast amplitude-frequency characteristics of core-winding vibration in clamping state.The simulation results show that the strongest position of core-winding vibration mainly distributed in clamp center and the four sides of lower surface angle of the left and right and the middle of upper iron yoke and the upper part of the three-phase windings. The main response frequency band is above 300 Hz under normal preload,amplitude spectral energy is concentrated at 100 Hz and near 300~350 Hz.It providesa theoretical basis for selecting of measuring point and setting of threshold of the transformer vibration.【期刊名称】《传感器与微系统》【年(卷),期】2018(037)003【总页数】3页(P62-64)【关键词】有限元分析;变压器;振动;铁芯—绕组;模态特征;幅频特征【作者】姚敏;赵振刚;高丽慧;郭丽君;李英娜;李川【作者单位】昆明理工大学信息工程与自动化学院,云南昆明650500;昆明理工大学信息工程与自动化学院,云南昆明650500;昆明理工大学信息工程与自动化学院,云南昆明650500;昆明理工大学信息工程与自动化学院,云南昆明650500;昆明理工大学信息工程与自动化学院,云南昆明650500;昆明理工大学信息工程与自动化学院,云南昆明650500【正文语种】中文【中图分类】TP212.90 引言随着电力系统容量的增大,电力变压器的可靠运行与电力系统的安全密切相关[1~5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档