高中数学:焦半径公式及其应用
圆锥曲线焦半径公式及其应用(解析版)

圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF 0ex a +,=2PF 0ex a -,记忆方式:长加短减(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF 0ey a +,=2PF 0ey a -,记忆方式:长加短减2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF a ex +0,=2PF a ex -0,②当点P 在左支上时,=1PF a ex --0,=2PF a ex +-0,记忆方式:长加短减(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF a ey +0,=2PF a ey -0,②当点P 在下支上时,=1PF a ey --0,=2PF a ey +-0,记忆方式:长加短减(3)若弦AB 过左焦点,则=AB a x x e 2)(21-+-;若弦AB 过右焦点,则=AB ax x e 2)(21-+3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF 20p x +(2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF 20p x +-(3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF 20p y +(4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 20p y +-例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6解法1:(基本不等式)由题意知621=+MF MF ,所以21MF MF ⋅9)2(221=+≤MF MF 当且仅当321==MF MF 时等号成立,所以21MF MF ⋅的最大值为9,故选C 解法2:(焦半径公式)设点),(00y x M ,则由题意知355,2,3=====a c e c b a ,所以9959)353)(353(200021≤-=-+=⋅x x x MF MF ,当且仅当00=x 时等号成立所以21MF MF ⋅的最大值为9,故选C例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为解析:设点),(00y x M ,则由题意知211F F MF =,所以⇒=+c ex a 203832600=⇒=+x x 所以点M 的坐标为)15,3(例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x 解析:由题意知3,6,24,2====e c b a ,222300002=⇒=-=-=x x x a ex PF 例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解法1:51651645tan 0221=⇒⨯===∆P P F PF y y b S ,即点P 到x 轴的距离为516解法2:设点),(00y x P ,不妨设点P 在右支上,则由21PF PF ⊥得2212221F F PF PF =+25269100)335()335(202020=⇒=-++⇒x x x ,所以25256)14(322020=-=x y 5160=⇒y 即点P 到x 轴的距离为516例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47解析:设点),(),,(2211y x B y x A ,线段AB 的中点),(00y x M ,则25341412121=+⇒=+++=+x x x x BF AF ,从而452210=+=x x x ,故选C 例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=解法1:设点),(00y x M ,则255200p x p x MF -=⇒=+=,即),25(0y pM -,MF 的中点为)2,25(0y B ,以MF 为直径的圆过点)2,0(,所以MF AB 21=,所以4425)22(425020=⇒=-+y y ,又点M 在抛物线上,所以2)25(216=⇒-=p p p 或8所以抛物线的方程是x y 42=或x y 162=,故选C解法2:设点),(00y x M ,因为以焦半径为直径的圆与y 轴相切,所以MF 的中点的纵坐标为2,所以40=y ,所以p p x 82160==,所以2528=⇒=+=p pp MF 或8所以抛物线的方程是x y 42=或x y 162=,故选C 注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF θcos 2c a b -;=BF θcos 2c a b +;焦点弦长=AB θ2222cos 2c a ab -;(2)设过椭圆)0(12222>>=+b a b x a y 的焦点F 的弦AB 的倾斜角为θ,则=AF θsin 2c a b -;=BF θsin 2c a b +;焦点弦长=AB θ2222sin 2c a ab -;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF θcos 2c a b -;=BF θcos 2c a b +;=AB α2222cos 2c a ab -,弦AB 在双曲线一支上时,焦点弦最短为通径(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF a c b -θcos 2;=BF ac b +θcos 2;=AB 2222cos 2a c ab -α,弦AB 交双曲线两支上时,焦点弦最短为实轴长a23.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF θcos 1-p ;=BF θcos 1+p;=AB θ2sin 2p (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF θsin 1-p ;=BF θsin 1+p ;=AB θ2cos 2p例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF 解法1:(设线韦达定理)略解法2:(点差法)略解法3:(角度形式的焦半径公式)设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以θθθ2cos 412cos 23cos 23-=++-=+=BF AF AB θθθθ2cos 43cos 2cos 2cos -=-=+-==BF AF BFAF AF NF MF ,所以=AB MF 41例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ解析:设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以=λ3411=+BF AF例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为解析:设直线AC 的倾斜角为θ,则θθθ222222cos 334cos 3232cos 2-=-⨯⨯=-=c a ab AC θθ202sin 334)90(cos 334-=+-=BD 所以)sin 3)(cos 3(242122θθ--=⋅=BD AC S ABCD 2596)2sin 3cos 3(24222=-+-≥θθ,所以四边形ABCD 的面积的最小值为2596例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 解析:设θ=∠AFO ,则a b a c a c b a c b AF 2cos 222=+⋅=+=θ所以222sin b a AF a ==θ,又c b=θsin ,所以c b b a =22⇒=-⇒=⇒232234)1(2e e c a b 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程解析:设AB 的倾斜角为θ,则77216cos 25942cos 222222=-⨯⨯=-=θθa c ab AB 53cos ±=⇒θ所以34tan ±=θ,所以直线AB :)5(34+±=x y 即02034=+-y x 或02034=++y x例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为解析:设AB 的倾斜角为θ,则θθ22sin 4sin 2==p AB ,所以θθ202cos 4)90(sin 2=+=p DE 所以16)11(4)cos )(sin cos 1sin 1(4)cos 1sin 1(42222222=+⨯≥++=+=+θθθθθθDE AB 当且仅当4πθ=时等号成立,所以16)(min =+DE AB 三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e 11+-λλ;=e 21k+11+-λλ(2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则11sin +-=λλθe ;=e 211k +11+-λλ例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为解析:32121260cos 0=⇒+-=e e 例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为解析:设BD 的倾斜角为θ,则311212cos =+-=θe ,又e a c ==θcos ,所以33312=⇒=e e 例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2解析:33cos 211313cos 2311cos =⇒=+-=⇒+-=θθλλθe ,所以2tan ==θk例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为解析:由题意知a b ab MF 44222=⇒==--------------------------------------①由N F MF N F MN 11145=⇒=,所以531414cos =+-=θe ,又2422cos 121-=-==a c a c MF F F θ,所以532=-⋅a c a c -------------------------------------------------------------------------②联立①②得72,7==b a ,所以椭圆的方程为1284922=+y x。
高中数学:椭圆焦半径公式的证明及运用

高中数学:椭圆焦半径公式的证明及运用命题:若椭圆的焦点为,离心率为为椭圆上任意一点,则有。
证明:如图1,椭圆的准线方程为和。
由椭圆的第二定义得,化简即得说明:若椭圆的焦点在轴上,则有。
我们把椭圆上的点到两焦点的距离称为焦半径,而(或)、(或)称为焦半径公式。
巧用焦半径公式能妙解许多问题,下面举例说明。
一、用于求离心率例1如图为椭圆的两个焦点,以线段为直径的圆交椭圆于四点,顺次连结这四点和两个焦点,恰好围成一个正六边形,则离心率。
分析:如图,连,则,由焦半径公式得,即。
所以,所以。
二、用于求椭圆离心率的取值范围例2已知为椭圆的焦点,若椭圆上恒存在点,使,求离心率的取值范围。
分析:设的坐标为,则由得故,即,又。
所以。
三、用于求焦半径的取值范围例3若是椭圆上的点,为椭圆的焦点,求的取值范围。
分析:不妨设为椭圆的左焦点,而,则。
故。
所以。
四、用于求两焦半径之积的最值例4若为椭圆的左、右焦点,为椭圆上任意一点,求的最值。
分析:易知由知,所以的最小值为,最大值为。
五、用于求三角形的面积例5 若是椭圆上一点,为椭圆的左、右焦点,且,求的面积S。
分析:易知。
由余弦定理得。
解得。
所以六、用于求点的坐标例6 若为椭圆上的点,为椭圆的焦点,且,则的横坐标为_________。
分析:由,及得,解得,所以。
七、用于证明定值问题例7已知为椭圆上两点,为椭圆的顶点,F为焦点,若成等差数列,求证:为定值。
分析:不妨设,由成等差数列得,即。
化简得,所以为定值。
八、用于求角的大小例8 如图3,设椭圆与双曲线有公共焦点,为其交点,求。
分析:设的坐标为,椭圆与双曲线的离心率分别为,则,,消去得,。
所以所以。
九、用于求线段的比。
例9过椭圆的左焦点作与长轴不垂直的弦的垂直平分线交轴于,则。
分析:如图4,设的坐标分别为,AB的中点为,则。
由两式相减并化简得。
所以。
所以AB的垂直平行线方程为。
令,则,故N的坐标为所以,所以。
▍▍ ▍▍。
高中数学-抛物线焦半径公式及应用

高中数学-抛物线焦半径公式及应用
概述
抛物线是高中数学中的一个重要概念,它在物理学、工程学和
自然科学中应用广泛。
本文将介绍抛物线焦半径公式及其应用。
焦点和焦半径
抛物线是一个特殊的几何曲线,由平面上到一个定点(焦点)
和定直线(准线)的距离相等的所有点组成。
焦半径是从焦点到抛
物线上任意点的距离。
抛物线焦半径公式
抛物线的方程一般形式是y=ax^2+bx+c,其中a、b、c是常数。
根据焦半径定义,我们可以得到焦半径公式:
r = |2a| / (4a^2 + 1)
其中,r表示焦半径,a表示抛物线的系数。
应用示例
1. 镜面反射
抛物面镜是一种应用抛物线形状的透镜。
当光线从无穷远处射到抛物面镜的表面上时,会聚到焦点上。
抛物线焦半径公式可以帮助我们计算光线在抛物面镜上的反射和折射。
2. 轨迹预测
在物理学中,抛物线常用于描述物体在受重力和空气阻力作用下的运动轨迹。
通过抛物线焦半径公式,我们可以计算出物体在不同速度和角度下的最大射程和最大高度。
总结
抛物线焦半径公式是高中数学中重要的工具之一,它可以应用于物理学、工程学等领域。
通过理解公式的含义和应用示例,我们可以更好地理解抛物线的性质和特点。
参考文献:
以上为800字的文档内容。
(完整版)椭圆焦半径公式及应用

椭圆焦半径公式及应用.椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。
在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。
一、公式的推导设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。
证法1:。
因为,所以∴又因为,所以∴,证法2:设P到左、右准线的距离分别为,由椭圆的第二定义知,又,所以,而。
∴,。
二、公式的应用例1 椭圆上三个不同的点A()、B()、C()到焦点F(4,0)的距离成等差数列,求的值。
解:在已知椭圆中,右准线方程为,设A、B、C到右准线的距离为,则、、。
∵,,,而|AF|、|BF|、|CF|成等差数列。
∴,即,。
评析:涉及椭圆上点到焦点的距离问题,一般采用焦半径公式求解,即利用焦半径公式可求出A、B、C三点到焦点的距离,再利用等差数列的性质即可求出的值。
例2 设为椭圆的两个焦点,点P在椭圆上。
已知P、、是一个直角三角形的三个顶点,且,求的值。
解:由椭圆方程可知a=3,b=2,并求得,离心率。
由椭圆的对称性,不妨设P(,)()是椭圆上的一点,则由题意知应为左焦半径,应为右焦半径。
由焦半径公式,得,。
(1)若∠为直角,则,即,解得,故。
(2)若∠为直角,则,即=,解得,故。
评析:当题目中出现椭圆上的点与焦点的距离时,常利用焦半径公式把问题转化,此例就利用焦半径公式成功地求出值。
例3 已知椭圆C:,为其两个焦点,问能否在椭圆C 上找一点M,使点M到左准线的距离|MN|是与的等比中项。
若存在,求出点M的坐标;若不存在,请说明理由。
解:设存在点M(),使,由已知得a=2,,c=1,左准线为x=-4,则,即+48=0,解得,或。
因此,点M不存在。
评析:在涉及到椭圆上的点与其焦点的距离时,如果直接用两点间距离公式,运算将非常复杂,而选用焦半径公式可使运算简。
焦半径公式推导及应用

焦半径公式推导及应用在我们学习圆锥曲线的过程中,焦半径公式可是个相当重要的“小伙伴”。
今天咱们就一起来好好琢磨琢磨这个焦半径公式的推导以及它在解题中的神奇应用。
先来说说啥是焦半径。
简单来讲,焦半径就是圆锥曲线上的一点到焦点的距离。
那对于椭圆来说,设椭圆方程为$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a>b>0$),焦点在$x$轴上,焦点坐标为$F_1(-c,0)$,$F_2(c,0)$,点$P(x_0,y_0)$是椭圆上的任意一点。
那焦半径$|PF_1|$和$|PF_2|$咋算呢?咱们一步步来。
根据椭圆的定义,椭圆上任意一点到两焦点的距离之和等于长轴$2a$,所以有$|PF_1| + |PF_2| = 2a$。
再根据两点间的距离公式,$|PF_1| = \sqrt{(x_0 + c)^2 + y_0^2}$,$|PF_2| = \sqrt{(x_0 - c)^2 + y_0^2}$。
把这俩式子相加得到:$\sqrt{(x_0 + c)^2 + y_0^2} + \sqrt{(x_0 - c)^2 + y_0^2} = 2a$。
经过一番整理和化简(这过程可有点复杂,就不详细展开啦),最终就能得到焦半径公式:$|PF_1| = a + ex_0$,$|PF_2| = a - ex_0$。
这里的$e$是椭圆的离心率,$e = \frac{c}{a}$。
咱再来说说双曲线。
设双曲线方程为$\frac{x^2}{a^2} -\frac{y^2}{b^2} = 1$($a>0$,$b>0$),焦点在$x$轴上,焦点坐标为$F_1(-c,0)$,$F_2(c,0)$,点$P(x_0,y_0)$是双曲线上的任意一点。
同样根据双曲线的定义,双曲线上任意一点到两焦点的距离之差的绝对值等于实轴长$2a$,所以有$||PF_1| - |PF_2|| = 2a$。
焦半径公式 椭圆

焦半径公式椭圆
当抛物线方程为 y^2=2px(p\ue0) (开口向右) 时,焦半径r=x+p/2 (其中x为在抛物线上的横坐标,p为焦准距),利用抛物线第二定义求。
至于抛物线开口方向为其他三个方向时,利用抛物线第二定义求同理可求。
如果焦点不在坐标轴上,只需要将x进行相应平移即可,p不变。
圆锥曲线上任意一点m与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。
圆锥曲线上一点到焦点的距离,不是定值。
焦半径:曲线上任意一点与焦点的连线段焦点弦,过一个焦点的弦通径。
过焦点并垂直于轴的弦圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。
有关结论
a(x1,y1),b(x2,y2),a,b在抛物线y1=2px上,则有:
② 焦点弦长:|ab| = x1+x2+p = 2p/[(sinθ)1]=(x1+x2)/2+p。
③ (1/|fa|)+(1/|fb|)= 2/p;(其中长的一条长度为p/(1-cosθ),短的一条长度为p/(1+cosθ))。
④若oa横向ob则ab过定点m(2p,0)。
焦半径公式

焦半径公式焦半径公式是光学中一个重要的公式,用于描述透镜的焦距与曲率半径之间的关系。
它是光学理论中的基本公式之一,对于研究透镜的特性和性能具有重要意义。
在光学中,透镜是一种光学元件,它能够将光线聚焦或发散。
焦距是透镜的一个重要参数,它表示平行光线通过透镜后所聚焦的距离。
而曲率半径则表示透镜表面的曲率程度,它描述了透镜的曲率大小。
焦半径公式提供了焦距和曲率半径之间的定量关系。
焦半径公式的表达式如下:1/f = (n-1) * (1/R1 - 1/R2)其中,f表示透镜的焦距,n表示透镜的折射率,R1和R2分别表示透镜两侧的曲率半径。
在这个公式中,焦距的倒数与曲率半径之间存在线性关系。
从焦半径公式可以看出,当透镜两侧的曲率半径R1和R2相等时,透镜为球面透镜,并且该公式也可以简化为:1/f = (n-1) * (2/R)其中,R表示透镜的曲率半径。
对于球面透镜而言,曲率半径相同,焦半径公式简化为这个形式可以更加方便地计算焦距。
焦半径公式的推导涉及到几何光学的一些基本原理,包括球面反射定律、斯涅尔定律等。
透镜的焦距与曲率半径之间的关系是由这些基本原理推导出来的。
这个公式为光学工程师和设计人员提供了计算透镜焦距的方法,帮助他们设计出满足特定要求的透镜系统。
除了焦半径公式,光学中还有一些关于透镜的重要公式,比如物距与像距的关系公式和薄透镜公式等。
这些公式在解决光学问题时都发挥着重要作用。
焦半径公式和其他透镜相关的公式共同构成了光学理论的基础。
总结起来,焦半径公式是描述透镜焦距和曲率半径之间关系的基本公式。
它在光学工程和设计中具有重要作用,为光学工程师提供了一个计算透镜焦距的方法。
了解和掌握焦半径公式对于理解和应用光学知识具有重要意义。
圆锥曲线焦半径公式的进一步推导及应用

㊀㊀㊀圆锥曲线焦半径公式的进一步推导及应用◉浙江省诸暨市草塔中学㊀金铁强椭圆㊁双曲线的焦点弦或焦半径的问题是解析几何中的常规考点,很多老师在讲解的时候喜欢用 设而不求 来解决问题.但用此法来处理焦点弦问题也有其弊端,一是步骤过多,二是有些问题不能直接用此法求解,必须再要用到 设而求之 才能解决.对于现在的多变题型,已经达不到通解通法的要求,因此有必要对圆锥曲线焦半径公式进行进一步的挖掘和整理,才能适应当前高考题型的发展趋势,让学生能够更直观地解题.图11焦点在x 轴上的椭圆焦半径公式的推导及应用㊀㊀如图1,设椭圆E 为x 2a2+y 2b2=1(a >b >0),F 1,F 2为椭圆E 的焦点,P Q 为椭圆E 过点F 1的焦点弦.当P Q 垂直于x 轴时,弦P Q 为过F 1的所有弦中最短的一条,即通径,满足|P Q |=2b2a;当P Q 垂直于y 轴时,弦P Q 为过F 1的所有弦中最长的一条,即长轴,满足|P Q |=2a .除了这两条特殊的焦点弦,我们任意作一条焦点弦,连接P F 2,构成焦点三角形P F 1F 2,令øP F 1F 2为α,为焦点弦P Q 的倾斜角.设|P F 1|=x ,则|P F 2|=2a -x .在әP F 1F 2中由余弦定理得c o s α=x 2+(2c )2-(2a -x )24x c.整理得到x =a 2-c 2a -c c o s α=b2a -c c o s α,即|P F 1|=b 2a -c c o s α.当α=π2,0时,就是最短弦与最长弦.同样地,在图1中,若我们连结Q F 2,构成焦点三角形Q F 1F 2,可得|Q F 1|=b2a -c c o s (π-α),即|Q F 1|=b2a +c c o s α,得到焦点弦|P Q |=b 2a -c c o s α+b 2a +c c o s α=2a b2a 2-c 2 c o s 2α.这个公式把焦点弦分成上下两部分,每部分的焦半径都有自己的表达式,这样对于条件运用可以更直接明了.例1㊀设F 1,F 2分别为椭圆x 23+y 2=1的左右焦点,点A ,B 在椭圆上,若F 1A ң=5F 2B ң,则点A 的坐标是.图2解析1:(常规解法)如图2,已知椭圆x 23+y 2=1,则焦点F 1(-2,0),F 2(2,0).因为F 1A ң=5F 2B ң,则F 1A ң与F 2B ң共线,即F 1A 与F 2B 平行.延长A F 1与椭圆交于点C ,由椭圆与两个焦点都关于(0,0)对称,可知C F 1ң=F 2B ң,则F 1A ң=5C F 1ң.那么问题就转化到焦点弦A C 了.可验证当点A 在x 轴上时,不满足条件,故设A (x 1,y 1),C (x 2,y 2),直线A C 为x =m y -2,求出A (x 1,y 1)的坐标.到这里,我们发现,该题目其实不能用 设而不求 ,因为最后问的是x 1及y 1的值,最后反而是 设而求之 .联立x =m y -2与x 23+y 2=1,消去x ,得到方程(3+m 2)y 2-22m y -1=0.则y 1+y 2=22m m 2+3,y 1y 2=-1m 2+3.又y 1=-5y 2,解得y 21=1.则A (0,1)或A (0,-1).解析1虽步骤不多,但运算复杂.如果我们用焦半径公式,整个问题就豁然开朗.解析2:(焦半径公式法)首先,利用椭圆与平行线的点对称问题同上解,问题转化到焦点弦A C 中来.设A C 的倾斜角为α,由F 1A ң=5C F 1ң,可直接利用公式得到方程b 2a -c c o s α=5b2a +c c o s α,则6c c o s α=4a ,即c o s α=2a 3c =2332=63.所以直线A C 的斜率k =22,直线A C 方程为y =22x +1,联立椭圆方程x23+y 2=1,易得x =0,y =1.即A (0,1).再利用对称性可得A (0,-1)(此时倾斜角α为352022年9月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀钝角,斜率k=-12).运算可简便很多.综上可知:A(0,1)或A(0,1).分析公式的本源可得出很简单的结论,焦点弦的弦长及被焦点分开的两段焦半径的比例值其实与椭圆的形状(即a,c的值),与焦点弦所在直线的方向(即斜率k或倾斜角α)存在关系,即a,c,α三个量决定了焦点弦的一切,那我们不妨直接利用这样的代数关系来解决问题,解题就方便多了.2焦点在x轴上的双曲线焦半径公式的应用同样地,该公式也适用于双曲线.例2㊀已知双曲线方程:x23-y2=1,左焦点为F,过F作两条相互垂直的直线与双曲线相交于A,B,C,D四点,求四边形A B C D面积的最小值.解析:由条件知,若焦点弦为一条交于双支,一条交于单支,则不能构成四边形,则两条焦点弦都交于左支或都交于双支.(1)若两条焦点弦都交于双支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα<33,且0>t a nπ2+αæèçöø÷>-33,不存在这样的α.(2)若两条焦点弦都交于左支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα>33,且t a nπ2+αæèçöø÷<-33,则αɪπ6,π3æèçöø÷.S A B C D=|A C| |B D|2=122a b2(a2-c2 c o s2α)2a b2a2-c2 c o s2α+π2æèçöø÷éëêêùûúú=33-4c o s2α233-4s i n2α=69-4+16c o s2α s i n2α=65+4s i n22αȡ23.当s i n22α=1,即α=π4时,等号成立,此时四边形A B C D面积的最小值为23.利用公式直接代入,解题过程简洁明了,优点显而易见.3焦点在y轴上的圆锥曲线焦半径公式如图3,设椭圆T:y2a2+x2b2=1(a>b>0),F1,F2为椭圆T的焦点,上准线为y=a2c,P Q为椭圆T的焦图3点弦,P Q的倾斜角为α,P H与上准线垂直于H,N为上准线与y轴的交点.由|P F1||P H|=ca,|PH|=a2c+(|P F1|s i nα-c),可以得a|P F1|=c a2c-c+|P F1|s i nαæèçöø÷,即|P F1|=b2a-c s i nα.同理,|Q F1|=b2a+c s i nα,且|P Q|=2a b2a2-c2s i n2α.焦点在y轴上的椭圆的焦半径公式只需把焦点在x轴上的焦半径公式中的c o sα换成s i nα,其他不变.因此,简单总结如下:(1)焦点在x轴上的椭圆或双曲线(双曲线要求焦点弦P Q与双曲线同一支交于两点,即焦点弦的斜率满足k>ba或k<-ba时),其焦点弦为P Q,焦点弦的倾斜角为α.P Q被焦点分成P F1与P F2两段,其中较长的一条为|P F1|=b2a-c c o sα,较短的一条为|Q F1|=b2a+c c o sα;当曲线为双曲线时,若其焦点弦P Q与双曲线两支分别相交一点,即焦点弦的斜率满足-b a<k<b a时,此时较长的一条|P F1|=b2c c o sα-a,较短的一条|Q F1|=b2c c o sα+a(绝对值取决于倾斜角为锐角还是钝角).(2)焦点在y轴上的椭圆或双曲线,把上述公式中的c o sα换成s i nα即可.唯一有变化的是当焦点弦P Q与双曲线同一支交于两点,焦点弦的斜率满足-b a<k<b a;当双曲线的焦点弦P Q与双曲线两支分别相交一点,焦点弦的斜率满足k>ba,或k<-b a.即α的取值范围要求发生变化,而公式的结构不变,只需把公式中的c o sα换成s i nα,而且,由于αɪ[0,π),s i nαȡ0恒成立,有绝对值的部分可以去掉.参考文献:[1]人民教育出版社,课程教材研究所,中学数学课程教材研究开发中心.普通高中课程标准实验教科书 数学 选修2G1(A版)[M].2版.北京:人民教育出版社,2007.[2]丁益民.数学公式的 二次处理 对学生思维的培养.数学通讯,2010(22):1G2.F45复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年9月上半月Copyright©博看网. All Rights Reserved.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:焦半径公式及其应用
从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.
本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在轴上标准方程(其中抛物线考虑标准方
程),
分别为椭圆或双曲线的左、右焦点,是抛物线的焦
点,是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.
焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.
设是椭圆上任意一点,则有
从而焦半径
而,所以
其中为椭圆的离心率.
事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设满足
即
分子有理化得
于是有
(1)(2)两式相加得
即为椭圆上一点到椭圆左焦点的距离.
于是我们得到椭圆的焦半径公式(I):
同理有双曲线的焦半径公式(I):
当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.
抛物线的焦半径公式可以直接由抛物线的定义得到,即
例1椭圆的右焦点为,直线与轴的交点为,在椭圆上存在
点满足线段的垂直平分线过点,则椭圆离心率的取值范围是____.
正确答案是.
解设,则有,即
解得
又因为,所以有
两边同除可解得
由椭圆的焦半径公式(I)知,已知椭圆上一点的横坐标,就很容易求出椭圆的焦半径长,但有时,我们知道的不是横坐标的值,而是焦半径
与轴形成的角度,我们可以从上面的焦半径公式(I)出发去推导由焦半径与轴正半轴所成的角对应的焦半径公式.
设与轴正半轴形成的角度为,则有
整理得,于是有
解得
同理可以推得右焦点对应的焦半径公式
其中,是焦半径与轴正半轴所成的角,注意,同一个点与左焦点与右焦点连线形成的焦半径与轴正半轴所成的角不是同一个角,这是与焦半径公式(I)很不相同的地方,如图:
于是我们得到椭圆的焦半径公式(II):
其中为焦半径与轴正半轴所成的角.
对于双曲线来说,与椭圆类似可以得到双曲线的焦半径公式(II),需要注意的是,当双曲线上的点在双曲线的不同支上时,焦半径公式(I)中绝对值的正负不同,所以需要分别讨论.双曲线的焦半径公式(II):
当在双曲线的左支时,有
当在双曲线的右支时,有
其中为焦半径与轴正半轴所成的角.
抛物线的焦半径公式为:
其中为焦半径与轴正半轴所成的角.
椭圆的焦半径公式(II)有两个常用的推论:
推论1 椭圆的焦点弦长公式:
其中为椭圆的焦点弦,的倾斜角为.
圆锥曲线的焦点弦是指过某一焦点的直线与该圆锥曲线相交得到的两个交点之间的线段.当该弦与轴(椭圆的长轴,双曲线的实轴)垂直时,得到的弦我们称为通径.因为焦半径公式(II)是与角度相关的公式,所以我们很容易从它得到椭圆的焦点弦长公式.
证明设是过椭圆左焦点的焦点弦,的倾斜角
为,不妨设点在轴上方,如图:
由焦半径公式(II)知
于是
这就是椭圆的焦点弦长公式,容易知道,对于经过椭圆右焦点的弦,此公式同样适用.
事实上,对于双曲线,同样有推论1,即双曲线的焦点弦长公式:
其中为双曲线的焦点弦,的倾斜角为.不
论两点在双曲线的同支还是异支上,都有这个公式成立,只是绝对值中的式子正负有所不同.
抛物线的焦点弦长公式更为简单,即
其中是抛物线的焦点弦,的倾斜角为.
例2椭圆,为椭圆上四个不同的点,都不和轴垂直,且分别
过,,求
证:为定值.
解设的倾斜角为,则的倾斜角为,则由焦点弦长公式知
所以
为定值.
推论2 椭圆的焦点弦被焦点所分成的两段线段长的调和平均数为定值(即焦半径的倒数和为定值).
证明由焦半径公式(I)知
于是我们知道与的调和平均数为定值,即
这个定值就是半通径长,由均值不等式易知椭圆的所有焦点弦中,通径长最短.
几道练习:
练习1椭圆的焦点为和,
点在椭圆上,如果线段的中点在轴上,
求的值.
练习2椭圆的左右焦点分别
为,过的直线交椭圆于两点,过的直线交椭圆于两点,,求四边
形面积的取值范围.
答案
练习1 .
提示设,则,于是
于是.
练习2 .
提示设的倾斜角为,则的倾斜角为,于是
四边形的面积
练习3
备注1椭圆的焦半径公式(I)是从椭圆的第一定义向第二定义过渡的重要桥梁,可以通过椭圆的焦半径公式(I)去发掘椭圆的第二定义.由焦半径公式(I)知
设直线:,称为椭圆的左准线,记点到的距离为,则有
即椭圆上任一点到椭圆左焦点的距离与到左准线的距离的比为定值,这个值为椭圆的离心率.同样地有椭圆的右准线
于是有,椭圆上的任意点到椭圆的焦点与对应准线的距离的比值为定值.对于双曲线也有类似的结论,双曲线的准线方程为
双曲线上任意点到焦点的距离与到对应准线的距离的比也为定值,即为双曲线的离心率.
同时,平面上到定点与到定直线(其中)的距离比为定值(其中)的轨迹为椭圆、双曲线或抛物线,取决
于的大小.当时为椭圆,当时为抛物线,当时为双曲线.
从而有圆锥曲线的统一定义:平面上到一个定点的距离与到一条定直线(其中定点不在直线上)的距离的比为定值的点的轨迹为圆锥曲线,时这个定义就是抛物线的定义,当的范围
在与上时,对应的定义被称为椭圆与双曲线的第二定义.
备注2由椭圆的焦半径公式(II)很容易得到椭圆的极坐标方程:
以椭圆的一个焦点为极点,以轴正半轴方向为极轴方向建立极坐标系,
则椭圆上任意一点的坐标满足:
这就是椭圆的极坐标方程,注意如果以椭圆的右焦点为极点,轴正方向为极轴建立极坐标系,得到的极坐标方程为
▍
▍ ▍
▍。