污水脱氮技术浅析
污水脱氮除磷的原理及其工艺

污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
污水处理工艺脱氮

污水处理工艺脱氮污水处理工艺脱氮是一种用于去除污水中氮化物的技术。
在污水处理过程中,氮化物是一种常见的污染物,其过量排放会对水体环境造成严重影响。
因此,采用有效的脱氮工艺是保护水环境的重要措施之一。
一、脱氮工艺的原理及分类脱氮工艺主要通过生物、化学和物理方法来去除污水中的氮化物。
常用的脱氮工艺主要包括生物法、化学法和物理法。
1. 生物法:生物法是利用微生物对氮化物进行降解转化的方法。
其中,厌氧氨氧化法(Anammox)和硝化/反硝化法(Nitrification/Denitrification)是常用的生物脱氮工艺。
厌氧氨氧化法通过厌氧氨氧化细菌将氨氮和硝酸盐氮直接转化为氮气,从而实现脱氮效果。
而硝化/反硝化法则是通过硝化细菌将氨氮转化为硝酸盐氮,然后通过反硝化细菌将硝酸盐氮还原为氮气。
2. 化学法:化学法是利用化学反应将氮化物转化为无害物质的方法。
常用的化学脱氮工艺包括硝化、硝化-氨化、硝化-硫化和硝化-还原等。
其中,硝化是将氨氮转化为硝酸盐氮的过程,而硝化-氨化则是将硝酸盐氮还原为氨氮。
硝化-硫化和硝化-还原则是通过添加硫化物或者还原剂来将硝酸盐氮转化为氮气。
3. 物理法:物理法是利用物理过程将氮化物从污水中分离出来的方法。
常用的物理脱氮工艺包括气体吸附、膜分离和离子交换等。
其中,气体吸附是利用吸附剂吸附氮化物,然后再进行脱附。
膜分离则是通过膜的选择性通透性将氮化物分离出来。
离子交换则是利用离子交换树脂将氮化物与其他离子进行交换,从而实现脱氮效果。
二、脱氮工艺的应用及优缺点脱氮工艺广泛应用于城市污水处理厂、工业废水处理厂以及农业面源污染管理等领域。
不同的工艺具有各自的优缺点。
1. 生物法的优点是能够高效去除氮化物,同时产生较少的废弃物。
厌氧氨氧化法在处理高浓度氨氮污水时具有较大的优势,能够实现高效脱氮,减少能耗和化学药剂的使用。
而硝化/反硝化法适合于处理低浓度氨氮污水,其优点是工艺成熟、操作简单。
《SBR工艺生物脱氮及外加碳源效果研究》范文

《SBR工艺生物脱氮及外加碳源效果研究》篇一一、引言随着工业和城市化的快速发展,水体富营养化问题日益严重,其中氮污染成为水环境治理的重要难题。
SBR(Sequencing Batch Reactor,序批式活性污泥法)工艺作为一种高效的污水处理技术,具有操作灵活、适应性强等优点,广泛应用于污水处理领域。
生物脱氮作为SBR工艺的重要环节,其效果直接影响到出水水质。
同时,外加碳源作为一种强化生物脱氮的手段,也被广泛研究。
本文旨在研究SBR工艺生物脱氮及外加碳源的效果,为实际工程应用提供理论依据。
二、SBR工艺生物脱氮原理及研究现状SBR工艺是一种按间歇方式运行的处理工艺,通过周期性改变反应条件,实现污水的高效处理。
生物脱氮是SBR工艺的核心环节,主要通过硝化与反硝化作用实现。
硝化作用由自养型好氧菌完成,将氨氮氧化为硝酸盐;反硝化作用由异养型厌氧菌完成,将硝酸盐还原为氮气。
两者结合,实现生物脱氮的目的。
近年来,SBR工艺生物脱氮的研究主要集中在优化运行参数、提高脱氮效率等方面。
然而,在实际应用中,由于进水氮负荷、水温、pH值等因素的影响,SBR工艺的生物脱氮效果往往难以达到预期。
因此,有必要研究外加碳源对SBR工艺生物脱氮的影响。
三、外加碳源对SBR工艺生物脱氮的影响外加碳源是指向污水处理系统中投加有机碳源,以提高反硝化过程的电子供体浓度,从而促进反硝化速率。
常见的外加碳源包括甲醇、乙酸钠、葡萄糖等。
研究表明,外加碳源可以显著提高SBR工艺的生物脱氮效果。
一方面,外加碳源为异养型厌氧菌提供了充足的电子供体,加速了反硝化速率;另一方面,外加碳源可以改善污泥的活性,提高污泥对氮的去除能力。
此外,外加碳源还可以调节系统的pH值,有利于硝化与反硝化过程的进行。
四、实验方法与结果分析1. 实验方法本实验采用SBR工艺,分别设置外加碳源组(甲醇)和对照组(无外加碳源),在相同条件下运行一定周期。
通过监测进出水的氨氮、硝酸盐氮等指标,分析SBR工艺的生物脱氮效果及外加碳源的影响。
《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。
传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。
因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。
本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。
二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。
近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。
(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。
这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。
(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。
这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。
三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。
近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。
(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。
这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。
(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。
这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。
四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。
同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。
石化废水脱氮技术现状分析

( 油大 学 ( 东) 石 华 环境 科 学与 工程 系)
Z a g Qi g o g Z a a c e g h n n d n h oCh o h n
Zhao D ongf eng
( Env r m e c e c d En n e i g ion ntS i n ean gi e rn
( Eas tChi a ) n )
1 前
言
目前 国 内 、 对 废 水 排 放 或 回用 中 氮 指 标 的控 制 外 越 来 越 严 格 ,尤其 欧 洲 对 废 水 的氮 、磷 指 标 要 求 更 严 格 ,传 统 的老 三 套 式 ( 油 、浮 选 、曝 气 )废 水 处 理 隔
方 法 根 本 不 能 满 足 要 求 ,许 多 国家 都 开 始 对 污 水 脱 氮
随 着 工 业 的 发 展 及 人 民 生 活 水 平 的提 高 , 境 保 环
护 越 来 越 得 到 人 们 的 重 视 。 目前 ,在 工 业 污 染 中 ,石 油 化 工 行 业 约 占 7 % 。 随 着 石 化 工 业 的 不 断 发展 , 0
氨氮的主要存在形态是nh4和nh3在油包水的乳浊液中氨态氮nh3n易溶于膜相油相它从膜相外高浓度的外侧通过膜相的扩散迁移到达膜相内侧与内相界面与膜内相中的酸发生解脱反应生成的nh4不溶于油相而稳定在膜内相中在膜内外两侧氨浓度差的推动下氨分子不断通过膜表面吸附渗透扩散迁移至膜相内侧解吸从而达到分离去除氨氮的目的
i t o he i f c or n Pe r c m c lSe t i
张庆 冬 赵 朝成 赵 东风
w a e i pe r he i l s t have be di cus e tr n t oc m ca ec or en s s d. The
污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
sbr工艺脱氮除磷原理

sbr工艺脱氮除磷原理
SBR工艺是一种生物处理工艺,其主要原理是利用微生物降解污水中的有机物,在这个过程中,微生物需要大量的氧气来进行代谢作用,这样会使污水中的溶解氧减少,而氧气是氧化铵和氧化亚铁的唯一能
量来源,因此可以进一步使得氮和磷元素得到去除。
在SBR工艺中,氮和磷元素的去除主要是通过生物降解作用和生
物吸附作用来实现的。
在生物降解作用中,污水中的有机物通过微生
物的代谢作用被分解成二氧化碳、水和微生物的生物质,这个过程中
需要大量的氧气。
同时,微生物会利用污水中的氨氮、铵盐等无机氮
物质进行代谢作用,将其氧化为硝酸盐和亚硝酸盐。
在生物吸附作用中,微生物在代谢过程中会粘附在填料或污泥上面,从而进一步加速
污水中的氮和磷元素的去除速率。
总的来说,SBR工艺通过降解污水中的有机物,同时利用微生物对氮和磷元素的代谢作用和吸附作用来实现脱氮除磷的效果。
由于其操
作灵活、功能强大的特点,成为了一种非常有效的生物处理技术。
污水处理工艺脱氮

污水处理工艺脱氮文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-污水处理A/O工艺脱氮除磷一般的活性污泥法以去除污水中可降解有机物和悬浮物为主要目的,对污水中氮、磷的去除有限。
随着对水体环境质量要求的提高,对污水处理厂出水的氮、磷有控制也越来越严格,因此有必要采取脱氮除磷的措施。
一般来说,对污水中氮、磷的处理有物化法和生物法,而生物法脱氮除磷具有高效低成本的优势,目前出现了许多采用生物脱氮除磷的新工艺。
一、生物脱氮除磷工艺的选择按生物脱氮除磷的要求不同,生物脱氮除磷分为以下五个层次:(1)去除有机氮和氨氮;(2)去除总氮;(3)去除磷;(4)去除氨氮和磷;(5)去除总氮和磷。
对于不同的脱氮除磷要求,需要不同的处理工艺来完成,下表列出了生物脱氮除磷5个层次对工艺的选择。
生物脱氮除磷5个层次对工艺的选择对于不同的TN出水水质要求,需要选择不同的脱氮工艺,不同的TN出水水质要求与脱氮工艺的选择见下表。
不同TN出水水质要求对脱氮工艺的选择生物除磷工艺所需B0D5或COD与TP之间有一定的比例要求,生物除磷工艺所需BOD5或COD与T比例P的要求见下表。
生物除磷工艺所需BOD5或COD与TP的比例要求二、A/O工艺生物脱氮工艺(一)工艺流程A/0工艺以除氮为主时,基本工艺流程如下图1。
图1 缺氧/好氧工艺流程A/O工艺有分建式和合建式工艺两种,分别见图2、图3。
分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。
合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下闲素影响:溶解氧 (0.5~1.5mg/L)、污泥负荷[0. 1~ 0. 15kgBOD5/ (kgMLVSS?d)]、C/N 比(6 -7)、pH值( 7. 5~8.0) ,而不易控制。
对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NOz-N还原成N2 ,不需外加碳源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 污水脱氮技术浅析 刘钰畴 (南昌有色冶金设计研究院 南昌 330002)
[内容摘要] 介绍了各种污水脱氮方法及其基本原理,着重介绍生物法脱氮技术。对污水脱氮的
发展趋势做了简要说明。 [关 键 词] 富营养化 硝化 反硝化 生物法脱氮
随着人类活动的不断增加,环境资源的不断改变,水体氮污染日趋严重,据统计,我国主要湖泊处于因氮、磷污染而导致富营养化的占统计湖泊的56%之多,过多的氮化合物进入天然水体将恶化水体质量,影响渔业发展和危害人体健康,氮污染的主要危害为: (1)使水体正常的溶解氧平衡遭受干扰,并进一步促使水质恶化; (2)影响水源水质,增加水处理负担; (3)加速水体的富营养化过程; (4)含氮化合物对人和生物有毒害作用; (5)使水体感官性状恶化,从而降低水体美学价值。 氮以有机氮和无机氮两种形态存在于水体中,有机氮有蛋白质、多肽、氨基酸和尿素等,它们经微生物分解后转为无机氮,水中无机氮指氨氮、亚硝态氮和硝态氮。各种形态氮的相对含量,根据污水的性质而有所不同。 近半个世纪以来,人们对转化和去除污水中的氮进行了大量的工作,尝试并运用了各种可行的方法,主要方法有:物理法、化学法、离子交换法、人工湿地法、生物法及它们之间的组合。下面就这些方法作一些简单介绍。 1 物理法 (1)吹脱法:污水中的氨氮是以氨离子(NH4+)和游离氨(NH3)两种形式保持平衡状态而存在: NH3+H2O==NH4++OH— 将pH值保持在11.5左右(投加一定量的碱),让污水流过吹脱塔,使NH3逸出,以达脱氮目的。 首先投加石灰调pH值至11.5以促使NH4+—N向NH3—N转化,然后在除氮塔内,空气自下向上吹入塔内,水自上而下喷淋,析出的NH3进入空气中,其去除率可达85%,水得以净化后再回流至格栅前,而除氮塔出来的空气再进入硫酸淋洗塔生成(NH4)2SO4,可作肥料或工业原料,该法虽然操作简便易控,除氨效果稳定,但存在下列问题:pH值过高易生成水垢;游离氨逸散造成二次污染等。 (2)电渗析法和反渗透法:这两种方法脱氮效果都好,但对水质要求高,处理成本高,一般极少使用。 2
(3)过滤法:脱氮效果不理想,一般可作脱氮预处理。 2 化学法 (1)折点加氯法:利用游离氯与污水中的氨作用,生成氮气而去除污水中的氮。 2NH4+3HOCL==N2+3CL—+3H2O+5H+ 在pH值为中性,进行不连续点氯化处理时,进水中的NH4+—N可以在5分钟内去除90%以上,不过出水残留有氯,须附设除余氯的工艺设施,一般可设活性炭过滤设备,其滤层高2~6m,停留时间为半小时较宜。 (2)化学混凝法:脱氮效果不够理想,产生的污泥量较大,一般不单独采用该法脱氮。 3 离子交换法 常用斜发沸石作为除氨的离子交换体,它对氨离子的选择优于钙、镁、钠等离子,当日处理水量1000m3(原水中NH4+—N浓度为20mg/L),去除率标准为80%,再生液中的氨可以以游离氨或分子氮形式排放大气,也可以成氨溶液回收后作肥料,但该法脱氮成本高,不经济,此外还存在再生液处理等问题。 4 人工湿地法 利用农田、卵石床水栽植物进行处理,在澳大利亚新南威尔士的Wyong镇,污水流量为1700m3/d,二级处理出水含氮、磷分别为35mg/L、17mg/L,采用深0.3~1.0m,面积90ha,生长芦苇和阔叶树等植物的沼泽地进行湿地处理,在距湿地系统进口650m处取样,测得氮、磷含量已降至0.03mg/L、0.06mg/L。 该法投资少,运行方便,对农村及小城镇很适用,不过过量使用可能造成附近水井、河流、水库中的NO3—增加。 5 生物法 生物法是目前运用最广、最有研究前景的方法,详细介绍如下。 生物脱氮是生物法控制氮的一个重要分类。其主要原理是经硝化—反硝化处理,把污水中的氮变成无害的N2排除体系。硝化是污水中的有机氮在生物处理过程中被异氧型微生物氧化解,转化为氨氮,然后由自氧型硝化细菌将其转化为NO3—和NO2—的过程;反硝化是反硝化细菌经厌氧呼吸将NO3—和NO2—还原转化为N2的过程,从而达到脱氮的目的。 硝化过程: 有机氮 氨化菌 有机氮NH3+CO2+小分子有机物 NH4++O2 亚硝酸菌 NO2-+H20+H+ NO2-+O2 硝酸菌 NO3- NH4++O2 硝化菌 NO3-+H20+H+ 反硝化过程: NO3- 同化反硝化NO2- →NO→N2O→N2 (占90%以上) NO3- 异化反硝化NO2- →X→NH2OH→有机氮 5.1 影响生物脱氮的环境因素 在生物法脱氮中,硝化菌、反硝化菌发挥了重要作用,这些细菌对于生物降解过程有一定的环境条件要求。 (1)DO:在缺氧构筑物中,反硝化脱氮的最佳DO为0.5mg/L以下,在好氧构筑物中,有机物好氧代谢,硝化菌将NH4+—N氧化成NHx——N,都需要氧,DO应控制在2mg/L以上。DO的变化,可以明显地影响系统中硝化细菌总量及指示性微生物数量的变化。当混合液中的DO浓度低时,氮硝化过程的指示性微生物数量少,氮的硝化效果差;反之,则指示性微生物数量多,氮的硝化率也随之提高。但由于高浓度溶解氧对硝化菌有一定的抑制作用,故DO一般控制在大于2mg/L的条件下偏低为宜。 (2)营养物质的量是影响生物脱氮的重要因素,在氮的硝化过程中,由于硝化细菌在生活中不需要有机养料,较高的有机负荷会影响硝化细菌的生长,从而使硝化率降低,所以一 3
般认为BOD5值应小于20mg/L时硝化反应才能完成。而对于反硝化反应,由于其以有机碳为电子供体,所以废水中必须有足够的碳源,一般认为当废水中的BOD5/TKN大于3~5,即认为碳源充足,勿需外加碳源。 (3)碱度:生物反硝化产生大量的碱,而硝化过程正需要碱,故常将反硝化过程放在硝化反应之前,若不足,则考虑添加碱,最常用的为NaHCO3。对于典型的城市污水,碱度约为300mg/L(以CaCO3计),而硝化过程中消耗的碱小于200mg/L,故对于城市污水,当采用生物脱氮工艺时,不需要补充碱源。 (4)温度:硝化细菌的生长速率及代谢能力受温度的影响较大。硝化过程指示性生物数量随温度变化的基本规律是:随温度的上升而增多,随温度的降低而减少。适宜温度为20~30℃,15℃以下时,硝化反应速度下降,5℃时完全停止。 (5)pH值:由于细菌的代谢作用离不开酶的活动,而酶作用的pH值范围较窄,所以氮的生物硝化反应过程有直接影响。pH值中性及偏碱性条件下可以获得较好的氮硝化效果。 5.2 生物脱氮的工艺方法 生物法除脱氮工艺形式多样,不过,每种工艺都包括厌氧、好氧过程,各种工艺不同,不外乎是变化顺序、级数、回流方式、进水方式等,将传统的AB活性污泥法的B段运行方式作些变换,可得:A/O、A2/O、UCT、VIP、THB等各种工艺方式,同时还有DE型氧化沟、生物膜、生物滤池等方法脱氮,下面简要介绍几种典型的工艺方法: (1)A/O法(图1) 进水 →缺氧段 →好氧段 →二沉池 →出水
← 回流污泥 →废弃污泥 图1 A/O工艺 这是最基本的硝化、反硝化脱氮工艺。在缺氧段,反硝化菌利用污水中的有机碳作为电子供体,以硝酸盐作为电子受体进行“无氧呼吸”,将回流液中硝态氮还原成氮气释放出来,完成反硝化过程,在好氧段,硝化菌把污水中的氨氮氧化成硝酸盐,再向缺氧池回流,为脱氮作好必要的准备,这样,缺氧段、好氧段微生物互不相混,各自始终处于最佳生态环境中,不受厌氧、好氧环境交替的抑制作用,该系统停留时间短、脱氮效果好,用于城市污水处理时出水TN可达到8~9mg/L,若对出水TN有更严格的要求,可采用巴氏生物脱氮工艺(图2)。 混合液回流(I=400%Q)←
进水→第一缺氧池→第一好氧池→第二缺氧池→第二好氧池→沉淀池→出水 污泥回流(R=100%Q) ← →剩余污泥 图2 四阶段巴氏生物脱氮工艺 为解决低温时A/O法脱氮效果差这一问题,人们正在不断开发,部份水厂已将软性填料运用于生产中,天津纪庄子污水处理厂采用在O段悬挂软性填料,以此增加硝化菌数量,满足硝化需要,经测试,效果良好,哈尔滨建筑工程学院和鞍山焦化耐火设计院共同研制出A段挂软性填料,O段内回流的A/O新工艺,并在山东薜城焦化厂应用,在进水厂TN为590mg/L时,去除率达80%以上。 (2)A2/O法(图3) 针对A/O工艺中废弃污泥含磷量较高的特点,A2/O工艺相对而言,增添了一个厌氧过程(除磷),将脱氮除磷与降解有机物结合起来,该工艺对COD、BOD、N、P等去除率高,污泥沉降性好,投资少,开发前景看好,但A/O工艺、A2/O工艺在运行管理、配套设备等方面还 4
有待进一步加强。 ←内循环 进水 → 厌氧段 →缺氧段 →好氧段 →二沉池 → 出水
回流污泥 ← → 废弃污泥 图3 A2/O工艺
(3)生物滤池(图4) ←污泥回流
进水 →初沉池 →反硝化滤池 →中间沉淀池 →硝化滤池 →滤网 →滤池 →出水
图4 生物滤池工艺 生物膜外层好氧,内层缺氧,只有提供充足的碳源,才能去除NO3—--N,要达到完全反硝化,COD/N必需大于12~14,在欧洲,二级处理厂使用生物滤池的较多,效果也不错,英国的Borougn大学对硝化生物滤池的填料作了研究,认为天然的无机填料优于人工塑料,而且保湿性能好,有利于微生物的生长。 采用生物滤池脱氮,投资省,设计、施工、运行简单、占地少、运行效果良好,但要注意碳源是否充足,必要时须投加甲醇等,以调节硝化过程中所需的碳、氮比。 在高含氮废水的生物硝化过程中,硝化和反硝化是生物脱氮工艺中相辅相成、互相促进的两个组成部分,一般情况下是组合进行的。而硝化工艺作为废水处理的一种新技术,尚有许多问题需要我们去认识,大量未知规律需要我们去探索。 6 脱氮发展趋势 近年来,水体中营养物质的控制,主要是氮、磷的控制已引起了广泛的重视。且经过许多研究者的不懈努力,取得了很大的进展。特别是人们对生物法脱氮技术的研究已经开展得很多,运用也最广。最主要的一点是大大提高了生物处理过程中氮、磷的去除率和缩短了处理过程中的停留时间。 由于填料技术发展很快,开发新型高效填料用于除氮系统是近年来很有前途的一项研究课题,不论是对于普通活性污泥系统,还是对于生物滤池,投加适宜填料皆可提高脱氮能力。 新建污水处理设施一般在要求去除BOD、SS的同时,同时考虑去除氮、磷。对现有的污水处理设施进行改造,使之并入好氧、厌氧结合的工艺,也可使之达到脱氮效果。另外,发展脱氮装置的小型化、商品化、规模化,以适应不同场合如宾馆、小区的污水处理的需要,也是近年来污水脱氮的一个发展趋势。