高层建筑风振控制
高层建筑MTMD风振控制优化研究

,
阻尼 矩阵 C满 足瑞 利阻 尼假设 。 ( ) 入 将 4代
2
0
:
0 ・・ ・
一 21 。 志)u1 1 /9 ( cd
2 1 1
:
是难 以避 免 的 。因 此 , TMD 的有 效 控制 频 带 很窄 。 为 了改 善 TMD 的 性 能 ,g s Iu a和 Xu】 出 利用 多 [提
个 调 谐 质 量 阻 尼 器 ( l petn d masd mp r ) mut l u e s a es i
式 中 , 为频 带 宽度 ,。 为 被控层 固有频率 , 为第 y 个 TMD的 固有频 率 , 为 第 1个 TMD 的 固有 频 率 。高层 建筑 的运 动微 分方 程为
差 数列分 布 , 即
 ̄ - / 3
n
一
FT 一[, ,, ( (由 + M 。 o… 0∑ 五 z 一z) M
J 1 =
( 一 主 ) , , , ] 主 ^ ) 0 … O 对 高层建 筑 的 TMD 控制 系统 进行 振型 分解
一
() 3
∑ D 。
( 4 )
式 中 , 为第 i 型位 移 ; 为 第 i D 振 。 阶正 规化 振型 向
矩阵 ; 研扒五 和 C, 别为 MTMD系统 内各 小 T d分 MD 的质量 、 弹簧 刚度 及阻 尼 ; 为结 构楼 层相 对于 地面
研 究 基 础 上 , 高层 建 筑 在 白噪 声 作 用 下 MT 对 MD
的特 性及 参 数 ( 带 宽 度 y T 频 、 MD 的数 量 和阻 尼 比 ) 的影 响作进 一 步讨论 。
维普资讯
摩擦阻尼器在高层建筑风振控制中的应用

第21卷第2期 石家庄铁道学院学报(自然科学版) V。1.21 No.2 2008年6月JOURNAL OF SHIJIAZHUANG RAILWAY INSTITUTE(NATURAL SCIENCE)
摩擦阻尼器在高层建筑风振控制中的应用 温建明, 冯奇 (同济大学航空航天与力学学院,上海200092) 摘要:将摩擦阻尼应用到高层建筑的风振控制,采用结构风振的时域分析方法对高层结构 的风振进行了研究,通过实例分析可以看出,摩擦阻尼器应用于高层结构的风振控制效果是非 常明显,可以使高层建筑顸层的振动最大位移降低了71.57%,振动最大加速度降低了73.95%。 关键词:摩擦阻尼器;高层建筑;风振控制;时域分析法 中图分类号:0324文献标识码:A文章编号:1674—0300(2008)02—0005—04
1 引言 随着高强轻质材料的应用和建筑物高度的增加,高层建筑物的刚度不断下降,导致结构自振周期长、 阻尼小,风振效应十分明显。传统上采用的增加结构断面的抗风设计,不仅不经济,而且难以满足建筑物 刚度和舒适度要求。因此,通过设置附加控制装置来减小结构的风振反应已成为高层建筑发展的重要方 向 1 4。。摩擦阻尼器是近年发展起来的一种控制装置,采用于摩擦减振,有些情况不必对原结构的质量、 刚度做任何修改,只要在结构适当部位加上干摩擦副,使其消耗能量,从而达到抑制振动的效果。对能量 消耗程度可通过改变结合面的正压力等因素来控制。干摩擦减振对温度及其他外部环境并不敏感,因而 具有明显的优越性和广阔的应用前景 5 J。将干摩擦减振器应用于高层建筑,建立干摩擦减振器的力学 模型,提出干摩擦减振器对高层结构风振半主动控制的基本理论,并用实 例分析给出减振效果。
2干摩擦减振器的结构及力学模型 干摩擦减振器的示意图如图1所示。图1中摩擦减振器由主弹簧、摩 擦块、压紧弹簧、摩擦盖板、吊杆以及外壳组成。吊杆与摩擦盖板连接,摩 擦盖板与摩擦块压紧,压紧力可调。该减振器可以看作是一个在干摩擦力 作用下的单自由度系统,其动力学方程为 ,n +厂+ ,=0 (1) 图1干摩擦减振器示意图
高层建筑顶部幕墙结构的风振控制研究

<= 顶部幕墙结构的风效应
<> <= 风荷载的模拟 ! ! 平均风荷载可用如下公式计算 ( 0 ! 1 !2 ( # (") 其中 ( # 为基本风压, ! 1 为体型系数。由此可产 生 作用在主楼迎风面各楼层处及顶部幕墙结构迎风面 桁架各节点处的平均风力。 根据高耸结构的风致振动理论可知, 高层建筑 迎风面沿竖向各楼层处作用的脉动风力是一组具有 零均值的高斯平稳随机过程向量。它具有如下的功 率谱密度函数矩阵 [ 3{4} ( ") ] 0[ 3 4 ] 3 ( ") 5 (() 其中 3 ( 为规格化的 S9J4GP:;< 谱, [34 ] 为 . T. 5 ") 阶常量矩阵 ( . 为结 构楼层总数) , 它 的第 $ 行 第 6 列的元素为 3 4$ 6 0 # $ 6 4 $ 4 6 (&) 式中 # $ 6 0 4UP 7 8 2 $ 7 2 6 8 为脉 动风力的竖向 相 $# ! ! ! ( 干函 ; 4 $ 0 5 $ 1$ 2$ # !-$ 。 !
!"#"$%&’ () *()+%(,,-). +’" /-)0 1-2%$+-() (3 4$,, 56-,0-). 4(7 *6%+$-) /$,,
!" #$%&’()$ , *" +)$ ’,$%&,+-./ #$&’()& ( 12345 647 893:;9<:;7 := >:9?@97 A;5?B4 C D<;2E<2;4 FGB5G44;5GB , H2I9G ,G5J4;K5<7 := +4EIG:L:B7 ,H2I9G *&##)# , MI5G9 ) ! ! 82#+%$&+ : NG E:GK5?4;9<5:G := <I4 5G<4;9E<5:G := <I4 O95G K<;2E<2;4 9G? <:P E2;<95G @9LL, <I4 @5G? ;4Q KP:GK4 := <I4 <9LL 325L?5GB 9G? <:P E2;<95G @9LL 9;4 E9LE2L9<4? @I5L4 <I4 O95G K<;2E<2;4 5K K5OPL5=54? 9K 9 L974; O:?4L 9G? <:P E2;<95G @9LL 5K K5OPL5=54? 9K 9 <;2KK O:?4L/ +I4 @5G?Q5G?2E4? @I5PP5GB 4==4E< := <:P E2;<95G @9LL 5K P;4J4G<4? 37 2K5GB J5KE:4L9K<5E ?9OP4;K @I5EI 5K 5GK<9LL4? 5GK5?4 <I4 :;5B5G9L K<44L <234/ +I4 @:;R :G 9 *(Q=L::; 325L?5GB KI:@K <I4 5GK5?4Q5GK<9LL5GB J5KE:4L9K<5E ?9OP4;K E9G K5BG5=5E9G<L7 ;4?2E4 <I4 @5G?Q5G?2E4? ?5KPL9E4O4G<,9G? P;4J4G< <I4 E:LL9PK4 := <:P E2;<95G @9LL/ 9": ;(%0#: J53;9<5:G 9G? @9J4 ;J5KE:4L9K<5E ?9OP4;K;<9LL 325L?5GB ;@5G? J53;9<5:G E:G<;:L ;@I5PQ P5GB 4==4E< ! ! 风荷载是高层建筑的主要设计荷载之一。为了 满足建筑外形的需要, 经常会在结构顶层设计一大 片钢结构玻璃幕墙。考虑到主楼结构为楼面承载的 钢筋混凝土或钢结构框架支撑体系, 而高出屋面部 分的玻璃幕墙仅为一个简单的空间珩架体系, 这两 部分的抗侧刚度存在巨大的反差, 因此, 高出屋面部 分幕墙结构在风力作用下会产生较大的风振鞭梢效 应。该效应会使此部分玻璃幕墙结构的水平变形过 大, 从而造成大风时玻璃幕墙的脱落或破坏, 影响它 的使用功能和安全性能。为了防止 上述结果的出 现, 在高出屋面部分的玻璃幕墙结构上采取风振控 制的措施, 以减小它的风振响应, 防止玻璃幕墙的脱 落或破坏是十分必要的。 本文首先分析了设计风荷载下顶部幕墙结构的 风效应, 然后针对顶部幕墙结构抗风的薄弱环节, 用 内置式粘弹性阻尼器支撑完成了结构风振控制的设 计, 降低了顶部幕墙结构的风振响应, 为防止顶部玻 璃幕墙的掉落增加了可靠性。
高层建筑的风振效应与结构设计

高层建筑的风振效应与结构设计随着城市化的进程不断加快,高层建筑在我们的生活中占据了重要的地位。
然而,随之而来的一个问题就是高层建筑面临的风振效应。
高层建筑的结构设计需要考虑如何减小风振效应,保证建筑的安全性和稳定性。
一、风振效应的原理高层建筑受到风的作用会引起其产生共振,形成特定频率的振动,这就是风振效应。
当耐风设计不符合要求或者建筑结构强度不足时,风振效应会对建筑的结构产生严重影响,甚至造成倒塌。
二、风洞试验的重要性为了减小风振效应,高层建筑的结构设计通常需要进行风洞试验。
风洞试验通过模拟真实的气流条件,评估建筑在不同风速下的响应,从而找到合适的结构设计方案。
通过风洞试验,可以改善高层建筑的结构,提高其抗风性能。
三、主动控制防风技术除了通过结构设计来减小风振效应之外,主动控制防风技术也是一种有效的方法。
通过在建筑中设置主动控制装置,可以根据实时的风速和建筑的振动情况,调节建筑的阻尼力和刚度,从而减小风振效应的影响。
四、减小风振效应的其他措施除了风洞试验和主动控制装置之外,还有其他一些措施可以帮助减小风振效应。
例如,在建筑外部增加防风挡板、设置减震装置等。
这些措施都是为了增加建筑的稳定性,让人们能够安心居住和工作在高层建筑中。
五、从设计到施工的全过程管理要有效减小风振效应,需要从设计到施工的全过程管理。
在设计阶段,需要充分考虑建筑的抗风能力,并根据具体情况选择合适的结构设计方案。
在施工过程中,需要严格执行设计要求,确保结构的质量和稳定性。
六、结构设计与可持续发展高层建筑的结构设计不仅仅是为了减小风振效应,同时也需要考虑可持续发展的要求。
例如,结构设计可以采用节能材料,提高建筑的能源利用效率。
同时,结构设计还可以考虑生态环境的保护,减少对自然资源的消耗。
七、结语高层建筑的风振效应是一个复杂而重要的问题,涉及到结构设计、风洞试验、主动控制防风技术等多个领域。
通过综合运用这些方法和技术,我们可以有效减小风振效应的影响,保证高层建筑的安全性和稳定性。
超高层建筑的风振与地震响应分析

超高层建筑的风振与地震响应分析随着城市化进程的不断加速,超高层建筑的兴起成为现代城市的一道亮丽风景线。
然而,由于其高度和结构特点,超高层建筑在面临风振和地震的时候存在一定的风险。
因此,进行针对性的风振与地震响应分析显得十分必要。
一、风振分析1.风振现象超高层建筑受到风力作用时,会产生风振现象。
当风通过建筑物引起周围气流幅度的波动时,会导致建筑物产生共振,进而引起建筑物的摇晃现象。
2.风振原因风振是由于风对建筑物的作用力引起的。
一方面是由于风对建筑物的外表面产生的压力差,另一方面则是由于建筑物自身的气动力引起的。
3.风振测量为了对超高层建筑的风振进行分析,一种常用的方法是通过安装风力测量仪器进行实时监测。
风力测量仪器可以记录下风的方向、风速和风力周期等数据,有助于建筑师了解到风对建筑物的影响。
4.风振抑制为了减少超高层建筑的风振,可以采取一系列的措施,如增加建筑物的整体刚度、合理设计建筑物外形,或者采用风洞试验等方法。
二、地震响应分析1.地震现象地震是地壳发生剧烈震动的自然现象。
当地震发生时,超高层建筑会受到地震波的作用,并产生相应的响应。
2.地震原因地震是由地壳运动引起的,可以分为板块运动引起的地震和火山地震两种。
超高层建筑所在地的地壳活动程度,决定了其面临地震风险的大小。
3.地震分析方法为了对超高层建筑的地震响应进行分析,可以采用有限元方法。
该方法可以把建筑物分为很多小块,通过计算每个小块的振动特性,并将其耦合起来,从而得到整个建筑物的地震响应。
4.地震设计超高层建筑在设计的时候,需要考虑到地震的影响,因此需要进行地震设计。
地震设计包括选择合适的地震烈度、确定地震力的作用方向和大小、设计合理的抗震结构等等。
结语超高层建筑的风振与地震响应分析是对其结构稳定性和安全性进行评估的重要手段。
通过对风振和地震的分析,可以发现并解决存在的问题,确保超高层建筑在面对自然灾害时能够安全稳定。
因此,在超高层建筑的规划和设计过程中,应该重视风振与地震响应分析的重要性,并采取相应的措施保障建筑物的安全。
高层装配式建筑施工中的风振响应分析方法

高层装配式建筑施工中的风振响应分析方法随着城市化进程不断加速,高层建筑在城市中得到越来越广泛的应用。
然而,由于其在施工过程中的特殊性质,风振问题成为需要解决的重要难题。
本文将介绍高层装配式建筑施工中风振响应分析的方法,并且讨论其应对风振问题的可行性。
一、高层装配式建筑风振响应分析方法在进行高层装配式建筑施工中的风振响应分析时,主要采用以下几种方法:1. 地面试验法地面试验法通常通过模拟真实场景下的气候条件和风力,利用大型模型进行试验观测。
这种方法可以帮助研究人员更好地理解和预测建筑物在不同条件下的风振响应情况。
通过不同参数调整和变化等手段,进一步优化设计方案以降低风振问题。
2. 数值模拟法数值模拟法是一种常用且有效的方法。
通过利用计算机软件对高层装配式建筑施工中的风振响应进行数值模拟,可以准确地预测建筑物在不同风速下的振动状况。
这种方法可以根据具体情况对建筑结构参数、材料特性和环境条件等进行细致分析,为设计和施工提供科学依据。
3. 桥梁测试法桥梁测试法是一种借鉴桥梁工程领域常用的方法。
通过在高层装配式建筑上安装传感器,实时监测和记录风力引起的振动数据。
这样可以获得真实而准确的风振响应结果,并及时采取相应措施来降低振动影响。
二、高层装配式建筑施工中的风振问题及其影响高层装配式建筑因其自身结构与施工方式的特殊性,容易受到外部风力作用而产生较大幅度的振动。
风振问题主要表现为以下几个方面:1. 结构安全隐患风力引起的振动可能会导致高层装配式建筑结构疲劳甚至损坏。
这种情况对于已经施工完毕的建筑物来说,可能会带来严重的安全隐患。
2. 使用舒适性下降高层装配式建筑中的风振问题也会对居住者的使用舒适性产生影响。
长期以来,人们一直在追求高楼大厦的景观和环境优势,但是由于风振问题带来的不稳定性,使得建筑物内部产生明显晃动感,降低了使用者的舒适程度。
3. 破坏周边环境风振引起的噪音和震动还有可能对周围环境造成一定影响。
高层建筑的风振响应分析

高层建筑的风振响应分析随着城市化进程的加速,高层建筑的数量不断增长,人们的居住和工作条件得到了大幅提升。
然而,高层建筑面对的风险问题也日益凸显。
其中,风振问题是高层建筑中最为普遍和重要的问题之一。
风振产生的噪音、震动和摆动会影响到建筑物结构安全和使用舒适性。
因此,需要对高层建筑的风振响应进行分析和预测,以保证建筑物的安全性、稳定性和舒适性。
一、风场特征高层建筑风振响应的特征与气象、地形和建筑物本身特征有关。
首先,气象因素会对风场的形式和能量分布产生影响。
气象因素可以分为静态和动态两类。
静态气象因素包括气温、湿度、气压等,这些因素对风场的形式和大小影响有限。
动态气象因素主要包括风速、风向、风向频率分布等。
由于风速和风向动态变化,导致风场的空间分布和大小变化,对高层建筑风振响应产生影响。
其次,地形的高度、坡度等地形特点对风场的形态和空间分布产生影响。
由于地形的起伏和坡度,使得风场的大小、速度和方向有所变化。
在城市建设中,建筑物的密集和高度差异也会对风场的形态产生影响。
建筑物之间的流场介于平稳和紊流之间,具有局部涡旋形成的特点,使得风场的大小和方向变化更为复杂。
最后,建筑物本身的特性会对风场产生反射、折射、扭曲和干涉等影响,从而使得风场的大小和方向发生改变。
随着建筑物高度的增加,建筑物本身的增大、缩小、侵入和曲线等特性越发明显,对风场的影响越来越重要。
二、风振响应特征所谓的风振响应是指建筑物在风作用下所发生的振动现象。
一般来说,建筑物在风作用下的振幅会随建筑物高度增加而增加,振动频率也会随建筑物高度增加而升高。
此外,建筑物的诸如刚度、质量等特性与风场的结构、强度等因素也会对建筑物的振动响应特性产生影响。
振幅和频率是评价建筑物风振响应影响的重要指标。
建筑物在风作用下的振幅主要指建筑物振动的物理数量,是建筑物振动的量值;频率是指建筑物振动发生的速率,衡量振动的快慢。
因此,振幅和频率大小的评估可以直接影响到建筑物的结构安全和使用舒适性。
高楼风分析及防治建议

(一)单一高层建筑的局地风1、高大建筑附近的涡流成因分析高层建筑物周围的风环境状况是由靠近地面的流动风(简称近地风)所决定的,近地风的形态结构如湍流度、旋涡尺寸等以相当复杂的形式依赖于建筑物的尺度、外形、建筑物之间相对位置以及周围的地形地貌等,不同时间、不同空间的风速、风向是不同的。
可见,空气绕过建筑物的流动是一个非常复杂的流体运动现象,其流动特征具有明显的紊乱性、随机性,对行人的舒适程度的影响也不尽相同。
风作用在建筑物上产生风压差。
当风吹到建筑物上时,在迎风面上由于空气流动受阻,速度降低,风的部分动能变为静压,使建筑物迎风面上的压力大于大气压,在迎风面上形成正压区。
在建筑物的背风面、屋顶和两侧,由于在气流曲绕过程中形成空气稀薄现象,因此该处压力将小于大气压,形成负压区,形成涡流。
Snap4.jpg2、高大建筑高风速区分布高大建筑林立会产生“峡谷”效应,带来变幻莫测的“高楼风”。
气流分布与建筑物形状有关。
高层建筑如建筑呈横长形时风速最大区为建筑上方,当建筑呈细高状时,风速最大区为建筑两侧,项目的裙楼建筑为横长形,情况属于前者,塔楼建筑为细长形,情况属于后者。
Snap5.jpg(二)建筑群的局地风实际上,某一单体高层建筑物孤立存在的情况是很少的,更常见的是多栋相邻高层建筑物构成的建筑群。
对于高层建筑群,由于各单体建筑之间的相互干扰,使得组成群体的各个建筑的空气动力特征与单个孤立建筑相比有较大的区别,其周围的风环境状况也更加复杂。
影响高层建筑群风环境的主要因素为①建筑群空间密度及布局;②建筑物周围环境相对高度;③风向、风速;④建筑物的尺度、相对高度;⑤局域的地形、地貌等。
对于多个相邻高层建筑物,当间距足够大时,它们之间没有相互作用,相当于多个单体的情形;而当间距很小时,整体上只相当于一个单体建筑;只有当相邻建筑物之间存在一定的距离并相互作用时,其风场状况才不同于单体建筑。
高层建筑群风环境较差的区域为建筑物拐角处和巷道内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑风振控制
高层建筑风振控制
风振控制的概念
最早是由Kabori和Minai在1960年提出的。
与结构自身的加固和加强相比结构中引进附加控制系统,具有明显的优势。
结构控制是控制技术和建筑领域的交叉学科,是建筑模型下应用控制理论达到建筑安全、舒适目标的课题。
根据控制力是否有外加能源输入,结构控制可分为被动控制和主动控制。
被动控制
被动控制突破了传统的设计方法,使仅依靠增加结构本身性能来抵抗动力荷载的方法发展为由结构的抗震抗风控制体系能动地控制结构的动力反应。
耗能减振系统
耗能减振系统是把结构物的某些非承重构件设计成消能元件,或在结构物的某些部位设置阻尼器,在风荷载作用时,阻尼器产生较大的阻尼,大量耗散能量,使主体结构的动力反应减小。
耗能减振系统可分为两类: (1)耗能构件减振体系,利用结构的非承重构件作为耗能装置,常用的耗能构件包括耗能支撑、耗能剪力墙等。
(2)阻尼器减振系统,包括粘弹性阻尼器VED、金属阻尼器、摩擦阻尼器等。
吸振减振系统
吸振减振技术是在主结构中附加子结构,使结构振动发生转移,即使结构的振动能量在主结构与子结构之间重新分配,从而达到减小结构风振反应的目的。
目前主要的吸振减振装置有调谐质量阻尼器TMD、调谐液体阻尼器TLD等。
TMD系统(Tuned Mass Damper)
TMD能有效地减小结构风振反应已为人们普遍接受。
已有许多TMD成功地装置在世界各地的高层钢结构上,如美国纽约的Citicorp Center(59层),台北101大楼等。
调谐液体阻尼器TLD (Tuned Liquid Damper)
利用液面振荡力作为控制力作用于结构时为调谐液体阻尼器TLD。
简化模型主要有“集中质量法”和“浅水波动理论法”两类。