湘教版八年级(上)数学期考补测试题

合集下载

2019_2020学年八年级数学上册第二章三角形冲刺提分试题(含解析)(新版)湘教版

2019_2020学年八年级数学上册第二章三角形冲刺提分试题(含解析)(新版)湘教版

【备战期中】2019-2020年八年级上数学三角形冲刺提分试题姓名:_______________班级:_______________考号:_______________一、选择题1、如图,将矩形纸片沿对角线折叠,使点落在处,交于,若,则在不添加任何辅助线的情况下,图中的角(虚线也视为角的边)有()A.6个B.5个 C.4个D.3个2、在△ABC中,AB=6,AC=3,则∠B的最大值为()A.30°B.45° C.60°D.90°二、填空题3、如图,在△ABC中,BD是角平分线,BE是中线,若AC=24cm,则AE=cm,若∠ABC=72°,则∠ABD=_____度.4、如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD的中线;③DE是△AD C的中线;④ED是△EBC的角平分线的结论中正确的有_________.5、如图在△ABC中,E是底边BC上一点,满足EC=2BE,BD是AC边上中线,若S△ABC=15,则S△ADF-S△BEF=________.6、如图,在⊿ABC中,BC边上有n个点(包括B,C两点),则图中共有个三角形.7、已知△ABC中,∠B=30°, AD为高, ∠CAD=30°, CD=3, 则BC=_________8、如图2,如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积为4,则阴影部分的面积为_________.9、如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,(1)若∠A=40°,∠B=60°,求∠DCE的度数.(4分)(2)若∠A=m,∠B=n,则∠DCE=______(直接用m、n表示)10、三角形纸片内有100个点,连同三角形的顶点共103个点,其中任意三点都不共线。

现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形的个数为__________。

八年级数学上册第四章测试题-湘教版(含答案)

八年级数学上册第四章测试题-湘教版(含答案)

八年级数学上册第四章测试题-湘教版(含答案)(时间:120分钟 满分:120分)分数:________ 第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列不等式中是一元一次不等式的是 ( ) A .1x -1>3 B .12 (x -7)<0 C .2x +y ≤-4 D .x 2>22.若a <b ,则下列结论中不一定成立的是 ( ) A .a -1<b -1 B .2a <2bC .-a 3 >-b3 D .a 2<b 23.若式子x +32 的值是非负数,则x 的取值范围是 ( ) A .x ≥3 B .x ≥-3 C .x >3 D .x >-34.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m(g)的取值范围在数轴上可表示为 ( )5.解不等式组⎩⎨⎧3-x ≥4,①23x +1>x -23 ②时,不等式①②的解集在同一条数轴上正确的表示是 ( ) A .B .C .D .6.下列说法中错误的有 ( ) A .不等式2x<2的一个解为0 B .-2是不等式2x -1<0的一个解 C .不等式-3x<9的解集为x<-3 D .不等式x<10的解有无数个7.若使代数式2x -13 的值在-2和1之间,则x 可以取的整数有( ) A .1个 B .2个 C .3个 D .4个8.某种商品的进价为800元,出售时标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 ( ) A .6折 B .7折 C .8折 D .9折9.不等式组⎩⎨⎧5x +2>3(x -1),12x -1≤7-32x的所有非负整数解的和是( )A .10B .7C .6D .010.不等式2x +13 +1>ax -13 的解集是x <53 ,则a 的取值范围为( )A .a >5B .a =5C .a >-5D .a =-511.已知⎩⎪⎨⎪⎧x +2y =4k ,①2x +y =2k +1,②且-1<x -y <0,则k 的取值范围是( )A .12 <k <1B .0<k <12 C .0<k <1 D .-1<k <-1212.若关于x 的不等式组⎩⎪⎨⎪⎧x<3a +2,x>a -4 无解,则a 的取值范围是( )A .a ≤-3B .a <-3C .a >3D .a ≥3第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.已知a <b ,则-6a -1_______-6b -1.(选填“>”“<”或“=”) 14.某公司打算至多用1 200元印刷广告单. 已知制版费为50元, 每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x 张满足的不等式为____________.15.不等式组⎩⎪⎨⎪⎧x +5>2,4-x ≥3 的最小整数解是__________.16.若关于x 的不等式x -m ≥1的解集如图所示,则m 等于_____.17.已知方程3(x -2a)+2=x -a +1的解适合不等式2(x -5)>8a ,则a 的取值范围为__________.18.某班数学兴趣小组对不等式组⎩⎪⎨⎪⎧x >3,x ≤a讨论得到以下结论:①若a =5,则不等式组的解集为3<x ≤5; ②若a =2,则不等式组无解;③若不等式组无解,则a 的取值范围为a <3; ④若不等式组只有两个整数解,则a 的值可以为5.1. 其中正确结论的序号是________.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)解不等式组⎩⎨⎧2x -7<3(x -1),5-12(x +4)≥x ,并将解集在数轴上表示出来.20.(本题满分5分)解下列不等式,并把解集在数轴上表示出来. x -32 >3x +12 +1.21.(本题满分6分)若关于x 的方程7x +2a =5x -a +1的解不小于2,求a 的取值范围.22.(本题满分8分)已知方程组⎩⎪⎨⎪⎧2x -y =-4+a ,2x +y =2-3a的解中,x 为非正数,y 为正数,求a 的取值范围.23.(本题满分8分)定义:对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a 的取值范围是_____________;(2)如果⎣⎢⎡⎦⎥⎤x +12 =3,求满足条件的所有正整数x.24.(本题满分8分)若关于x 的不等式组⎩⎨⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围.25.(本题满分11分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x 为正整数). (1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x >20时,小明选择哪种付费方式更合算?并说明理由.26.(本题满分10分)为拓展学生视野,促进书本知识与生活实践的深度融合,某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带14名学生,则还剩10名学生没老师带;若每位老师带15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3 000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为______辆;(3)学校共有几种租车方案?最少租车费用是多少?参考答案第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分) 1.下列不等式中是一元一次不等式的是 (B ) A .1x -1>3 B .12 (x -7)<0 C .2x +y ≤-4 D .x 2>22.(宿迁中考)若a <b ,则下列结论中不一定成立的是 (D ) A .a -1<b -1 B .2a <2bC .-a 3 >-b3 D .a 2<b 23.若式子x +32 的值是非负数,则x 的取值范围是 ( B ) A .x ≥3 B .x ≥-3 C .x >3 D .x >-34.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m(g)的取值范围在数轴上可表示为 (D )5.(威海中考)解不等式组⎩⎨⎧3-x ≥4,①23x +1>x -23 ②时,不等式①②的解集在同一条数轴上正确的表示是 (D ) A .B .C .D .6.下列说法中错误的有 (C ) A .不等式2x<2的一个解为0 B .-2是不等式2x -1<0的一个解 C .不等式-3x<9的解集为x<-3 D .不等式x<10的解有无数个7.若使代数式2x -13 的值在-2和1之间,则x 可以取的整数有( D )A .1个B .2个C .3个D .4个8.某种商品的进价为800元,出售时标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 (B ) A .6折 B .7折 C .8折 D .9折9.(德州中考)不等式组⎩⎨⎧5x +2>3(x -1),12x -1≤7-32x的所有非负整数解的和是(A )A .10B .7C .6D .010.不等式2x +13 +1>ax -13 的解集是x <53 ,则a 的取值范围为( B )A .a >5B .a =5C .a >-5D .a =-511.已知⎩⎪⎨⎪⎧x +2y =4k ,①2x +y =2k +1,②且-1<x -y <0,则k 的取值范围是( A )A .12 <k <1B .0<k <12 C .0<k <1 D .-1<k <-1212.(贵港中考)若关于x 的不等式组⎩⎪⎨⎪⎧x<3a +2,x>a -4 无解,则a 的取值范围是 (A ) A .a ≤-3 B .a <-3 C .a >3 D .a ≥3第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.已知a <b ,则-6a -1>-6b -1.(选填“>”“<”或“=”) 14.某公司打算至多用1 200元印刷广告单. 已知制版费为50元, 每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x 张满足的不等式为__50+0.3x ≤1_200__.15.(河南中考)不等式组⎩⎪⎨⎪⎧x +5>2,4-x ≥3的最小整数解是-2.16.若关于x 的不等式x -m ≥1的解集如图所示,则m 等于1.17.已知方程3(x -2a)+2=x -a +1的解适合不等式2(x -5)>8a ,则a 的取值范围为a<-113 .18.某班数学兴趣小组对不等式组⎩⎪⎨⎪⎧x >3,x ≤a 讨论得到以下结论:①若a =5,则不等式组的解集为3<x ≤5; ②若a =2,则不等式组无解;③若不等式组无解,则a 的取值范围为a <3; ④若不等式组只有两个整数解,则a 的值可以为5.1. 其中正确结论的序号是__①②④__.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)(威海中考)解不等式组⎩⎨⎧2x -7<3(x -1),5-12(x +4)≥x ,并将解集在数轴上表示出来.解:⎩⎨⎧2x -7<3(x -1),①5-12(x +4)≥x ,②解不等式①,得x >-4. 解不等式②,得x ≤2.不等式组的解集为-4<x ≤2. 解集在数轴上表示如图.20.(本题满分5分)解下列不等式,并把解集在数轴上表示出来. x -32 >3x +12 +1.解:x <-3.如图:21.(本题满分6分)若关于x 的方程7x +2a =5x -a +1的解不小于2,求a 的取值范围.解:解方程,得x =1-3a 2 .∵x ≥2, ∴1-3a 2 ≥2,解得a ≤-1.22.(本题满分8分)已知方程组⎩⎪⎨⎪⎧2x -y =-4+a ,2x +y =2-3a的解中,x 为非正数,y 为正数,求a 的取值范围.解:解方程组⎩⎪⎨⎪⎧2x -y =-4+a ,2x +y =2-3a ,得⎩⎨⎧x =-1-a 2,y =3-2a.∵x 为非正数,y 为正数, ∴x ≤0,y > 0,即⎩⎨⎧-1-a 2≤0,3-2a >0,解得-1≤ a < 32 .23.(本题满分8分)定义:对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a 的取值范围是__-2≤a <-1__;(2)如果⎣⎢⎡⎦⎥⎤x +12 =3,求满足条件的所有正整数x. 解:根据题意得3≤x +12 < 4.解得5≤x < 7.∴满足条件的正整数x 为5,6.24.(本题满分8分)若关于x的不等式组⎩⎨⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围.解:解不等式①,得x >-25 ,解不等式②,得x < 2a , ∴-25< x < 2a.∵不等式组恰有三个整数解, ∴2< 2a ≤3, ∴1< a ≤32 .25.(本题满分11分)(天津中考)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.解:(1)当x=20时,方式一的总费用为100+20× 5=200,方式二的总费用为20× 9=180;当游泳次数为x时,方式一的总费用为100+5x,方式二的费用为9x,故答案为200;100+5x;180;9x.(2)方式一,令100+5x=270,解得x=34.方式二,令9x=270,解得x=30.∵34>30,∴选择方式一付费,他游泳的次数比较多.(3)令100+5x<9x,得x>25;令100+5x=9x,得x=25;令100+5x>9x,得x<25.∴当20<x<25时,小明选择方式二付费更合算;当x=25时,小明选择两种方式付费一样;当x>25时,小明选择方式一付费更合算.26.(本题满分10分)为拓展学生视野,促进书本知识与生活实践的深度融合,某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带14名学生,则还剩10名学生没老师带;若每位老师带15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为______辆;(3)学校共有几种租车方案?最少租车费用是多少? 解:(1)设参加此次研学活动的老师有x 人,学生有y 人,依题意,得⎩⎪⎨⎪⎧14x +10=y ,15x -6=y. 解得⎩⎪⎨⎪⎧x =16,y =234.答:参加此次研学活动的老师有16人,学生有234人. (2)∵(234+16)÷35=7(辆)……5(人), 16÷2=8(辆),∴租车总辆数为8辆.故填8.(3)设租35座客车m 辆,则需租30座的客车(8-m)辆,依题意,得⎩⎪⎨⎪⎧35m +30(8-m )≥234+16,400m +320(8-m )≤3 000. 解得2≤m ≤512 .∵m 为正整数,∴m =2,3,4,5. ∴共有4种租车方案. 设租车总费用为w 元,则w =400m +320(8-m)=80m +2 560, 当m =2时,租车总费用为2 720元; 当m =3时,租车总费用为2 800元; 当m =4时,租车总费用为2 880元; 当m =5时,租车总费用为2 960元. 当m =2时,w 取得最小值,最小值为2 720.∴学校共有4种租车方案,最少租车费用是2 720元。

2024-2025学年湘教版数学八年级上册期末综合测试卷

2024-2025学年湘教版数学八年级上册期末综合测试卷

2024-2025学年湘教版数学八年级上册 期末综合测试卷一、单选题1.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 2.分式13-x 可变形为( ) A .13x + B .-13x + C .13x - D .1-3x - 3.如图,墙上钉着三根木条,,a b c ,量得170=︒∠,2100∠=︒,那么木条,a b 所在直线所夹的锐角是( )A .5︒B .10︒C .30︒D .70︒4.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b < 5.把不等式组25322x x -≤⎧⎪⎨+<⎪⎩的解集在数轴上表示出来,正确的是( ) A .B .C .D .6.如图,在△ABC 中,AB=AC ,∠A=30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是()A .30°B .35°C .40°D .45°7.下列运算正确的是( )A =B =C 2=-D =8.已知a =2b ,则a 与b 的关系是( ) A .a b = B .a b =- C .1a b = D .1ab =-9.如图,在ABC V 中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点 D .使AD C 2B ∠=∠,则符合要求的作图痕迹是( )A .B .C .D .10.有关部门规定,民用住宅居室的窗户面积必须小于该室内地面面积.采光标准是:窗户面积和地面面积的比不小于10%.显然,这个比值越大,住宅的采光条件越好.如果同时增加相等的窗户面积和地面面积,那么采光条件的变化情况是( )A .变好了B .变差了C .没变化D .不能判断11.已知AE AB ⊥且AE AB BC CD =⊥,且BC CD =,点E ,B ,D 到直线l 的距离分别为6,3,4,则图中凹多边形ABCDE 的面积是( )A .50B .62C .65D .6812.关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组2(1)323x x k x x --≤⎧⎪+⎨≥⎪⎩有解,则符合条件的整数k 的值之和为( )A .5B .4C .3D .2二、填空题130-=.14.如果三角形三边长分别为12,k ,72,则化简25-k 得15.如图,ABC V 中,AD 是BC 边上的高,AE ,BF 分别是BAC ∠,ABC ∠的平分线,50BAC ∠=︒,60ABC ∠=︒,则EAD ACD ∠+∠=.16.如图,ABC V 中,AB AC =,AD BC ⊥于D 点,DE AB ⊥于点E ,BF AC ⊥于点F ,3cm DE =,则BF =cm .17.若关于x 的不等式mx -n >0的解集是x <13,则关于x 的不等式(m +n )x >n -m 的解集是 18.为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知A 种树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为.三、解答题19.(1)计算:20(2)|3|(6)----;(2)解分式方程:22511x x =--. 20.阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:()()3322x y x y x xy y +=+-+ ;立方差公式:()3322()x y x y x xy y -=-++ ; 根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =. 21.如图,AB CD ∥,以点A 为圆心,小于AC 长为半径作弧,分别交AB AC ,于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作弧,两弧相交于点P ,作射线AP ,交CD 于点M .(1)若124ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,延长CN 交AB 于点O ,连接OM ,求证:OA OM =.22. 一个三角形三边的长分别为a ,b ,c ,设p=12(a+b+c ),根据海伦公式S=a=4,b=5,c=6,求:(1)三角形的面积S ;(2)长为c 的边上的高h .23.对于不等式:a x >a y (a >0且a≠1),当a >1时,x >y ;当0<a <1时,x <y ,请根据以上信息,解答以下问题:(1)解关于x 的不等式:25x ﹣1>23x+1;(2)若关于x 的不等式:a x ﹣k <a 5x ﹣2(a >0且a≠1),在﹣2≤x≤﹣1上存在x 的值使其成立,求k 的取值范围24.对于一个关于x 的代数式A ,若存在一个系数为正数关于x 的单项式F ,使⋅A F 2x的结果是所有系数均为整数的整式,则称单项式F 为代数式A 的“整系单项式” ,例如:当==321A ,F 2x x 时,由于⋅=3212x x 12x,故32x 是21x 的整系单项式; 当==521A ,F 6x x 时,由于⋅=52216x x 3x 2x ,故56x 是21x 的整系单项式; 当=-=234A 3,F x 2x 3 时,由于⎛⎫- ⎪⎝⎭=-243x 332x 2x 12x,故243x 是-332x 的整系单项式; 当=-=43A 3,F 8x 2x 时,由于⎛⎫- ⎪⎝⎭=-43238x 32x 12x 6x 2x,故48x 是-332x 的整系单项式; 显然,当代数式A 存在整系单项式F 时,F 有无数个,现把次数最低,系数最小的整系单项式F 记为()F A ,例如:⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭322134F 2x ,F 3x 2x 3x . 阅读以上材料并解决下列问题:⑴.判断:当=1A x 时,=3F 2x A 的整系单项式(填“是”或“不是”); ⑵.当=-2A 2x时,()F A = ; ⑶.解方程:()+-=-⎛⎫-- ⎪⎝⎭F x 14112x 2F 12x . 25.某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A ,B 两种客车可供租用,A 型客车每辆载客量45人,B 型客车每辆载客量30人.若租用4辆A 型客车和3辆B 型客车共需费用10700元;若租用3辆A 型客车和4辆B 型客车共需费用10300元.(1)求租用A ,B 两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?26.如图,在 ABC V 中, 2AB AC ==,40B ∠=︒,点 D 在线段 BC 上运动(D 不与 B ,C 重合),连接AD ,作 40ADE ∠=︒,DE 与AC 交于点E .(1)当 115ADB ∠=︒时, BAD ∠=;当点 D 从 B 向 C 运动时,BAD ∠逐渐变(填大或小).(2)当2==时,ABDDC AB△与DCE△是否全等?请说明理由.(3)在点D的运动过程中,ADEV的形状可以是等腰三角形吗?若可以,请直接写出∠的度数;若不可以,请说明理由.BDA。

湘教版八年级上册数学第2章 三角形 复习检测(含答案)

湘教版八年级上册数学第2章 三角形 复习检测(含答案)

湘教版八年级数学上第二章三角形期末复习及答案一、选择题1.能把一个三角形分成两个直角三角形的是三角形的()A. 高B. 角平分线C. 中线D. 外角平分线2.如果等腰三角形有一条边长是6,另一条边长是8,那么它的周长是()A. 20B. 20或22C. 22D. 243.下列命题正确的是()A. 两条直角边对应相等的两个直角三角形全等B. 一条边和一个锐角对应相等的两个三角形全等C. 有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D. 有两条边对应相等的两个直角三角形全等4.如图:△ABC中,D点在BC上,现有下列四个命题:①若AB=AC,则∠B=∠C.②若AB=AC,∠BAD=∠CAD,则AD⊥BC,BD=DC.③若AB=AC,BD=DC,则AD⊥BC,∠BAD=∠CAD.④若AB=AC,AD⊥BC,则BD=DC,∠BAD=∠CAD.其中正确的有()A. 1个B. 2个C. 3个D. 4个5.如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定6.Rt△ABC中,∠C=90°,∠B=46°,则∠A=()A. 44°B. 34°C. 54°D. 64°7.以下各命题中,正确的命题是()(1)等腰三角形的一边长4 cm,一边长9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A. (1)(2)(3)B. (1)(3)(5)C. (2)(4)(5)D. (4)(5)8.如图OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A. 60°B. 50°.C. 45°D. 30°9.下列语句中,属于命题的是()A. 直线AB和CD垂直吗B. 过线段AB的中点C画AB的垂线C. 同旁内角不互补,两直线不平行D. 连结A,B两点10.下列属于尺规作图的是()A. 用刻度尺和圆规作△ABCB. 用量角器画一个300的角C. 用圆规画半径2cm的圆D. 作一条线段等于已知线段二、填空题11.已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是________ cm.12.锐角三角形ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=________度.13.等腰三角形的腰长是6,则底边长3,周长为________.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件________.15.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形的底边长是________.16.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是________.17.如图.在△ABC中,点D在BC边上,BD=DC,点E在AD上,CF∥AB,∠BAD=∠DEF,若AB=5,CF=2.则线段EF的长为________.18.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AC+CD=BD,若CD=1,则BD=________.三、解答题19.如图图形中哪些具有稳定性?20.如图△ABC中,BE是∠ABC的外角平分线,BE交AC的延长线于E,∠A=∠E,求证:∠ACB=3∠A.21.如图,已知A,F,E,B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:△ACF≌△BDE.22.如图,△ABC中,AB=AC,点M.N分别在BC所在直线上,且AM=AN,BM=CN吗?说明理由.23.如图,已知:AO=BO,OC=OD.求证:∠ADC=∠BCD.四、综合题24.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6求BC的长.小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请回答:(1)△BDE是________三角形.(2)BC的长为________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案一、选择题1. A2.B3.A4.D5.B6.A7.D8.A9.C10.D二、填空题11.15 12.45 13.15 14.AB=AC15.5cm16.()n﹣1×75°17.3 18.3三、解答题19.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然(1)、(4)、(6)3个.20.证明:∵BE是∠ABC的外角平分线,∴∠EBD=∠EBC,∵∠A=∠E,∴∠EBD=∠EBC=∠A+∠E=2∠A,∵∠ACB=∠E+∠EBC,∴∠ACB=3∠A21.证明:∵AC⊥CE,BD⊥DF(已知),∴∠ACE=∠BDF=90°(垂直的定义),在Rt△ACE和Rt△BDF中,,∴Rt△ACE≌Rt△BDF(HL),∴∠A=∠B(全等三角形的对应角相等),∵AE=BF(已知),∴AE﹣EF=BF﹣EF(等式性质),即AF=BE,在△ACF和△BDE中,,∴△ACF≌△BDE(SAS)22.解:BM=CN,理由:过点A作AD⊥MN于点D,∵AB=AC∴BD=CD,∵AM=AN,∴MD=ND,则BM=CN.23.证明:在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD四、综合题24.(1)等腰(2)5.8。

湘教版八年级上册数学单元测试题及答案

湘教版八年级上册数学单元测试题及答案

湘教版八年级上册数学单元测试题及答案(含期中期末试题)第1章质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.若代数式有意义,则x的取值范围是( )A.x=0 B.x=1C.x≠0 D.x≠12.办公中常用到的纸张一般是A4纸,其厚度约为0.007 5 m,用科学记数法表示为( )A.7.5×10-3 m B.7.5×10-2 mC.7.5×103 m D.75×10-3 m3.化简结果正确的是( )A.ab B.-abC.a2-b2D.b2-a24.下列运算正确的是( )A.a3·a2=a6B.(π-3.14)0=1C.-1=-2 D.x8÷x4=x25.化简÷的结果是( )A. B.C. D.6.分式方程=的解为( )A.x=-1 B.x=2C.x=4 D.x=37.下列计算正确的是( )A.÷3xy=x2B.·=C.x÷y·=x D.-=8.化简÷的结果为( )A. B.1+aC. D.1-a9.A,B两地相距48 km,一艘轮船从A地顺流航行至B地,又立即从B 地逆流返回A地,共用去9 h,已知水流速度为4 km/h,若设该轮船在静水中的速度为x km/h,则可列方程为( )A.+=9 B.+=9C.+4=9 D.+=910.已知关于x的方程-=0的增根是1,则a的取值为( )A.2 B.-2C.1 D.-1二、填空题(每小题3分,共18分)11.计算:2·= .12.[2018秋·岑溪市期末]要使分式的值为0,则x=.13.计算:-2+(2 019-π)0=.14.化简:÷= .15.化简-的结果是 .16.已知+=3,则代数式的值为 .三、解答题(共72分)17.(8分)计算:(1)+; (2)÷.18.(8分)先化简,再求值:÷,其中x满足x2-2x-2=0.19.(10分)解方程:-=.20.(11分)已知分式A=,B=+,其中x≠±2.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,他们三个人谁的结论正确?为什么?21.(11分)某校学生利用周末去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.22.(12分)先化简:÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(12分)阅读下面的材料:把一个分式写成两个分式的和叫做把这个分式表示成“部分分式”.【例】 将分式表示成部分分式.【解】 设=+,将等式右边通分,得=,依题意,得解得所以=+.请运用上面所学到的方法,解决下面的问题:将分式表示成部分分式.参考答案1.D 2.A 3.A 4.B 5.D 6.D 7.B8.B 9.A 10.A11. 12.-213.5 14. 15.- 16.-17.(1) (2) 18., 19.x=-1120.丙的结论正确,理由略.21.骑车学生的速度是15 km/h,汽车的速度是30 km/h.22.,(1)2;(2)不能,理由略.23.=+第2章质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.下列命题是假命题的是( )A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点2.下面各组中的三条线段能组成三角形的是( )A.3 cm,4 cm,5 cm B.8 cm,6 cm,15 cmC.2 cm,6 cm,8 cm D.6 cm,6 cm,13 cm3.如图1,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边AD,DC,CB,BA上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )图1A.A,C两点之间 B.E,G两点之间C.B,F两点之间 D.G,H两点之间4.如图2所示的图形中,x的值是( )图2A.60 B.40C.70 D.805.如图3,△ABC≌△DEF,点A与点D对应,点C与点F对应,则图中相等的线段有( )图3A.1组 B.2组C.3组 D.4组6.如图4,AB∥CD,BC∥AD,AB=CD,BE=DF,其中全等三角形的对数是( )图4A.3 B.2C.1 D.07.如图5,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD的周长为13 cm,则AE的长为( )图5A.3 cm B.6 cmC.12 cm D.16 cm8.如图6,AB=CD,AD=CB,则下列结论不正确的是( )图6A.AB∥CD B.AD∥BCC.∠A=∠C D.BD平分∠ABC9.如图7,AB∥DE,AC∥DF,AC=DF,下列条件不能判断△ABC≌△DEF的是( )图7A.AB=DE B.∠B=∠EC.EF=BC D.EF∥BC10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.6条 B.7条C.8条 D.9条二、填空题(每小题3分,共18分)11.“同一平面内,若a⊥b,c⊥b,则a∥c”这个命题的条件是,结论是 ,这个命题是 命题.12.如图8,将三角尺的直角顶点放在直尺的一边上,其中∠1=60°,∠2=100°,则∠3= .图813.已知图9中的两个三角形全等,则∠α= .图914.如图10,点D,E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).图1015.如图11,AF,AD分别是△ABC的高和角平分线,且∠B=32°,∠C =78°,则∠DAF= .图1116.如图12,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE交AC于点E,交AB于点D,连接CD,则△BCD的周长为 .图12三、解答题(共72分)17.(8分)如图13,请在图中作出△ABC的中线CD,角平分线BE,高AF.图1318.(8分)如图14,在△ABC中,AD⊥BC,AB=AC,∠BAD=18°,且AD=AE,求∠EDC的度数.图1419.(10分)如图15,已知△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.求证:MD=ME.图1520.(11分)如图16,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明BE是∠ABC的平分线.图16 21.(11分)如图17,已知AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.图1722.(12分)如图18,在边长为4的等边三角形ABC中,AD为BC边上的中线,且AD=2,以AD为一边向左作等边三角形ADE.(1)求△ABC的面积;(2)AB与DE的位置关系是什么?请加以证明.图1823.(12分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图19(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB).又∵∠ABC+∠ACB=180°-∠A,∴∠1+∠2=(180°-∠A)=90°-∠A,∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A.(1)探究2:如图19(2),O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由;(2)探究3:如图19(3),O是外角∠DBC与外角∠ECB的平分线BO和CO 的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论: .图19参考答案1.B 2.A 3.B 4.A 5.D 6.A 7.A8.D 9.C 10.B11.同一平面内,若a⊥b,c⊥b a∥c 真12.40° 13.50°14.∠B=∠C或AB=AC或∠AEB=∠ADC或∠BDC=∠CEB 15.23° 16.13 17.略 18.9° 19.略20.∠B=40°,△ABC是等腰三角形 (2)略21.略 22.(1)4;(2)AB与DE的位置关系是AB⊥DE,证明略.23.(1)∠BOC=∠A,理由略;(2)∠BOC=90°-∠A第3章质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.144的算术平方根是( )A.12 B.-12C.±12 D.122.的绝对值是( )A.5 B.-5C. D.-3.一个实数a的相反数是,则a等于( )A. B.C.- D.-4.在-35,,0.010 010 001…(每两个1之间依次增加一个0),,,这六个实数中,无理数有( )A.2个 B.3个C.4个 D.5个5.下列各式正确的是( )A.=±4 B.=-3C.±=±9 D.=26.如图1,表示的点在数轴上表示时,在哪两个字母之间( )图1A.C与D B.A与BC.A与C D.B与C7.[2018·福建]在实数|-3|,-2,0,π中,最小的数是( )A.|-3| B.-2C.0 D.π8.下列说法错误的是( )A.的平方根是±2 B.是无理数C.是有理数 D.是分数9.[2018·台州]估计+1的值在( )A.2和3之间 B.3和4之间C.4和5之间 D.5和6之间10.一个数值转换器的原理如图2,当输入的x为256时,输出的y是()图2A.16 B.C. D.二、填空题(每小题3分,共18分)11.4的算术平方根是 ,9的平方根是 ,-27的立方根是 .12.64的算术平方根是 ,平方根是 ,立方根是.13.写出一个大于3小于5的无理数: .14.一种集装箱是正方体形状的,它的体积是64 m3,则这种正方体的集装箱的棱长是 m.15.已知a,b为两个连续的整数,且a<<b,则a+b= .16.若x,y为实数,且|x+2|=0,=0,则(x+y)2 020的值为 .三、解答题(共72分)17.(8分)计算下列各式的值:(1)±; (2);(3); (4)-.18.(8分)求下列各式中x的值:(1)25x2=36; (2)(x+1)3=8.19.(10分)把下列各数填入相应的集合内:-6.8,,,,-5,,-π,,0.21.(1)有理数集合:{ };(2)无理数集合:{ }.20.(11分)已知一个正数的平方根是3x-2和5x+6,求这个数.21.(11分)计算:(1)[2018·湘潭]计算:|-5|+(-1)2--1-;(2)-+.22.(12分)已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b的平方根.23.(12分)【阅读理解】大家知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,所以我们可以用-1来表示的小数部分.【请你解答】已知x是10+的整数部分,y是10+的小数部分,求x-y+的值.参考答案1.A 2.A 3.D 4.B 5.C 6.A 7.B 8.D9.B 10.B 11.2 ±3 -312.8 ±8 4 13.或π等(答案不唯一)14.4 15.15 16.117.(1)± (2)15 (3) (4)18.(1)x=± (2)x=119.(1)-6.8,,-5,,,0.21,…(2),,-π,…20.这个数是 21.(1)1 (2)-622.±3 23.12期中质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.下列语句不是命题的是( ) A.锐角小于钝角 B.作∠A的平分线C.对顶角相等 D.同角的补角相等2.分式方程=的解是( )A.x=3 B.x=2C.x=1 D.x=-13.如果分式的值为0,则x的值为( )A.1 B.±1C. D.-14.如图1,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )图1A.2 B.3C.5 D.2.55.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60° B.有一个内角小于60°C.每一个内角都大于60° D.每一个内角都小于60°6.用直尺和圆规作已知角的平分线的示意图如图2,则说明∠CAD=∠DAB的依据是( )图2A.“SSS” B.“SAS”C.“ASA” D.“AAS”7.如图3,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是( )图3A.70° B.80°C.65° D.60°8.如图4,在△ABC中,AB=AC,AB的垂直平分线交AC于点P,若AB=5 cm,BC=3 cm,则△PBC的周长等于( ) 图4A.4 cm B.6 cmC.8 cm D.10 cm9.化简÷的结果是( )A. B.C.(x+1)2D.(x-1)210.如图5,△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到点E,使CE=CD,则BE的长是( )图5A.7 B.8C.9 D.10二、选择题(每小题3分,共18分)11.若分式有意义,则x满足的条件是 .12.计算3的结果是 .13.命题“和为180°的两个角互为补角”的逆命题是:.14.计算:b2c-3·-3= (结果化成正整数指数幂的形式).15.如图6,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为(答案不唯一,只需填一个).图616.如图7,D是△ABC的角平分线BD和CD的交点,若∠A=50°,则∠D= .图7三、解答题(共72分)17.(8分)计算:|-4|--2+(π-3.14)0.18.(8分)先化简÷,再从0,-2,-1,1中选择一个合适的数代入并求值.19.(10分)如图8,在△ABC中,∠B=38°,∠C=112°.(1)画出下列图形:①BC边上的高AD;图8②∠A的平分线AE.(保留作图痕迹)(2)试求∠DAE的度数.20.(11分)解分式方程:-=1.21.(11分)如图9,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.图922.(12分)马小虎的家距离学校1 800 m,一天马小虎从家去上学,出发10 min后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200 m 的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.23.(12分)如图10①,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论.(2)将图10①中的△CEF绕点C旋转一定的角度,得到图10②,(1)中的结论还成立吗?作出判断并说明理由.图10参考答案1.B 2.C 3.A 4.B 5.C 6.A 7.A 8.C9.D 10.C 11.x≠5 12.-13.互为补角的两个角的和为180°14.15.CA=CD或∠A=∠D或∠B=∠E16.115° 17.1 18.,当a=0时,原式=-19.(1)略;(2)37°20.x=-1 21.略22.马小虎的速度是80 m/min.23.(1)AF=BE,证明略;(2)成立,理由略.第4章质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分) 1.[2018春·南安市期中]a的一半与b的差是负数,用不等式表示为( )A.a-b<0 B.a-b≤0C.(a-b)<0 D.a-b<02.已知实数a,b满足a+1>b+1,则下列选项错误的为( )A.a>b B.a+2>b+2C.-a<-b D.2a>3b3.[2018春·定西期末]不等式6-3x>0的解集在数轴上表示为( )4.[2018春·西安期末]不等式2x+1>x+2的解集是( )A.x>1 B.x<1C.x≥1 D.x≤15.小华拿27元钱打算买圆珠笔和练习本,已知一个练习本2元,一支圆珠笔1元,他买了4个练习本,x支圆珠笔,则关于x的不等式表示正确的是( )A.2×4+x<27 B.2×4+x≤27C.2x+4≤27 D.2x+4≥276.下列不等式组求解的结果,正确的是( )A.不等式组的解集是x≤-3B.不等式组的解集是x≥-4C.不等式组无解D.不等式组的解集是-3≤x≤107.[2018·毕节]不等式组的解集在数轴上表示正确的是( )8.不等式组的最小整数解为( )A.-1 B.0C.1 D.49.若不等式组恰有两个整数解,则m的取值范围是( )A.-1≤m<0 B.-1<m≤0C.-1≤m≤0 D.-1<m<010.为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,购买的球拍为x个,那么x的最大值是( )A.7 B.8C.9 D.10二、填空题(每小题3分,共18分)11.“x的3倍与2的差不大于5”用不等式表示为 . 12.不等式x-3≤0的解集是 .13.不等式组的解集是 .14.不等式组的解集是 .15.不等式组的解集是 .16.[2018春·永春县期末]设a,b是任意两个有理数,用max{a,b}表示a,b两数中较大者,如:max{-1,-1}=-1,max{1,2}=2,max{4,3}=4,解答下列问题:若max{3x+1,-x+1}=-x+1,则x满足的条件是.三、解答题(共72分)17.(8分)解不等式-≥1,并把它的解集在数轴上表示出来.18.(8分)当x为何值时,代数式-的值是非负数?19.(10分)[2018秋·富源县期末]解不等式组20.(11分)解不等式组:把解集在数轴上表示出来,并写出它的整数解.21.(11分)已知方程组当m在什么范围内取值时,x>y?22.(12分)南京市“全民低碳出行,共创绿色南京”活动启动,下载手机APP“我的南京”,绿色出行将获得积分,积分可兑换卡片,兑换规则如图1.某市民现有积分不超过650分,他兑换了“叶”和“树”的卡片共6张,该市民最多兑换了几张“树”卡片?23.(12分)[2018春·宜春期末]某校在“汉字听写”大赛中,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为优胜者的奖品,已知购买3支钢笔和4本笔记本共需88元,购买4支钢笔和5本笔记本共需114元.(1)求购买1支钢笔和1本笔记本各需多少元?(2)学校准备购买钢笔和笔记本共80件奖品,根据规定购买的总费用不能超过1 200元,求最多可以购买多少支钢笔?参考答案1.D 2.D 3.A 4.A 5.B 6.B 7.D 8.B9.A 10.A 11.3x-2≤5 12.x≤3 13.无解14.x>4 15.1<x<2 16.x≤0 17.x≤1,图略18.x≥- 19.-1<x≤220.-1≤x<2,图略,它的整数解是-1,0,1. 21.当m>4时,x>y.22.该市民最多兑换了2张“树”卡片.23.(1)1支钢笔需16元,1本笔记本需10元.(2)最多可以购买66支钢笔.第5章质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.若二次根式有意义,则a的取值范围是( ) A.a≥2 B.a≤2C.a>2 D.a≠22.二次根式的值是( )A.2 020 B.-2 020C.2 020或-2 020 D.2 02023.二次根式的计算结果是( )A.2 B.-2C.6 D.124.下列运算正确的是( )A.=±5 B.4-=1C.÷=9 D.×=65.计算÷×的结果估计在( )A.5至6之间 B.6至7之间 C.7至8之间 D.8至9之间6.计算-的结果是( )A. B.2C.3 D.27.下列各式计算正确的是( )A.-2=- B.=4a(a>0)C.=×D.÷=8.下列各式化简结果为无理数的是( )A. B.(-1)0C. D.9.已知 ·=,则( )A.x≥6 B.x≥0C.0≤x≤6 D.x为一切实数10.下列计算错误的是( )A.×=7 B.(-1)2 019(+1)2 019=1C.=-8 D.3-=3二、填空题(每小题3分,共18分)11.使有意义的 x的取值范围是 .12.计算·(a≥0)的结果是 .13.若-有意义,则-x= .14.×+的运算结果是 .15.若实数x,y满足+2(y-1)2=0,则x+y的值等于 .16.计算(+)(-)的结果为 .三、解答题(共72分)17.(8分)化简:(1);(2)(3)2;(3);(4)()2.18.(8分)已知y=--2 018,求x+y的平方根.19.(10分)计算下列各题:(1)|-4|-22+;(2)÷2;(3)(-3)0-+|1-|+.20.(11分)先化简,再求值:-,其中a=1+,b=-1+.21.(11分)先化简,再求值:+÷,其中a=1+.22.(12分)[2018秋·武冈市期末]已知x=(+),y=(-),求下列各式的值.(1)x2-xy+y2;(2)+.23.(12分)先阅读下列材料,再解决问题.阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+.解决问题:(1)在括号内填上适当的数:====| 3+ |= 3+ ;(2)根据上述思路,试将予以化简.参考答案1.A 2.A 3.A 4.D 5.B 6.D 7.A 8.C9.A 10.D 11.x≥ 12.4a 13.-14.3 15. 16.-117.(1)36 (2)45 (3) (4)8-a18.±1 19.(1) (2) (3)-220.a-b,221.,22.(1) (2)1223.(1)3 3+ 3+ 3+ (2)5-期末质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.[2018秋·平谷区期末]有意义,那么x的取值范围是( ) A.x≥5 B.x>-5C.x≥-5 D.x≤-52.将一副三角板按如图1的方式放置,则∠1的度数是( )图1A.15° B.20°C.25° D.30°3.若分式的值为0,则x的值为( )A.0 B.4C.-4 D.±44.在实数3.141 59,,1.010 010 001,4.,π,中,无理数有( )A.1个 B.2个C.3个 D.4个5.下列计算正确的是( )A.a6÷a2=a3B.(a3)2=a5C. =±5 D.=-26.下列各式计算正确的是( )A.+= B.4-3=1C.2×3=6 D.÷=37.[2018·辽阳]九(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x千米/时,根据题意列方程得( )A.-30= B.+30=C.-= D.+=8.不等式组的解集在数轴上表示正确的是( )9.如图2,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为( )图2A.30° B.40°C.50° D.60°10.如图3,在△ABC中,AB=AC,D是BC的中点,下列结论不正确的是( )图3A.∠B=∠C B.AD⊥BCC.AD平分∠BAC D.AB=2BD二、填空题(每小题3分,共18分)11.49的平方根是 ,36的算术平方根是 ,-8的立方根是 .12.不等式3x-9>0的解集是 .13.当x=2 018时,-的值为 .14.计算:-×= .15.如图4,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= .图416.如图5,点B,A,D,E在同一直线上,BD=EA,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是 (只填一个即可).图5三、解答题(共72分)17.(8分)计算:(1)-;(2)(2-5)-(-).18.(8分)计算:|-2|+(π-2 019)0+--2.19.(10分)[2018·娄底]先化简,再求值:÷,其中x=.20.(11分)[2018春·端州区期末]解不等式组:并把解集在数轴上表示出来.21.(11分)如图6,已知点B,F,C,E在一条直线上,BF=EC,AC=DF.能否由上面的已知条件证明AB∥DE?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥DE成立,并给出证明.图6供选择的三个条件:①AB=DE;②BC=EF;③∠ACB=∠DFE.22.(12分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌的一个台灯、一个手电筒各需要多少元;(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数比台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?23.(12分)(1)如图7(1),在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证:DE=BD+CE;(2)如图7(2),将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图7(3),D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.图7参考答案1.C 2.A 3.B 4.A 5.D 6.D 7.C 8.A9.B 10.D 11.±7 6 -2 12.x>313.2 017 14. 15.70°16.答案不唯一,如:BC=EF或∠BAC=∠EDF17.(1) (2)-7 18.2-19.,3+220.-3≤x<3,图略21.略22.(1)购买一个台灯需要25元,购买一个手电筒需要5元.(2)荣庆公司最多可购买21个该品牌的台灯.23.(1)略;(2)成立,证明略;(3)△DEF是等边三角形.。

最新湘教版八年级数学上册单元测试题及答案全套

最新湘教版八年级数学上册单元测试题及答案全套

最新湘教版八年级数学上册单元测试题及答案全套第一单元:数与式测试题1. 将带有字母的数的各项合并起来,得到一个算式:3x + 2y - 4z + 5x - 7y + 9z,化简该式子。

2. 验证等式:3(2x + 5) = 6x + 15。

3. 根据情景,写出相应的代数式:a) 一棵树的高度是x米,如果再长2米,高度将会是多少?b) Emily购买一本数学书和一支铅笔的总花费是2.5x元,写出这个代数式。

c) 一个球队一共有x人,每个人可以买一件队服,这些队服的总价格是多少?4. 解方程:5x - 3 = 12。

5. 某商店购进手机的进价是x元,按成本价的35%折扣出售,售价是多少?答案1. 8x - 5y + 5z2. 6x + 15 = 6x + 15 (左右两边相等)b) 2.5xc) x4. 解方程得x = 3。

5. 售价为0.65x元。

第二单元:数据的搜集、整理与描述测试题1. 某班级同学的年龄如下:13, 12, 14, 12, 11, 15, 13, 14, 13, 12。

求这组数据的众数、中位数和平均数。

2. 星期一到星期五,某学校每天上学的时间如下(单位:分钟):星期一:260星期二:250星期三:240星期四:270星期五:280求这组数据的极差。

3. 某商店销售量(单位:百件)如下:一月:30三月:28四月:33五月:37六月:31求这组数据的总销售量。

4. 填写下表(数据为某班级学生的身高,单位:厘米): | 学生编号 | 身高 || -------- | ---- || 1 | 150 || 2 | 155 || 3 | 152 || 4 | 148 || 5 | 157 |a) 按身高从小到大排序。

b) 计算身高的最小值和最大值。

c) 计算身高的范围。

5. 某学生做了一套5道题的数学试卷,得分如下:4, 5, 3, 2, 5。

求这组数据的五数概括。

答案1. 众数:13;中位数:13;平均数:12.9。

初中数学湘教版八年级上册第1章 分式1.3 整数指数幂-章节测试习题(3)

章节测试题1.【答题】如果,,,那么、、的大小关系为()A.B.C.D.【答案】D【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:那么、、的大小关系为选D.2.【答题】若,则()A.B.C.D.【答案】B【分析】根据零指数幂和绝对值进行运算即可.【解答】解:当x≠1时,,∴且x≠1,解得:x=-1 选B.3.【答题】下列运算正确的是()A. 2a-3=B. =x2-1C. (3x-y)(-3x+y)=9x2-y2D. (-2x-y)(-2x+y)=4x2-y2【答案】D【分析】根据负整数指数幂的运算法则和乘法公式进行运算即可. 【解答】A. 2a-3=,故A选项错误;B. =x2-1,故B选项错误;C. (3x-y)(-3x+y)=-9x2+6xy-y2,故C选项错误;D. (-2x-y)(-2x+y)=4x2-y2,正确,选D.4.【答题】人体血液中每个成熟红细胞的平均直径为0.0000077米,则数字0.0000077用科学记数法表示为()A. 7.7×10-5B. 0.77×10-4C. 77×10-7D. 7.7×10-6【答案】D【分析】根据负整数指数幂的运算法则进行运算即可.【解答】0.0000077=7.7×10-6.选D.5.【答题】1纳米=0.000 000 001米,则2.5纳米应表示为()A. 2.5×10-8米B. 2.5×10-9米C. 2.5×10-10米D. 2.5×109米【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】2.5纳米=2.5×0.000000001米=2.5×10−9米.选B.6.【答题】计算的结果是().A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】3-2==.选B.方法总结:a-b=,a≠0.7.【答题】某种球形病毒的直径大约为0.000000102m,这个数用科学记数法表示为()A. 1.02×mB. 1.02×mC. 1.02×mD. 1.02×m【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7,选C.8.【答题】(2016·内蒙古东河区一模)一种细菌的半径是0.000 045米,该数字用科学记数法表示正确的是()A. 4.5×105B. 45×106C. 4.5×10-5D. 4.5×10-4【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000045米米.选C.9.【答题】某种秋冬流感病毒的直径约为0.000000308米,该直径用科学记数法表示为()A. 0.308米B. 3.08米C. 3.08米D. 3.1米【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】0.0000003083.08米.选C.10.【答题】将0.00000305用科学记数法表示为()A.B.C.D.【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】0.00000305=30.5×10-6.方法总结:对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).11.【答题】下列计算正确的是()A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则和整式的运算进行运算即可. 【解答】A. ∵与不是同类项,∴不能合并,故错误;B. ∵,故正确;C. ∵,故错误;D. ∵,故错误;选B.12.【答题】下列计算正确的是()A.B.C.D.【答案】A【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:A、,故A正确;B、,故B错误;C、不能化简,故C错误;D、没有意义.故D错误.选A.13.【答题】世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1已知3>2,两边都乘x ,则正确的是() A .3x>2x B .3x ≥2xC .3x ≤2xD .以上都不正确2下列不等式组求解正确的是()A .不等式组{x >3,x >5的解集是x>3B .不等式组{x ≥3,x <5的解集是3≤x<5C . 不等式组{x <3,x <5的解集是x<5D . 不等式组{x >3,x <5无解3不等式-2x<1的两边都除以-2得 .4代数式3x -4的值不小于代数式5-x 的值,列不等式为 .5若不等式(3m -2)x<7的解集为x<12,则m= .6x 同时满足不等式2(x+2)<x+5和不等式3(x -2)+8<2x ,则x 的取值范围是 . 7不等式-3≤2x -13<5的解集是 .8解不等式:3x+2(2-4x )<19.9求不等式组{2(x +8)≤10−4(x -3),x+12-6x+73<1的整数解.10若不等式5(x -2)+8<6(x -1)+7的最小整数解为方程3x -ax=4的解,求a 的值.【能力巩固】11已知a>0 ,且b 是有理数,那么一定有()A .-b 2<aB .-a 2<bC .a -b>0D .a -b 2<012一元一次不等式组{x >a,x <b,且a ≠b ,若它无解,则a 与b 的关系为 () A .a>b B .a<b C .a>b>0 D .a<b<013某商店以每件9元的进价购进一批商品,希望每件获毛利(毛利=销售价-进货价)不少于1元,但上级规定毛利不超过销售价的20%,设这件商品的销售价为x 元,根据题意列不等式组是()A .{x -9≥1,x -9≤20%xB . {x -9≤1,x -9≤20%xC . {x -9≥1,x -9≤20%D . {x -9≤1,x -9≥20%x14若不等式组{x >2m +1,x >7−m的解集为x>7-m ,则m 2 . 15求同时满足不等式x -3<4(x+3)和5(2x -1)≤3x -4的最大整数和最小整数.16已知|3x-2|+(6x-y+4k)2=0,若y>2k-1,求k的取值范围.【素养拓展】17.2024年4月18日,以“上春山寻好茶干净黔茶全球共享”为主题的2024中国好绿茶大会暨第16届贵州茶产业博览会在遵义湄潭中国茶城广场开幕,全国各地客商齐聚于此.一采购商看中了湄潭翠芽和都匀毛尖这两种优质茶叶,并得到信息如下:湄潭翠芽都匀毛尖总价/元251800质量/千克311270(1)求每千克湄潭翠芽和都匀毛尖的进价.(2)若湄潭翠芽和都匀毛尖这两种茶叶的销售单价分别是450元/千克和260元/千克,该采购商准备购进这两种茶叶共30千克,进价总支出不超过1万元,全部售完后,总利润不低于2660元,该采购商共有几种进货方案?(均购进整千克数)(利润=售价-进价)参考答案基础达标作业1.【答案】D2.【答案】B3.【答案】x>-124.【答案】3x-4≥5-x5.【答案】1636.【答案】x<-27.【答案】-4≤x<88.【答案】解:去括号,得3x+4-8x<19移项,得-5x<15∴x>-3.9.【答案】解:不等式组化简得{x≤1, x>−179,∴不等式组的解集为-179<x≤1∴不等式组的整数解为-1,0,1.10.【答案】解:解不等式得x>-3,∴最小整数解为x=-2.∴3×(-2)-(-2)a=4,∴a=5.能力巩固作业11.【答案】A12.【答案】A13.【答案】A14.【答案】≤15.【答案】解:由题意得{x-3<4(x+3), 5(2x-1)≤3x-4,解得{x>−5, x≤17,∴不等式组的解集为-5<x≤17∴符合题意的最大整数是0,最小整数是-4.16.【答案】解:由题意得{3x-2=0,6x-y+4k=0,解得{x=23,y=4k+4.又∴y>2k -1,∴4k+4>2k -1,∴k>-52素养拓展作业17.【答案】解:(1)设每千克湄潭翠芽的进价是x 元,每千克都匀毛尖的进价是y 元根据题意得{2x +5y =1800,3x +y =1270,解得{x =350,y =220. 答:每千克湄潭翠芽的进价是350元,每千克都匀毛尖的进价是220元.(2)设购进m 千克湄潭翠芽,则购进(30-m )千克都匀毛尖根据题意得{350m +220(30−m)≤10000,(450-350)m +(260−220)(30−m)≥2660,解得733≤m ≤34013.∴m 为正整数,∴m 可以为25,26.答:该采购商共有2种进货方案.。

湘教版八年级数学上册第2章测试卷

第二章三角形1.(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹);并判断BE与CD的大小关系为:BE CD.(不需说明理由)(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE、CD,BE与CD有什么数量关系?并说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B、E的距离.已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.2.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.3.如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?4.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.5.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.6.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.7.如图,A,B,C,D,E,F,M,N是某公园里的8个独立的景点,D,E,B 三个景点之间的距离相等;A,B,C三个景点距离相等.其中D,B,C在一条直线上,E,F,N,C在同一直线上,D,M,F,A也在同一条直线上.游客甲从E点出发,沿E→F→N→C→A→B→M游览,同时,游客乙从D点出发,沿D →M→F→A→C→B→N游览.若两人的速度相同且在各景点游览的时间相同,甲、乙两人谁最先游览完?请说明理由.8.如图,有一池塘,要测量池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?9.如图,一条输电线路需跨越一个池塘,池塘两侧A、B处各立有一根电线杆,但利用现有皮尺无法直接量出A、B间的距离,请你设计一个方案,测出A、B 间的距离,并说明理由.10.小华用四根竹棒扎成如图的风筝的框架,已知AE=DE,BE=CE,你认为小华的风筝两脚的大小相等(即∠B=∠C)吗?请说明理由.1.如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角板的三个顶点A、B、C分别槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中你发现线段AD与BE有什么关系?试说明你的结论.2.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,∠CBA=32°,求∠EFD的度数.3.如图,要测量池塘A、B两点间的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再过D点作出BF的垂线DG,并在DG上找一点E,使A、C、E 在一条直线上,这时,测量DE的长就是AB的长,为什么?4.小明用三角板按如图所示的方法画角平分线,在∠AOB的两边分别取OC=OD,再分别以C、D为垂足,用三角板作OA、OB的垂线,交点为P,作射线OP,则OP就是∠AOB的角平分线,你认为小明的做法有道理吗?请你给出合理的解释.5.阅读材料,解答问题:在数学课上,李老师和同学们一起探讨角平分线的作法时,李老师用直尺和圆规作角的平分线,作法如下:①如图1,在OA和OB上分别截取OD、OE,使OD=OE;②分别以D、E为圆心,以大于的长为半径作弧,两弧交于点C;③作射线OC,则OC就是∠AOB的平分线.小聪只带了直角三角板,他发现利用三角板也可以作角平分线,作法如下:①如图2,利用三角板上的刻度,在OA和OB上分别画点M、N,使OM=ON;②分别过点M、N作OM、ON的垂线,交于点P;③作射线OP,则OP就是∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.请你按要求完成下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的方法是.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法(要求:画出图形,并简述过程和理由)6.如图要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,并使点A、C、E三点在同一条直线上,因此只要测得ED的长就知道AB的长.请说明这样测量正确性的理由.7.如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与BC是否相等?说明你的理由.解:在△ADE和△BCF中,∴△ADE≌△BCF ()∴AD=BC ()8.某中学七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案,设计方案:先在平地上取一个可直接到达A,B的点E(AB为池塘的两端),连接AE,BE,并分别延长AE至D,BE至C,使ED=AE,EC=BE.测出CD的长作为AB之间的距离.他的方案可行吗?请说明理由.若测得CD为10米,则池塘两端的距离是多少?9.某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长.(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后回答下列问题:(1)方案(I)是否可行?,理由是;(2)方案(II)是否切实可行?,理由是.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?(4)方案(II)中,若使BC=n•CD,能否测得(或求出)AB的长?理由是,若ED=m,则AB= .考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x +12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C .第三象限D .第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y =(5-m 2)x 和关于x 的一元二次方程(m +1)x 2+mx +1=0中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是 .12.(甘孜州中考)若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是 . .◆类型三 一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y =(m +1)x +m -1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k ≠0 13.B 14.k ≥1。

湘教版八年级数学上册第二章测试卷

第2章测试卷一.选择题(共10小题)1.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为( )A.48°B.36°C.30°D.24°2.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )A.8 B.9 C.10 D.113.如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有( )A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE4.等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC为( )A.5 B.7 C.10 D.95.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( )A.9 B.12 C.7或9 D.9或126.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?( )A.114 B.123 C.132 D.1477.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D 的度数为( )A.15°B.17.5°C.20°D.22.5°8.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为( )A.5 B.6 C.7 D.89.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是( )A.6 B.8 C.9 D.1010.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个二.填空题(共8小题)11.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE 的长度为__________.12.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为__________.13.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.14.如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是__________°.15.如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P 点.若∠PBC=30°,∠ACP=20°,则∠A的度数为__________°.16.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是__________cm.17.如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__________.18.如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是__________.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE 的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?第2章测试卷一.选择题(共10小题)1.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为( )A.48°B.36°C.30°D.24°【考点】线段垂直平分线的性质.【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.2.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )A.8 B.9 C.10 D.11【考点】线段垂直平分线的性质.【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.3.如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有( )A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE【考点】线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.【分析】分别根据线段垂直平分线及角平分线的性质对四个答案进行逐一判断即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,AC=,∵DE是AB的垂直平分线,∴AD=BD,AE=BE=AB,∴∠DAB=30°,AC=AE=BE,故A、B正确;∴∠CAD=30°,∴AD是∠BAC的平分线∵CD⊥AC,DE⊥AB,∴CD=DE,故D正确;故选C.【点评】本题考查的是线段垂直平分线及角平分线的性质、直角三角形的性质,涉及面较广,难度适中.4.等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC为( )A.5 B.7 C.10 D.9【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据垂直平分线上的点到线段两个端点的距离相等,得GB=GA,即△GBC的周长=AC+BC,从而就求得了BC的长.【解答】解:设AB的中点为D,∵DG为AB的垂直平分线∴GA=GB (垂直平分线上一点到线段两端点距离相等),∴三角形GBC的周长=GB+BC+GC=GA+GC+BC=AC+BC=17,又∵三角形ABC是等腰三角形,且AB=AC,∴AB+BC=17,∴BC=17﹣AB=17﹣10=7.故选B.【点评】此题考查了等腰三角形的性质及线段垂直平分线的性质;进行有效的等量代换是正确解答本题的关键.5.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( )A.9 B.12 C.7或9 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?( )A.114 B.123 C.132 D.147【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,再利用三角形的内角和进行分析解答即可.【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选B.【点评】此题考查等腰三角形的性质,关键是利用等边对等角和三角形内角和分析解答.7.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D 的度数为( )A.15°B.17.5°C.20°D.22.5°【考点】等腰三角形的性质.【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.8.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为( )A.5 B.6 C.7 D.8【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线的性质,可得∠DBF与∠FBC的关系,∠ECF与∠FCB的关系,根据两直线平行,可得∠DFB与∠FBC的关系,∠EFC与∠FCB的关系,根据等腰三角形的判定,可得BD与DF的关系,EF与EC的关系,可得答案.【解答】解:OB和OC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB.∵DE∥BC,∴∠FBC=∠DFB,∠EFC=∠FCB.∠DBF=∠DFB,∠EFC=∠ECF.∴DB=DF,EF=EC,DE=DF+EF=DB+EC=8,故选:D.【点评】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.9.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是( )A.6 B.8 C.9 D.10【考点】等边三角形的判定与性质;等腰三角形的性质.【分析】作出辅助线后根据等腰三角形的性质得出BE=6,DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【解答】解:延长ED交BC于M,延长AD交BC于N,作DF∥BC于F,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故选B.【点评】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.10.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.二.填空题(共8小题)11.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE 的长度为7.【考点】等腰三角形的判定与性质.【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠D=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.【点评】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.12.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20°.【考点】等腰三角形的性质.【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.13.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70°.【考点】等腰三角形的性质.【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.【点评】考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.14.如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是30°.【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据角平分线性质求出∠ABD=∠DBE,根据线段垂直平分线求出CD=BD,推出∠C=∠DBE=∠ABD,根据三角形内角和定理求出即可.【解答】解:∵△ABC中,∠A=90°,DE⊥BC,AD=DE,∴∠ABD=∠DBE,∵DE是BC的垂直平分线,∴CD=BD,∴∠C=∠DBE,∵∠A=90°,∴3∠C=90°,∴∠C=30°,故答案为:30.【点评】本题考查了线段垂直平分线性质,角平分线性质,等腰三角形性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P 点.若∠PBC=30°,∠ACP=20°,则∠A的度数为70°.【考点】线段垂直平分线的性质.【分析】根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°,利用三角形的内角和解答即可.【解答】解:∵射线BM为∠ABC的平分线,∠PBC=30°,∴∠ABC=60°,∵直线PL为BC的垂直平分线,∴∠PCB=30°,∴∠A的度数=180°﹣60°﹣30°﹣20°=70°,故答案为:70.【点评】此题考查线段垂直平分线性质,关键是根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°进行分析.16.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19cm.【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.【点评】本题考查了线段垂直平分线的性质;解答此题时要注意利用垂直平分线的性质找出题中的等量关系,进行等量代换,然后求解.17.如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为2.1.【考点】等边三角形的判定与性质;旋转的性质.【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=1.8,BC=3.9,∴CD=BC﹣BD=3.9﹣1.8=2.1.故答案为:2.1.【点评】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.18.如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是400.【考点】等边三角形的判定与性质;平移的性质.【专题】规律型.【分析】先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.【解答】解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.故答案为:400.【点评】本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【考点】等腰三角形的判定与性质.【专题】证明题.【分析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.【解答】证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.【点评】此题主要考查等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【考点】等边三角形的判定与性质;含30度角的直角三角形.【专题】几何图形问题.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.【考点】等腰三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题.【分析】根据EH⊥AB于H,得到△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.【点评】本题考查等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并证明出等腰直角三角形是解题的关键.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.【考点】线段垂直平分线的性质.【分析】在△ABC中,利用三角形内角定理易求∠B+∠C,再根据线段垂直平分线的性质易求∠BAE=∠B,同理可得∠CAF=∠C,再结合三角形内角和定理进而可得∠BAE+∠CAF﹣∠BAC=∠EAG.【解答】解:在△ABC中,∠BAC=80°,∴∠B+∠C=180°﹣∠BAC=100°,∵DE是AB的垂直平分线,∴EB=EA,∴∠BAE=∠B,同理可得∠CAF=∠C,∴∠EAF=∠BAE+∠CAF﹣∠BAC=∠B+∠C﹣∠BAC=20°.【点评】本题考查了线段垂直平分线的性质,解题的关键是先求出∠B+∠C.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE 的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【考点】线段垂直平分线的性质.【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?【考点】等腰三角形的判定与性质;平行线的性质.【专题】计算题;证明题.【分析】(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.【解答】解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
湘教版八年级(上)数学期考补测试题
数 学
一、选择题(把答案填写到后面的对应表格中,每小题3分,共24分) 1.
实数1
2,0,3,7
π--中,有理数的个数是( )
A .2
B .3
C .4
D .5 2. 点P (3,5)-关于y 轴的对称点的坐标是( )
A .(3,5)--
B .(3,5)-
C .(5,3)-
D .(3,5) 3. 已知正比例函数的图象经过点(2,6)-,则这个函数的表达式是( )
A .3y x =
B .3y x =-
C .1
3
y x =- D .22y x =-+
4. 已知0k <、0b <,则y 关于x 的函数y kx b =+的大致图象是( )
5. 如图,AB=AC ,要说明△ADC ≌△AEB, 需要添加的条件不能是( )
A .∠B=∠C
B .AD=AE
C .∠ADC=∠AEB
D .DC=EB 6. 利用尺规不能唯一作出的三角形是( )
A. 已知三边
B. 已知两边及夹角
C. 已知两角及夹边
D. 已知两边及其中一边的对角 7. 为了了解某校九年级学生的体能情况,随机抽查了其中 50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理 后绘制成如图所示的频数分布直方图(注:15~20包括15, 不包括20,以下同),请根据统计图计算成绩在20~30次的 频率是( )
A. 0.7
B. 0.6
C. 0.5
D. 0.4
次数
A
B
C
D
A B
C
D
E
F
.
8. 函数4
43
y x =-+的图象与x 轴、y 轴分别相交于A 、B 两点,则线段AB 的长是( )
A .4
B . 5
C .8
D .10 请把前面选择题答案填写到下面的对应表格中
二、填空题 (每小题3分, 共30分) 9.49的平方根是 10. 已知函数2
1
()1
f x x =
+,那么(1)f -= 11. 用计算器相继按
键,屏幕上显示的数为0.2792848,要求保留4位 ≈
12. 已知函数21y x =-,经过点(,3)m ,则m = 13.如图,已知函数y ax b =+和y kx =的图象相交于点 P(-3,-2)则不等式ax b kx +<的解为
14. 若直角三角形的两条直角边的长是6cm 和8cm,则这个 直角三角形的斜边上的中线长是
15. 点A 的坐标是(0,2),把点A 绕着坐标原点顺时针旋转90o 到点B, 再把点B 向下平移1个单 位得点C, 则C 点的坐标是
16. 全等三角形的判定定理中的简写形式“HL”的含义是 17. 如图,AC ⊥BD 于O ,BO=OD ,图中共有全等三角 形 对.
18. 在1到20这些自然数中,3的整数倍的数出现的频率是 三、解答题 (本大题共6个小题, 满分46分) 19. (本题满分6分) 计算: 0 · 0 7 8 = A
B
C
D
O
.
20. (本题满分6分)
已知一次函数y kx b =+ (0)k ≠表示的直线经过两点A (1,2), B (1,4)--. (1)求一次函数的表达式;
(2)试判断点P(2,5)是否在直线AB 上?
21. (本题满分8分)
已知两条直线1l :2y x =和2l :3y x =+ (1)求直线1l 和2l 的交点P 的坐标;
(2)求两条直线1l 、2l 与x 轴围成的三角形区域的面积.
22. (本题满分8分)
如图,点B 、D 、C 、F 在一条直线上,且BD = FC ,AB = EF.
(1)请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是 ;
(2)添加了条件后,证明△ABC ≌△EFD. F
A
B
C
D
E
.
23. (本题满分8分)
如图, 小明在A 处看见前面山上有个气象站C, 仰角为15°, 当笔直向山行4千米时,小明看气象 站C 的仰角为30°. 你能算出这个气象站离地面的高度CD 吗?是多少?
24. (本题满分10分)
在边长为3cm 的正方形ABCD 的边BC 上,有一动点P 以1cm/秒的速度从B 点运动到C 点, 设到P 点所用的时间为x 秒,四边形APCD 的面积为y cm 2.
(1)写出y 与自变量x 的函数关系式(要求写出自变量的取值范围),并且在下面给定的直角坐标系中画出它的图象.
(2)若四边形APCD 和△ABP 的面积之比为2:1时,试求AP 的长. A
B
C
D
30o
15o
A
B
C
D
P
.。

相关文档
最新文档