教育统计学概念共69页
人教新版七年级下册《10.1_统计调查》2024年同步练习卷(25)+答案解析

人教新版七年级下册《10.1统计调查》2024年同步练习卷(25)一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下面调查统计中,适合采用全面调查方式的是()A.某品牌手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.某电视节目的收视率D.某汽车每百千米的耗油量2.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量3.下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生家庭成员情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查4.中华汉字,源远流长.某校为了传承中华优秀传统文化,组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,学校随机抽取了其中200名学生的成绩进行统计分析在这个问题中,下列说法:①这3000名学生的“汉字听写”大赛成绩的全体是总体②每个学生是个体③200名学生是总体的一个样本④样本容量是其中说法正确的有()A.1个B.2个C.3个D.4个5.为了解某市七年级2800名学生的视力情况,从中抽查了100名学生的视力进行统计分析,下列四个判断正确的是()A.2800名学生是总体B.样本容量是100名学生C.100名学生的视力是总体的一个样本D.每名学生是总体的一个样本6.根据居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过C.每天阅读1小时以上的居民家庭孩子占D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是二、填空题:本题共3小题,每小题3分,共9分。
7.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年度总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图表示,最适合的统计图是______.8.已知样本25,21,25,21,23,25,27,29,25,28,30,29,26,24,25,27,27,22,24,26,若组距为2,那么在这一组的频数是______.9.某校举行科技知识竞赛,150名学生最后得分得分为整数的频数分布直方图如图所示频数轴刻度等间隔根据图中的信息可知得分在分的人数是________人.三、解答题:本题共6小题,共48分。
考试成绩统计分析中的理解和思考

考试成绩统计分析中的理解和思考(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除考试成绩统计分析中的理解和思考五峰县教研培训中心饶士望毋庸置疑,考试始终是检查教师的教学是否达到教学目标以及达到目标的程度,了解学生学习水平的重要手段之一,我们常常通过调研测验来进行分析评价。
通过对成绩的统计分析,衡量教师所教班级学生的相对水平,评价教师的教学质量,以促进教师全面贯彻教育方针,面向全体学生,全面实施素质教育。
根据教育统计理论,科学、全面地理解和设计考试统计分析的量化指标,是考试成绩统计分析工作中至关重要的基础性工程。
有鉴于此,笔者结合自己的学习理解、工作中的认识和思考,对考试成绩统计分析尝试一些研究和探索,以期为学科教师、教学研究者、教学管理决策者提供一些参考。
之一说说考试成绩“平均分”现阶段考试成绩统计分析中,“平均分”是一个非常重要的量化指标,实在是很有必要全面了解它所描述的统计学层面的含义。
所谓平均分,是把一组学生的考试成绩作为观测对象计算出它们的算术平均数的通俗说法。
是用一组学生成绩的总和除以学生个数所得的商,又称均数、均值。
表示为:在EXCEL、MS SQL SERVER中,均采用函数AVERAGE来计算。
平均分之所以被各类教育统计广泛使用,是因为它具有反应灵敏、简明易解、较少受抽样变动的影响等特点,它反映了成绩数据的集中趋势,是对成绩数据的最佳估计值,是最富有代表性的集中量数。
其缺点是容易受到极端成绩数据的影响。
近几年的实际工作中,我们引入得分率这一概念,理由是,在采用百分制的卷面设计时,平均分=总分÷人数,得分率=所得总分÷人数÷卷面总分×100,平均分即为得分率,考虑到现行各种考试中,部分学科卷面设计不是100分,为消除学科之间的差别,统一为得分率,即得分率=总分÷人数÷卷面分×100。
中位数的意义及计算方法

“中位数的意义及计算方法”教学实录与评析时间:2007-06-24 05:51 作者:湖北仙桃点击:2493 次将本文添加到:教学内容:人教版《义务教育课程标准实验教科书·数学》五年级上册第105页至107页教学目的:知识与技能目标:使学生理解中位数在统计学上的意义,学会求中位数的方法;并根据数据的具体情境,体会“平均数”、“中位数”各自的特点;过程与方法目标:选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点;情感性目标:让学生感觉数学与现实生活的密切联系,体会数学的运用价值,形成热爱数学的情感。
教学过程:一、创设情境,引入新知师:红、蓝两队各派7名小朋友进行1分钟跳绳比赛,比赛结果是:用你学过的知识来比较一下,哪个队的成绩更好一些呢?学生独立解答后,汇报运用平均数知识来比较,得出蓝队获胜的结论。
师:红队前面得分一直很高,为什么最后却输了呢?生:因为红队7号得分太低了。
师:哦!原来情况是这样。
好!比赛结束了,鲜花与掌声属于胜利者,让我们用掌声对蓝队表示祝贺(全班鼓掌)。
失败者流淌了艰辛的汗水,还要吞咽苦涩的泪水,付出了努力的拼搏,还要收获难言的悲伤,如果你是红队队员,如果你是红队中那个不幸的失误者,如果你是红队的支持者,你难道不想说些什么吗?生1:(自信地)如果我是红队队员,我一定更加努力训练,争取下次为红队争光!生2:(低声地)如果我是红队中的7号,我会感到很惭愧,愧对全体队员!生3:(忿忿地)我觉得这种评判方法不公平,红队就因为一人失误就让全队承受失败痛苦,太不公平了!……师:既然大家觉得用“平均数”来比较两队成绩不公平,那还可以怎样比呢?生1:分别去掉两队最高分和最低分,根据剩余成绩的平均数来比。
生2:采取一对一的方式比,红队队员胜5次,平1次,输1次,红队胜。
……师:大家思考的方案还真多,并各有优点,科学家们也帮我们研究了一种新的比较数据的方法,就是用中位数来比较,你们想了解这种新方法吗?生:(好奇地)想
C : 工序管理优秀,但技术水平低
D : World Top 水平的公司
17
品质革新Team
XXXX塑膠五金电子有限公司 6σ
Sigma 与PPM&Yft的对应关系
sigma
PPM
Yft
不良现况
2
308537
69.15%
3
66807
93.32%
减少约5倍
4
6210
99.38%
减少约11倍
5
最香甜的果实 - 全系统设计
大部分的果实 - Process特性化/最佳化
4 6,210
下部的果实 - QC 7 tool
3 66,807
2 308,537
工序 缺陷的 能力 机会 分布偏移 =±1.5σ
掉在地上的果实 - 仅依靠直接检查
Sigma 水平越高,其缺陷以指数形式减少 11
品质革新Team
1σ
μ (平均)
USL
T
3σ
9
品质革新Team
XXXX塑膠五金电子有限公司 6σ
6 sigma是用来经营一项生意的战略。
6
6 sigma 是各种各样的行业中形成的用来加快改进步伐的经营管理系统。
σ
6 sigma是一系列的过程,它将选择的方法、技术、实际行动联系在一起。
的
涵
6 sigma 由管理原理、统计技术、全身心投入的员工一起精心构造的系统。
233
99.9767%
减少约26倍
6
3.4
99.9966%
减少约68倍
评价:6 sigma比 sigma好20000倍
Yft—单工序首次收率 表示再作业后没有修理的收率的值 应用:决定个别工序的个别品质水平时使用
统计学原理试题及答案(广东省2008)

25.计算相关系数和进行回归分析时,必须区分自变量和因变量。【
26.对于时点指标数列计算序时平均数,可直接对各期指标数值求算术平均。【 27.广义指数也叫总指数。 【 х 】
四.简答题(本大题共 5 小题,每小题 5 分,共 25 分) 28.什么是统计学?它的研究对象有什么特点? 答:统计学是对统计工作及其成果的理论概括和总结,是对总体现象(和群体现象)数量特征进 行描述和分析推论的科学。 统计学研究对象的特点:总体性;数量性;客观性;数据的随机性,范围的广泛性。 29.怎样看待统计误差? 答:第一,误差降低了统计数据的质量; 第二,误差是难以避免的; 第三,人们对准确性的要求是相对的; 第四,追求过高的准确性往往得不偿失。 30.什么是权数?它有什么作用? 答:权数是变量值重要程度的一个标度。 权数的基本作用是用以表现它所对应的变量值在总体一般水平中所占的份额。 31.抽样推断的理论基础是什么?并做出解释。 答:抽样推断的理论基础的是大数定律和中心极限定理。 大数定律的一般意义是:在随即试验过程中,每次试验的结果不同,但大量重复试验后,所 和粗线的平均值总是接近某一确定的值。 中心极限定理是指样本平均数分布的性质和总体分布的性质之间关系的系列定理。它论证了, 第一,如果总体很大而且服从正态分布,样本平均数的分布也同样服从正态分布。第二,如果总 体很大,但不服从正态分布,只要样本容量足够大,样本平均数的分布趋近于正态分布。第三, 样本平均数的平均数,等于总体平均数。 32.利用移动平均法分析趋势变动时,应注意哪些问题? 答:利用移动平均法分析趋势变动时,应注意以下问题: (1)移动平均后的趋势值应放在各移动项的中间位置; (2)移动平均的目的在于消除时间数列中的短期波动,因此移动间隔的长度要适中。 五.计算题(本大题共 5 小题,第 33、34 小题各 6 分,第 35~37 小题各 8 分,共 36 分)
(完整版)社会统计学

社会统计学(Social Statistics)科学只有当它利用了数学的时候,它才达到了完善的程度。
——马克思对于追求效率的公民而言,统计思维总有一天会和读写能力一样必要。
——H.G.Wells教材及参考书目社会统计学,张彦,高等教育出版社,2005社会统计学,张彦,南京大学出版社,1997社会统计学(第八版),布莱洛克,社会科学文献出版社社会统计学(重排本),卢淑华,北京大学出版社,2002社会研究的统计分析,李沛良,社会科学文献出版社17世纪以前,社会统计主要局限于对事物进行原始的调查登记和简单的计算汇总。
如大禹时的九州表,明初的黄册和鱼鳞册;古埃及、古希腊、古罗马在公元前400年就建立的出生、死亡登记制度。
17世纪后,产生了以工业、农业、贸易、交通等方面统计为主的社会经济统计。
国势学派政治算术学派数理统计学派1.国势学派代表人物是康令(1606~1681)和阿亨瓦尔(1719~1772)。
1749年,阿亨瓦尔根据拉丁文“Status”、意大利文Stato 和Statista及德文Statisti等字根创造出“Statistik”这个新词,原意指“国家显著事项的比较和记述”。
国势学派可谓“有名无实”的学派:只用文字记述,不用数字计量。
它又称记述学派和历史学派。
2. 政治算术学派格朗特1662年在其《自然和社会观察》一书中,从宗教管理、商业、气候、疾病等方面,对当时伦敦人口的出生率、死亡率和性比例等方面进行了综合的统计分析。
威廉·配第1667年在其《政治算术》一书中,运用有关人口、土地税收和国家收入等方面的数字资料,对英国、荷兰的经济实力进行比较,首创了一种数字对比分析的方法。
“即用数字、重量、尺度来表达自己想说的问题。
”与国势学派相对应,政治算术学派可谓“有实无名”的学派3.数理统计学派凯特勒(1796~1896)首先将概率论原理引入到社会现象的研究,在《社会物理学》,《道德统计》、《论人类》等书中,他认识到人类的社会活动服从于一定规律,并发现这种规律只有通过大量观察才能被人们所认识。
“三新”背景下高中数学大单元教学策略分析
以单一课时知识教学为基础的备课方案或教学设计
显得更上一层楼,使 得 数 学 基 础 知 识、基 本 技 能 和 基
本数学思 想、基 本 活 动 经 验 “四 基”的 落 实 更 加 有 效,
更加直接 .
具体而言,进 行 大 单 元 教 学 与 设 计 时,教 师 需 要
案例赏析
2023 年 5 月上半月
“三新”背景下高中数学大单元教学策略分析
◉ 江苏省常熟市中学 沈 瑜
在新教 材 (人 民 教 育 出 版 社 2019 年 国 家 教 材 委
员会专家 委 员 会 审 核 通 过)、新 课 程 («普 源自 高 中 数 学课程标准(
2017 年版 2020 年修订»)、新 高 考“三 新”背
该章节中各 个 相 关 知 识 点,通 过 基 础 知 识 中 的 概 念、
运算、坐标表示与应用 等 场 景 展 开,结 合 作 图、运 算 与
阅读等基本 技 能,融 入 数 形 结 合、分 类 讨 论 以 及 建 模
思想等,形成 基 本 活 动 经 验,进 而 全 面 厘 清 大 单 元 中
的学习内容,深 化 对 知 识 的 理 解 与 掌 握,为 知 识 的 综
对数据进行 分 析 比 较,各 小 组 之 间 相 互 交 流,然 后 结
解决问题 .
通过质疑、探疑、释疑等方式,促使学生 实 现
合实际情况给出合 理 的 结 论 .
最后每位学生根据大家
深度学习 [4].
实时整合与分解,可实现统计 单 元 知 识 的
得到的数据给校长写一封信,提出自己的建议 .
部分与整体之间的循环转化 .
大数据时代统计学专业实践教学体系的构建与实施
理学、教育学以及工程学、心理学等众多研究领域,成为不 可或缺的数据分析手段。尤其在大数据背景下,具有数据分
运用软件分析数据的能力。 2 建立完善的课程实践教学体系
析思维和行业数据分析能力的统计学专业人才在各行各业
统计学专业课程实践教学是统计学专业人才培养过程
均发挥着重要作用。因此,统计学专业,特别是民族地区统 中的重要环节,包括专业课课程实验、统计软件模拟实验、
图 1 统计学专业实践教学内容体系
在“时间序列分析”“抽样调查分析”及“统计建模” 对数据的分析和认识确定最优数据分析方法。在此过程中,学
等课程教学中,笔者们采用了项目教学法。在讲解完课程基 生的组织能力、策划能力、调查实施以及数据处理与分析能力
本内容后,教师引导学生讨论选定当今社会热点问题为项目 均得到了提高。此外,借助产教融合,组织学生积极申报大学
价等方面进行探索,构建适用于民族院校大数据时代人才培 并结合行业知识进行数据分析、数据挖掘、数据建模及分析
养的实践教学体系。 1 在专业课程设置时加大实践教学比例
在贵州省把大数据产业作为发展战略的时代背景下,我 校统计学专业及时调整培养方案,以培养大数据产业亟需的 本土人才为导向,以培养具有较强实践能力的应用型人才为
2021 年 第 12 期
的选择、论文撰写、汇报答辩,以及对问题的进一步讨论等 统计学专业积极调整培养方案,重视统计思维培养,重视实
方面对课程论文作出评价。
践教学。通过几年的建设,本校已基本构建了较为完善的统
6 实施成效与总结
计学专业课程实践教学体系,学生的专业技能、实践能力和
大数据对统计学专业人才培养及统计教育既是机遇也 创新能力均得到了提高。2017 年至今本校统计学专业学生
第七章实验流行病学研究
第五十二页,共69页。
析因设计 ≥2个研究因素,分析交互作用
交互作用 当处理因素中的某个因素因质或量 发生改变时,使其它因素的实验效应的强度 发生改变。 解决的问题:
两个或以上处理因素的各处理水平间的均数有差异?
两个或以上处理因素之间有交互作用?
第五十三页,共69页。
例如 拟比较两种药物对高血压病人的疗效,同时分析
研究设计
☼明确研究目的
☼选择研究对象 ☼确定实验现场
☼设立对照 ☼确定样本大小
☼随机化分组
☼应用盲法
☻简单随机分组
☻分层随机分组
第四十页,共69页。
研究设计
☼明确研究目的
☼选择研究对象 ☼确定实验现场 ☼设立对照
☼确定样本大小 ☼随机化分组
☼应用盲法
☻单盲 ☻双盲
☻三盲
第四十一页,共69页。
数据分析
预防实验(preventive trial)
人群中预防措施和策略的效果考核
现场试验(field trial)
社区实验(community trial )
以群体为单位的预防试验
第十五页,共69页。
按设计类型分
真实验(true experiment)
随机抽样、随机分配 干预 前瞻
平行试验
作业
方法学特点 样本组成 分组标准 时间顺序 率
暴露与疾病 联系指标 优点
病例对照研究与队列研究比较
前瞻性队列研究
病例对照研究
缺点
第一页,共69页。
病例对照研究与队列研究比较
方法学特点 样本组成 分组标准 时间顺序 率
前瞻性队列研究
无病个体 暴露或未暴露 前瞻性(从因到果) 暴露者与未暴露者发病或死亡情况
第05讲 第九章 统计与成对数据的统计分析(综合测试)(含答案解析)
第05讲第九章统计与成对数据的统计分析(综合测试)第05讲第九章统计与成对数据的统计分析(综合测试)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)(2022·全国·高一课时练习)1.“中国天眼”为500米口径球面射电望远镜,是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是()A .通过调查获取数据B .通过试验获取数据C .通过观察获取数据D .通过查询获得数据(2022·黑龙江·大庆市东风中学高一期末)2.嫦娥五号的成功发射,实现了中国航天史上的五个“首次”,某中学为此举行了“讲好航天故事”演讲比赛.若将报名的30位同学编号为01,02,…,30,利用下面的随机数表来决定他们的出场顺序,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字,重复的跳过,则选出来的第5个个体的编号为()4567321212310201045215200112512932049234493582003623486969387481A .23B .20C .15D .12(2022·全国·高一单元测试)3.电影《长津湖之水门桥》于2022年2月1日上映.某新闻机构想了解市民对《长津湖之水门桥》的评价,决定从某市3个区按人口数用分层随机抽样的方法抽取一个样本.若3个区人口数之比为2:3:5,且人口最多的一个区抽出了100人,则这个样本的容量为().A .100B .160C .200D .240(2022·重庆·高二阶段练习)4.下表是某饮料专卖店一天卖出奶茶的杯数y 与当天气温x (单位:C )的对比表,已知表中数据计算得到y 关于x 的线性回归方程为ˆˆ27ybx =+,则据此模型预计35C 时卖出奶茶的杯数为()气温/Cx 510152025杯数y2620161414A .4B .5C .6D .7(2022·福建·莆田一中高二期末)5.某高中调查学生对2022年冬奥会的关注是否与性别有关,随机抽样调查150人,进行独立性检验,经计算得()()()()()22 5.879n ad bc a b c d a c b d χ-=≈++++,临界值表如下:α0.150.100.050.0250.010x α2.0722.0763.8415.0246.635则下列说法中正确的是:()A .有97.5%的把握认为“学生对2022年冬奥会的关注与性别无关”B .有99%的把握认为“学生对2022年冬奥会的关注与性别有关”C .在犯错误的概率不超过2.5%的前提下可认为“学生对2022年冬奥会的关注与性别有关”D .在犯错误的概率不超过2.5%的前提下可认为“学生对2022年冬奥会的关注与性别无关”(2022·广西河池·高二期末(文))6.一只红铃虫的产卵数y 和温度x 有关,现收集了6组观测数据,y (单位:个)与温度x (单位:℃)得到样本数据(),i i x y (1i =,2,3,4,5,6),令ln i i z y =,并将(),i i x z 绘制成如图所示的散点图.若用方程e bx y a =对y 与x 的关系进行拟合,则()A .1a >,0b >B .1a >,0b <C .01a <<,0b >D .01a <<,0b <(2022·全国·高一单元测试)7.2022年国务院《政府工作报告》中指出,有序推进碳达峰碳中和工作,落实碳达峰行动方案.汽车行业是碳排放量比较大的行业之一,某检测单位对甲、乙两类MI 型品牌的新车各抽取了5辆进行2CO 排放量检测,记录如下(单位:g/km ),则甲、乙两品牌汽车2CO 的排放量稳定性更好的是()甲80110120140150乙100120100120160A .甲B .乙C .甲、乙相同D .无法确定(2022·全国·高一单元测试)8.期末考试后,高二某班50名学生物理成绩的平均分为85,方差为8.2,则下列四个数中不可能是该班物理成绩的是()A .60B .78C .85D .100二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)(2022·福建南平·高一期末)9.关于用统计方法获取数据,分析数据,下列结论正确的是()A .某食品加工企业为了解生产的产品是否合格,合理的调查方式为抽样调查B .为了解高一学生的视力情况,现有高一男生480人,女生420人,按性别进行分层抽样,样本量按比例分配,若从女生中抽取的样本量为63,则样本容量为135C .若甲、乙两组数据的标准差满足<甲乙s s ,则可以估计乙比甲更稳定D .若数据123,,,,n x x x x ⋅⋅⋅的平均数为x ,则数据(1,2,3,,)i i y ax b i n =-=⋅⋅⋅的平均数为ax b-(2022·全国·高一单元测试)10.下图是甲、乙两个工厂的轮胎宽度的雷达图(虚线代表甲,实线代表乙).根据图中的信息,下列说法正确的是()A .甲厂轮胎宽度的平均数大于乙厂轮胎宽度的平均数B .甲厂轮胎宽度的众数大于乙厂轮胎宽度的众数C .甲厂轮胎宽度的中位数与乙厂轮胎宽度的中位数相同D .甲厂轮胎宽度的极差小于乙厂轮胎宽度的极差(2022·云南省下关第一中学高三开学考试)11.自2020年初,新型冠状病毒引起的肺炎疫情爆发以来,各地医疗机构采取了各种有针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示,由表格可得y 关于x 的二次回归方程为2ˆ6yx a =+,则下列说法正确的是()周数(x )12345治愈人数(y )2173693142A .4a =B .8a =-C .此回归模型第4周的残差(实际值与预报值之差)为5D .估计第6周治愈人数为220(2022·广东汕头·高二期末)12.已知由样本数据()(),1,2,3,,10i i x y i = 组成的一个样本,得到回归直线方程为20.4y x =-,且2x =,去除两个歧义点()2,1-和()2,1-后,得到新的回归直线的斜率为3.则下列说法正确的是()A .相关变量x ,y 具有正相关关系B .去除两个歧义点后的回归直线方程为 33y x =-C .去除两个歧义点后,样本(4,8.9)的残差为0.1-D .去除两个歧义点后,随x 值增加相关变量y 值增加速度变小三、填空题:(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)(2022·陕西渭南·高一期末)13.已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:x 24568y3040506070根据上表可得线性回归方程ˆ7ˆyx a =+,据此估计,当投入15万元广告费时,销售额为_______万元.(2022·重庆十八中高二期末)14.某篮球联赛期间,某一电视台对年龄高于30岁和不高于30岁的人是否喜欢甲队进行调查,对高于30岁的调查了45人,不高于30岁的调查了55人,所得数据绘制成如下列联表:年龄是否喜欢甲队合计不喜欢甲队喜欢甲队高于30岁pq45不高于30岁154055合计15p +40q +100若工作人员从调查的所有人中任取一人,取到喜欢甲队的人的概率为35,依据小概率值0.005α=的独立性检验,推断年龄与是否喜欢甲队______(填“有”“无”)关联.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.α0.0500.0100.0050.0012K 3.8416.6357.87910.828(2022·福建厦门·高一期末)15.某电池厂有A ,B 两条生产线制造同一型号可充电电池.现采用样本量比例分配的分层随机抽样,从某天两条生产线上的成品中随机抽取样本,并测量产品可充电次数的均值及方差,结果如下:项目抽取成品数样本均值样本方差A 生产线产品82104B 生产线产品122004则20个产品组成的总样本的方差为_____.(2022·天津津衡高级中学有限公司高三阶段练习)16.对正在横行全球的“新冠病毒”,某科研团队研发了一款新药用于治疗,为检验药效,该团队从“新冠”感染者中随机抽取若干名患者,检测发现其中感染了“普通型毒株”、“奥密克戎型毒株”、“其他型毒株”的人数占比为5:3:2.对他们进行治疗后,统计出该药对“普通型毒株”、“奥密克戎毒株”、“其他型毒株”的有效率分别为78%、60%、75%,那么你预估这款新药对“新冠病毒”的总体有效率是________;若已知这款新药对“新冠病毒”有效,求该药对“奥密克戎毒株”的有效率是________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)(2022·全国·高一课时练习)17.某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h )可以把这批电子元件分成六组.由于工作中不慎将部分数据丢失,现有以下部分图表:分组[)100,200[)200,300[)300,400[)400,500[)500,600[]600,700频数3020频率0.20.4(1)求图2中A 的值;(2)补全图2频率分布直方图,并求图2中阴影部分的面积;(3)为了某次展销会,用分层抽样的方法在寿命位于[)400,600内的产品中抽取5个作为样本,那么在[)400,500内应抽取多少个?(2022·全国·高一单元测试)18.在①样本容量为190,②抽取的高一学生人数为36这两个条件中任选一个,补充在下面问题中,并解答问题.某校为了解学生课外阅读情况,将每周阅读时间超过10小时的学生称为“阅读者”,在“阅读者”中按年级用分层随机抽样的方法抽取部分学生进行问卷调查.已知该校高一、高二、高三的学生人数和“阅读者”情况分别如图(1)和图(2)所示,且______.(1)求抽取的“阅读者”中高三学生的人数;(2)为了深入了解高三学生阅读情况,利用随机数表法抽取样本时,先对被抽取的高三“阅读者”按01,02,03,…进行编号,然后从随机数表第8行第5列的数字开始从左向右读,依次抽取5个编号,写出被选出的5个学生的编号.(注:如下为随机数表的第8行至第11行)630163785916955947199850717512867358332112342978645607825207443815510013注:如果选择多个条件分别解答,按第一个解答计分.(2022·河南信阳·高二期末(文))19.随着人们生活水平的提高,国家倡导绿色安全消费,菜篮子工程从数量保障型转向质量效益型.为了测试甲、乙两种不同有机肥料的使用效果,某科研单位用西红柿做了对比实验,分别在两片实验区各摘取100个,对其质量的某项指标值进行检测,质量指数值达到35及以上的为“质量优等”,由测量结果绘成如下频率分布直方图,其中质量指数值分组区间是:[)20,25,[)25,30,[)30,35,[)35,40,[]40,45.(1)分别求甲片实验区西红柿的质量指数的平均值和中位数,并从统计学的角度说明平均值、中位数哪一个更能代表甲片实验区西红柿的质量指数;(2)请根据题中信息完成下面的列联表,并判断是否有99.9%的把握认为“质量优等”与使用不同的肥料有关;甲有机肥料乙有机肥料合计质量优等质量非优等合计()()()()()22n ad bc x a b c d a c b d -=++++.()20P x x ≥0.1000.0500.0100.0050.0010x 2.7063.8416.6357.87910.828(2022·陕西·宝鸡市金台区教育体育局教研室高二期末(理))20.如图是某采矿厂的污水排放量(y 单位:吨)与矿产品年产量(x 单位:吨)的折线图:(1)依据折线图计算相关系数(r 精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系?(若||0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)若可用线性回归模型拟合y 与x 的关系,请建立y 关于x 的线性回归方程,并预测年产量为10吨时的污水排放量.相关公式:()(niix x yy r --∑0.95≈≈.回归方程ˆˆˆybx a =+中,121()()ˆˆˆ,.()niii nii x x y y b a y bxx x ==--==--∑∑(2022·全国·高一单元测试)21.2022年“中国航天日”线上启动仪式在4月24日上午举行,为普及航天知识,某校开展了“航天知识竞赛”活动,现从参加该竞赛的学生中随机抽取了60名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“航天达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)若该中学参加这次竞赛的共有2000名学生,试估计全校这次竞赛中“航天达人”的人数;(2)估计参加这次竞赛的学生成绩的80%分位数;(3)若在抽取的60名学生中,利用分层随机抽样的方法从成绩不低于70分的学生中随机抽取6人,则从成绩在[70,80),[80,90),[90,100]内的学生中分别抽取了多少人?(2022·宁夏·石嘴山市第三中学模拟预测(文))22.新型冠状病毒肺炎COVID-19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.下表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.日期代码x 12345678累计确诊人数y481631517197122为了分析该国累计感染人数的变化趋势,小王同学分别用两杆模型:①2ˆybx a =+,②ˆydx c =+对变量x 和y 的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差e ˆi ii y y =- ):经过计算得81()()728i i i x x y y =--=∑,821()42i i x x =-=∑,81()()6868i i i z z y y =--=∑,821(3570i i z z =-=∑,其中2i iz x =,8118i i z z ==∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;(2)根据(1)问选定的模型求出相应的回归方程(系数均保留两位小数);(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数做出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少?(结果保留整数)附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()81821ˆiii ii x x y y bx x ==--=-∑∑,ˆˆay bx =-.参考答案:1.C【分析】直接由获取数据的途径求解即可.【详解】“中国天眼”主要是通过观察获取数据.故选:C .2.C【分析】根据随机数表法的概念直接得解.【详解】根据随机数表法可得选出的个体编号依次为:12,02,01,04,15,第5个个体编号为15,故选:C.3.C【分析】根据分层抽样的抽取比例相同求解即可.【详解】解:由3个区人口数之比为2:3:5,得第三个区所抽取的人数最多,所占比例为50%.又因为此区抽取了100人,所以3个区所抽取的总人数为100÷50%=200,即这个样本的容量为200.故选:C .4.C【分析】先求得ˆb的值,再据此模型计算出35C 时卖出奶茶的杯数.【详解】由题可知1(510152025)155x =++++=,1(2620161414)185y =++++=,由ˆ181527b=+,可得3ˆ5b =-,则3ˆ352765y=-⨯+=则据此模型预计35C 时卖出奶茶的杯数为6.故选:C 5.C【分析】根据独立性检验的方法即可求解.【详解】由题意可知,()()()()()22 5.879 5.024n ad bc a b c d a c b d χ-=≈>++++,所以在犯错误的概率不超过2.5%的前提下可认为“学生对2022年冬奥会的关注与性别有关”.故选:C.6.A【分析】令ln z y =,可得z 与x 的回归方程为ln z bx a =+,根据散点图,可得z 与x 正相关,所以0b >,根据纵截距大于0,可得a 的范围,即可得答案.【详解】因为e bx y a =,令ln z y =,则z 与x 的回归方程为ln z bx a =+.根据散点图可知z 与x 正相关,所以0b >.由回归直线图象可知:回归直线的纵截距大于0,即ln 0a >,所以1a >,故选:A.7.B【分析】分别计算甲类、乙类品牌汽车的2CO 排放量的平均值和方差即可求出答案.【详解】甲类品牌汽车的2CO 排放量的平均值80110120140150120(g/km)5x ++++==甲,甲类品牌汽车的2CO ,排放量的方差2222221[(80120)(110120)(120120)(140120)(150120)]6005s =⨯-+-+-+-+-=甲.乙类品牌汽车的2CO 排放量的平均值100120100120160120(g/km)5x ++++==乙,乙类品牌汽车的2CO 排放量的方差22221[(100120)(120120)(100120)5s =⨯-+-+-+乙22(120120)(160120)]480-+-=,所以22乙甲<s s .故选:B.8.A【分析】利用方差的定义、计算公式进行判断.【详解】根据题意,平均数85x =,方差()502211858.250i i s x ==-=∑,所以()5021858.250410ii x =-=⨯=∑,若存在60x =,则()26085625410-=>,则方差必然大于8.2,不符合题意,所以60不可能是所有成绩中的一个数据.又()2788549410-=<,()285850410-=<,()210085225410-=<.故B ,C ,D 错误.故选:A .9.ABD【分析】根据普查的适用情形即可判断A,根据分层抽样的抽样比即可求解B,根据标准差的含义即可判断C ,根据平均数的性质即可判断D.【详解】对于A:了解生产的产品是否合格,合理的调查方式为抽样调查,故A 正确;对于B,根据分层抽样的抽样比可知样本容量为()63480420=135420⨯+,故B 对对于C:因为<甲乙s s ,所以甲的数据更稳定,故C 错误,对于D:根据平均数的性质:(1,2,3,,)i i y ax b i n =-=⋅⋅⋅的平均数为ax b -,故D 对故选:ABD 10.ACD【分析】根据雷达图逐项判断可得答案.【详解】甲厂轮胎宽度分别为194,194,194,195,196,197,乙厂轮胎宽度分别为191,193,194,195,195,196,甲厂轮胎宽度平均数为19431951961971956⨯+++=,乙厂轮胎宽度平均数为19521911931941961946⨯++++=,195194>,故A 正确;甲厂轮胎宽度的众数是194,乙厂轮胎宽度的众数是195,195194>,故B 错误;甲厂轮胎宽度的中位数为195194194.52+=,乙厂轮胎宽度的中位数为195194194.52+=,故C 正确;甲厂轮胎宽度的极差为1971943-=,乙厂轮胎宽度极差为1961915-=,53>,故D 正确.故选:ACD .11.BC【分析】设2t x =,则ˆ6yt a =+,求出样本中心点即可判断选项A,B ;利用残差公式计算判断选项C ;令6x =,计算即可判断选项D.【详解】解:设2t x =,则ˆ6yt a =+,由已知得11(1491625)11,(2173693142)5855t y =++++==++++=所以586118a =-⨯=-,故选项A 错误,选项B 正确;在2ˆ68yx =-中,令4x =,得24ˆ64888y =⨯-=,所以此回归模型第4周的残差44ˆ93885y y=-=-=.故选项C 正确;在2ˆ68yx =-中,令6x =,得26ˆ668208y =⨯-=,故选项D 错误.故选:BC .12.ABC【分析】回归直线方程的斜率大小可以判断A 和D ;残差为真实值与估计值之差,进而判断C ;根据题意算出新的相关变量的平均值,进一步求出 a,进而判断B.【详解】对A ,因为回归直线的斜率大于0,即相关变量x ,y 具有正相关关系,故A 正确;对B ,将2x =代入 20.4y x =-得 3.6y =,则去掉两个歧义点后,得到新的相关变量的平均值分别为2105 3.6109,Y 8282X ⨯⨯====, 953322a=-⨯=-,此时的回归直线方程为 33y x =-,故B 正确;对C ,x =4时, 343=9y =⨯-,残差为8.9-9=-0.1,故C 正确;对D ,斜率3>1,此时随x 值增加相关变量y 值增加速度变大,D 错误.故选:ABC.13.120【分析】根据表中数据求得样本中心(),x y ,代入回归方程y bx a =+$$$后求得 a,然后再求当15x =的函数值即可.【详解】由上表可知:2456830405060705,5055x y ++++++++====.得样本点的中心为()5,50,代入回归方程y bx a =+$$$,得507515a =-⨯=$.所以回归方程为 715y x =+,将15x =代入可得:120y =$.故答案为:12014.有【分析】先根据条件列方程组求出p 、q ,然后计算2K 查表可知.【详解】由题知403100545q p q +⎧=⎪⎨⎪+=⎩,解得20,25q p ==所以()221002540152024508.2497.87940604555297K ⨯-⨯==>⨯⨯⨯所以有99.5%的把握认为年龄与是否喜欢甲队有关.故答案为:有15.28【分析】利用均值公式计算出总样本的均值,再利用方差的公式:22211n ii S x x n ==-∑,求出21nii x=∑,进一步求出总样本的方差即可.【详解】依题意得,82221121048Ai i S x ==-=∑,1222211200412B i i S x ==-=∑,解得:()822184210i i x ==⨯+∑,()12221124200ii x==⨯+∑,又8128210122002042020A B x x x +⨯+⨯=== ,()()20812222221112221120420201842101242002042028.i i i i i i S x x x x ===⎛⎫∴=-=⨯+- ⎪⎝⎭⎡⎤=⨯⨯++⨯+-⎣⎦=∑∑∑∴20个产品组成的总样本的方差为28.故答案为:28.16.72%##182525%##14【分析】依据统计数据的平均数求法即可求得这款新药对“新冠病毒”的总体有效率;依据条件概率即可求得已知这款新药对“新冠病毒”有效条件下该药对“奥密克戎毒株”的有效率.【详解】(1)53278%60%75%72%101010⨯+⨯+⨯=(2)360%1025%72%⨯=故答案为:72%;25%17.(1)0.001A =(2)频率分布直方图见解析,阴影部分的面积为0.5(3)4个【分析】(1)根据频率除以组距等于A ,结合图中的数据求解即可,(2)根据频率分布表中的数据可补全频率分布上直方图,阴影部分的面积等于第4组和第5组的频率和,(3)利用分层抽样的定义求解.(1)由题意可知0.1100A =⨯,所以0.001A =.(2)补全后的频率分布直方图如图所示,阴影部分的面积为0.0041000.0011000.5⨯+⨯=.(3)由分层抽样的性质,知在[)400,500内应抽取0.4540.40.1⨯=+(个).18.(1)条件选择见解析,高三学生的人数为90(2)依次选出的编号是63,78,59,16,47【分析】(1)首先确定分层随机抽样的抽样比,再利用“阅读者”中高三学生的人数乘以抽样比即可.(2)利用随机数表法的规则依次取数即可.【详解】(1)由题图知,该校“阅读者”中,高一、高二、高三学生人数分别为180010%180⨯=,160020%320⨯=,150030%450⨯=.选①,因为样本容量为190,所以抽取的“阅读者”中高三学生的人数为45019090180320450⨯=++.选②,因为抽取的高一学生人数为36,所以抽取的“阅读者”中高三学生的人数为3645090180⨯=.(2)根据题意,从随机数表第8行第5列的数字开始从左向右读,依次选出的编号是63,78,59,16,47.19.(1)平均值为34.5,中位数为35.91,中位数更能代表甲片实验区西红柿的质量指数;(2)表格见解析,有99.9%的把握认为,“质量优等”与使用不同的肥料有关【分析】(1)根据频率分布直方图计算平均数即可,中位数是通过排序得到的,不受极端值的影响,故从统计学的角度中位数更能代表甲片实验区西红柿的质量指数.(2)根据频率分布直方图,补全列联表,计算2x ,即可得出结论.(1)解:甲片实验区西红柿的质量指数的平均值为22.50.0527.50.1532.50.237.50.5542.50.0534.5⨯+⨯+⨯+⨯+⨯=,设甲片实验区西红柿的质量指数的中位数为x ,则0.050.150.2(35)0.110.5x +++-⨯=,所以35.91x ≈,故甲片实验区西红柿的质量指数的中位数为35.91,从统计学的角度中位数更能代表甲片实验区西红柿的质量指数.(2)由题意可得22⨯列联表为甲有机肥料乙有机肥料合计质量优等603090质量非优等4070110合计100100200,()()()()()222200(42001200)18.18210010011090x a b n ad c d a c b d bc -⨯-=++=≈⨯⨯⨯++,因为()210.8280.001P x ≥≈,所以有99.9%的把握认为,“质量优等”与使用不同的肥料有关.20.(1)相关系数0.95,可用线性回归模型拟合y 与x 的关系(2)ˆ0.3 2.5yx =+,5.5吨【分析】(1)代入数据,算出相关系数r ,将其绝对值与0.75比较,即可判断可用线性回归模型拟合y 与x 的关系.(2)先求出回归方程,求出当10x =时的值,即为预测值.【详解】(1)由折线图得如下数据计算得:5x =,4y =,51()()6i i i x x y y =--=∑,552211()20,()2i i i i x x y y ==-=-=∑∑所以相关系数0.95r =≈,因为||0.75r >,所以可用线性回归模型拟合y 与x 的关系(2)6ˆ0.3,20b==40.352ˆˆ.5ay bx =-=-⨯=,所以回归方程为ˆ0.3 2.5yx =+,当10x =时,ˆ 5.5y=,所以预测年产量为10吨时的污水排放量为5.5吨21.(1)600人;(2)85;(3)3人,2人,1人.【分析】(1)根据频率分布直方图可求成绩在[80,100]内的频率,从而可求“航天达人”的人数.(2)根据频率和可确定成绩的80%分位数在[80,90)内,根据公式可求80%分位数;(3)根据成绩在[70,80),[80,90),[90,100]的频率比值可求各自抽取人数.【详解】(1)由频率分布直方图可知,成绩在[80,100]内的频率为0.020×10+0.010×10=0.3,则估计全校这次竞赛中“航天达人”的人数约为2000×0.3=600人.(2)由频率分布直方图可知,成绩在[40,50)内的频率为0.005×10=0.05,成绩在[50,60)内的频率为0.015×10=0.15,成绩在[60,70)内的频率为0.020×10=0.2,成绩在[70,80)内的频率为0.030×10=0.3,成绩在[80,90)内的频率为0.020×10=0.2,所以成绩在80分以下的学生所占的比例为70%,成绩在90分以下的学生所占的比例为90%,所以成绩的80%分位数一定在[80,90)内,而0.80.78010805850.90.7-+⨯=+=-,因此估计参加这次竞赛的学生成绩的80%分位数约为85.(3)因为0.3630.30.20.1⨯=++,0.2620.30.20.1⨯=++,0.1610.30.20.1⨯=++,所以从成绩在[70,80),[80,90),[90,100]内的学生中分别抽取了3人,2人,1人.22.(1)选择模型①,理由见解析(2)2ˆ 1.92 1.04yx =+(3)157【分析】(1)选择模型①.根据残差的意义直接判断;(2)套公式求出系数,即可得到y 关于x 的回归方程;(3)将9x =代入,即可求得.【详解】(1)选择模型①.理由如下:根据残差图可以看出,模型①的估计值和真实值相对比较接近,模型②的残差相对较大一些,所以模型①的拟合效果相对较好(2)由(1),知y 关于x 的回归方程为2ˆybx a =+,令2z x =,则ˆy bz a =+.由所给数据得:1(1491625364964)25.58z =+++++++=,1(481631517197122)508y =+++++++=,8121()()6868ˆ 1.923570()iii nii z z y y b z z ==--==≈-∑∑.ˆˆ50 1.9225.5 1.04ay bz =-≈-⨯=,∴y 关于x 的回归方程为2ˆ 1.92 1.04y x =+,(3)将9x =代入上式,得2ˆ 1.929 1.04156.56157y=⨯+=≈(人),所以预测该地区第9天新型冠状病毒感染确诊的累计人数为157人.。