一种改进的FP-Growth关联规则挖掘算法的实现
关联规则挖掘方法

关联规则挖掘方法一、前言关联规则挖掘是数据挖掘中的一个重要领域,它可以帮助我们发现数据中隐藏的规律和关系,从而为商业决策和市场营销提供支持。
本文将介绍关联规则挖掘的方法和步骤,包括数据预处理、频繁项集生成、关联规则生成和评估等。
二、数据预处理在进行关联规则挖掘之前,我们需要对原始数据进行预处理。
首先,我们需要去除无用的属性和记录,并对缺失值进行处理。
其次,我们需要将离散型数据转换为数值型数据,并对连续型数据进行离散化。
最后,我们需要对异常值进行检测和处理。
三、频繁项集生成频繁项集是指在数据集中经常出现的一组物品集合。
频繁项集生成是关联规则挖掘的第一步,其目的是找到所有满足最小支持度阈值的频繁项集。
1. Apriori算法Apriori算法是最常用的频繁项集生成算法之一。
它基于两个重要性质:单调性和自由子集性质。
Apriori算法分为两个阶段:候选项集生成和剪枝。
2. FP-growth算法FP-growth算法是一种基于树结构的频繁项集生成算法。
它通过构建一棵FP树来发现频繁项集。
FP-growth算法相对于Apriori算法具有更快的速度和更小的空间复杂度。
四、关联规则生成在找到所有频繁项集之后,我们需要从中挖掘出有意义的关联规则。
关联规则是指形如X->Y的规则,其中X和Y都是物品集合,且X∩Y=∅。
1. 关联规则挖掘关联规则挖掘是指从频繁项集中挖掘出满足最小置信度阈值的关联规则。
置信度是指在条件X下出现Y的概率。
2. 关联规则评估关联规则评估是指对挖掘出来的关联规则进行评估和选择。
常用的评价指标包括支持度、置信度、提升度和全置信度等。
五、总结本文介绍了关联规则挖掘的方法和步骤,包括数据预处理、频繁项集生成、关联规则生成和评估等。
在实际应用中,我们需要根据具体情况选择不同的算法和参数,并进行优化和调整。
关联规则挖掘算法的研究与应用

关联规则挖掘算法的研究与应用引言:关联规则挖掘算法作为数据挖掘领域的重要工具之一,在商业、医疗等领域有着广泛的应用。
通过挖掘数据集中的关联规则,可以发现数据之间的潜在关联关系,为决策提供支持与指导。
本文将对关联规则挖掘算法的研究和应用进行探讨,并分析其在实际问题中的应用效果。
一、关联规则挖掘算法的基本原理关联规则挖掘算法是通过寻找数据集中的频繁项集和关联规则来揭示数据之间的相关性。
算法的基本原理包括:支持度和置信度的计算、频繁项集的挖掘和关联规则的生成。
1. 支持度和置信度的计算:支持度表示一个项集在整个数据集中出现的频率,而置信度表示一个关联规则的可信度。
通过计算支持度和置信度,可以筛选出具有一定频率和可信度的项集和关联规则。
2. 频繁项集的挖掘:频繁项集是指在数据集中出现频率达到预定义阈值的项集。
挖掘频繁项集的常用算法有Apriori算法、FP-growth算法等。
Apriori算法是一种基于逐层搜索的算法,在每一层中利用候选项集生成频繁项集。
而FP-growth算法是一种基于树结构的算法,通过构建FP树和挖掘频繁模式来实现。
3. 关联规则的生成:在挖掘到频繁项集之后,可以利用这些频繁项集生成关联规则。
关联规则的生成常采用Apriori原理,即从频繁项集中根据最小置信度阈值生成关联规则。
二、关联规则挖掘算法的研究进展随着数据挖掘技术的发展,关联规则挖掘算法也得到了不断的改进与扩展。
研究者们提出了许多新的算法和改进方法,以提高关联规则的挖掘效果。
1. 改进的关联规则挖掘算法:针对传统算法在挖掘大规模数据时效率低下的问题,研究者们提出了一些改进的算法。
例如,有基于GPU加速的算法、并行化的算法以及基于增量挖掘的算法等。
这些算法通过利用硬件加速和并行计算技术,可以大幅提升挖掘速度。
2. 多维度关联规则挖掘:除了在单一维度上挖掘关联规则,研究者们还尝试在多维度上进行关联规则的挖掘。
多维关联规则挖掘算法可以同时挖掘多个维度中的关联规则,从而发现更加丰富和准确的关联关系。
关联规则挖掘算法综述

关联规则挖掘算法综述关联规则挖掘算法是数据挖掘中常用的一种算法,用于发现数据集中项之间的相关性。
其主要应用于市场营销、购物篮分析、推荐系统、质量控制等领域,具有很高的实用价值。
本文将就关联规则挖掘算法进行综述。
一、算法概述关联规则挖掘算法是通过寻找数据集中某些项之间的关联规则来实现的,这些关联规则通常用“如果……那么……”的形式表示,如:如果用户购买了咖啡和糖,那么他们可能也会购买牛奶。
其中,“如果”部分被称为先决条件,而“那么”部分称为结果。
在关联规则挖掘算法中,常用的度量方式有支持度和置信度。
支持度表示数据集中同时包含 A 和 B 的概率,置信度表示同时购买 A 和 B 的顾客中,有多少比例购买了 B。
常见的关联规则挖掘算法有 Apriori 算法、FP-Growth 算法、ECLAT 算法等。
二、Apriori 算法Apriori 算法是最早提出的关联规则挖掘算法,其核心思想是利用先验知识,减少候选项集的数量,从而缩短生成关联规则的时间。
该算法的主要步骤如下:1. 找出所有单项集;2. 如果某项集的支持度不低于阈值,则该项集为频繁项集;3. 利用频繁项集生成新的候选项集;4. 如果所有候选项集的支持度都不低于阈值,则从中选出频繁项集;5. 重复第 3 步和第 4 步,直到找不到新的频繁项集为止。
该算法的优点是简单易懂,容易实现。
缺点是计算效率低,对于大规模数据集处理较慢。
三、FP-Growth 算法FP-Growth 算法是另一种比较常见的关联规则挖掘算法,它可以从数据集直接构建频繁项集树,避免了需要生成 candidate set 时的大量的计算。
该算法的主要步骤如下:1. 获取单项集;2. 利用这些单项集和事务数据构建FP树;3. 从FP树中抽取频繁项集;4. 对于每个频繁项集,生成相关规则。
该算法的优点是计算效率高,能够处理大规模数据集。
缺点是实现较为复杂。
四、ECLAT 算法ECLAT 算法是 Apriori 算法的优化版,其核心思想是利用数据集的交集,递归处理候选项集。
一个基于兴趣度的FP-Growth算法改进

一个基于兴趣度的FP-Growth算法改进
曾安平;黄永平;阳万安;李广军;唐远翔
【期刊名称】《宜宾学院学报》
【年(卷),期】2008(008)012
【摘要】人们已经提出了许多用于高效地发现大规模数据库中关联规则的算法,但它们大多会产生大量的关联规则,这些规则中包含很多用户不感兴趣的垃圾规则,且只能发现正项的关联规则.因此,引入兴趣度的概念,对FP-Growth算法进行改造,发现一些用户真正感兴趣的有用关联规则,这些规则允许包含负项规则.
【总页数】3页(P54-56)
【作者】曾安平;黄永平;阳万安;李广军;唐远翔
【作者单位】宜宾学院,计算机与信息科学系,四川,宜宾644000;宜宾学院,物理与电子工程系,四川,宜宾644000;宜宾学院,计算机与信息科学系,四川,宜宾644000;宜宾学院,计算机与信息科学系,四川,宜宾644000;宜宾学院,计算机与信息科学系,四川,宜宾644000
【正文语种】中文
【中图分类】TP311.131
【相关文献】
1.一个基于兴趣度的关联规则度量方法的改进 [J], 王枭翔;陈小强
2.基于时间权重的FP-Growth算法改进 [J], 王英;徐慧
3.基于节点表的FP-Growth算法改进 [J], 王建明;袁伟
4.FP-growth算法改进与分布式Spark研究 [J], 邓玲玲;娄渊胜;叶枫
5.FP-Growth算法改进研究及在电子商务中的应用 [J], 罗建;李艳梅
因版权原因,仅展示原文概要,查看原文内容请购买。
一种基于分解事务矩阵的FP—growth改进算法

步骤 。从 A a a 等人 提 出的频繁模 式挖 掘 以来 , r g wl l
() 1 频繁 1 项集挖掘。扫描一遍数据库 , 到 一 得
挖掘频 繁模 式取 得 了很 大 的发 展 。根 据挖 掘 的 方式 频繁 1 项集 L和每个频繁项集的支持度。 一 () 2 建立 F Te。创建 树 的根节 “ U L , P— re N L ” 第 频繁候 选 项集 的。前一 类 以 A ff 算 法为代 表 , 二次扫描数据库 , 每个事务 中的频繁项按 L降序 po ii 对 A f f算法采用逐层迭代 的搜索方法 , po ii 通过扫描数 排列 , 设排序后的频繁项表为 [ ]其 中, 是第一 PP , l P 据库得 到 K一 集 , 于 生成 ( 项 用 K+1 )一项 集 。 该算 个元素, P是剩余元素表。调用 i e —r ( P 而 n r t e [ st e l 法需 多次 扫描事 务数据 库 , 产生 大 量候 选 项集 , 需要 P , )该算 法 执行如 下 : ]T , 如果 T有 子 N使得 N的 节 很 大 的 IO 负 载 ; 一 类 以不 产 生 候 选 集 的 F 点数值与 P的节点数值相 同, N的计数加 1 否则 / 后 P— 则 ; r wh算 go t 法为 代 表 ,P—go t 产 生候 选 项 集 , F rwh不 要 创 建新 节点 , 将其 节点 数值 设置 为 P的节 点 数值 , 计
不同, 可分为两大类 :数据 库两 次 ,P—g wh算 法 节省 了 IO 开 数设 为 1链接 到其 父节 点 T, F r t o / , 如果 P非 空 , 递归 调 用 销 , [ 总体效 率 比 A f f提高 了一 个 数量 级 。本 文 is r t e P, 。 2 3 po ii n e t r ( N) e 提出了基于分解事务矩阵的 F g wh P— o t 改进算法 , r ( ) P—Te 掘 。 由长 度 为 1的 频 繁 模 式 3F re挖 该算法利用布尔矩阵存储事务信息 , 再通过分解矩 ( 初始后缀模式 ) 开始 , 构造它 的条件模式基 ( F 由 P
fpgrowth关联规则数据详细指标

FPGrowth算法是一种关联分析算法,用于发现频繁项集和关联规则。
以下是FPGrowth算法在关联规则挖掘中涉及的一些关键指标:1.支持度(Support):o定义:在所有项集中{x,y}出现的可能性,即项集中同时出现含有x和y 的概率。
o作用:作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。
2.置信度(Confidence):o定义:在先决条件x发生的情况下,关联结果y发生的概率。
o作用:作为生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。
3.提升度(Lift):o定义:表示在含有x的条件下同时含有y的可能性与没有x的条件下项集含有y的可能性之比。
o作用:评估关联规则的预测强度,提升度大于1表示规则具有正关联,而小于1则表示规则具有负关联。
4.频繁模式树(FP-tree):o定义:这是一种特殊的前缀树,由频繁项头表和项前缀树构成。
它压缩了提供频繁项集的数据库,但仍保留项集关联信息。
o作用:在算法中用于快速查找频繁项集和生成关联规则。
5.频繁项集(Frequent Itemset):o定义:在数据集中出现频率至少为预设值minSupport的项集。
o作用:是生成关联规则的基础,因为一个项集只有是频繁的,其关联规则才可能是有意义的。
6.关联规则(Association Rule):o定义:形如“如果x则y”的规则,其中x和y是项集,且x和y满足支持度和置信度的阈值要求。
o作用:反映数据集中的不同物品之间的关联关系,有助于发现数据中的有趣模式和隐藏关系。
这些是FPGrowth算法中与关联规则挖掘相关的核心指标。
在进行数据挖掘和分析时,了解这些指标对于理解算法的工作原理和结果解释至关重要。
2015.8.25FPGrowth算法及源码介绍
1.1 FPGrowth算法1.1.1 基本概念关联规则挖掘的一个典型例子是购物篮分析。
关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响,分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。
关联规则的相关术语如下:(1)项与项集这是一个集合的概念,在一篮子商品中的一件消费品即为一项(Item),则若干项的集合为项集,如{啤酒,尿布}构成一个二元项集。
(2)关联规则一般记为的形式,X为先决条件,Y为相应的关联结果,用于表示数据内隐含的关联性。
如:表示购买了尿布的消费者往往也会购买啤酒。
关联性强度如何,由三个概念——支持度、置信度、提升度来控制和评价。
例:有10000个消费者购买了商品,其中购买尿布1000个,购买啤酒2000个,购买面包500个,同时购买尿布和面包800个,同时购买尿布和面包100个。
(3)支持度(Support)支持度是指在所有项集中{X, Y}出现的可能性,即项集中同时含有X和Y的概率。
该指标作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。
通过设定最小阈值(minsup),剔除“出镜率”较低的无意义规则,保留出现较为频繁的项集所隐含的规则。
设定最小阈值为5%,由于{尿布,啤酒}的支持度为800/10000=8%,满足基本输了要求,成为频繁项集,保留规则;而{尿布,面包}的支持度为100/10000=1%,被剔除。
(4)置信度(Confidence)置信度表示在先决条件X发生的条件下,关联结果Y发生的概率。
这是生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。
相似的,我们需要对置信度设定最小阈值(mincon)来实现进一步筛选。
具体的,当设定置信度的最小阈值为70%时,置信度为800/1000=80%,而的置信度为800/2000=40%,被剔除。
(5)提升度(lift)提升度表示在含有X的条件下同时含有Y的可能性与没有X这个条件下项集中含有Y 的可能性之比:公式为confidence(artichok => cracker)/support(cracker) = 80%/50% = 1.6。
FP-growth算法及其优化在税务系统中的应用
FP-growth算法及其优化在税务系统中的应用
倪德;马传香
【期刊名称】《计算机应用》
【年(卷),期】2018(038)0z2
【摘要】针对FP-growth算法中需要频繁建立条件模式(FP)树并递归挖掘的问题,提出了在单路径条件FP树情况下的一种基于组合思想而改进的FP-growth算法.通过组合单路径条件FP树中频繁一项集的方法,实现无需递归而达到挖掘频繁项集目的.并以某省地税局风险监控平台系统中的税务数据为基础,使用改进后的FP-growth算法,挖掘纳税人偷税漏税行为中频繁出现的税种税目之间的强关联规则,实验结果表明,改进后的FP-growth算法不仅提高了挖掘频繁项集的效率,而且为税务征管和稽查工作提供了更好的依据.
【总页数】4页(P140-143)
【作者】倪德;马传香
【作者单位】湖北大学计算机与信息工程学院,武汉430062;湖北大学计算机与信息工程学院,武汉430062;教育信息化工程研究中心,武汉430062
【正文语种】中文
【中图分类】TP391.4
【相关文献】
1.改进的并行fp-growth算法在工业设备故障诊断中的应用研究 [J], 张斌;滕俊杰;满毅
2.分布式并行FP-growth算法在二次设备缺陷监测中的应用 [J], 方晓洁;黄伟琼;叶东华;黄宇柏
3.改进FP-Growth算法在考证成绩分析中的应用 [J], 袁明
4.改进的FP-Growth算法在个性化推荐中的应用研究 [J], 刘玥波;徐田翔;徐国庆
5.改进FP-Growth算法在音乐推荐中的应用研究 [J], 潘晓晖;彭炜烨
因版权原因,仅展示原文概要,查看原文内容请购买。
基于模式矩阵的FP-growth改进算法
【作 者】邓丰义;刘震宇
【作者单位】厦门大学管理科学系,福建厦门,361005;厦门大学管理科学系,福建厦门,361005
【正文语种】中 文
【中图分类】TP311.13
【相关文献】
1.基于快速模式增长的FP-growth改进算法 [J], 党敏侠;孟德鑫
2.基于布尔矩阵和MapReduce的FP-Growth算法 [J], 陈兴蜀;张帅;童浩;崔晓靖
3.基于FP-growth的频繁模式挖掘算法的改进 [J], 王利军
4.基于改进的FP-growth算法的高校课程关联度实证研究 [J], 叶福兰
5.基于改进FP-growth算法的售后服务数据挖掘 [J], 王营;高琦;李婷玉;张乐
因版权原因,仅展示原文概要,查看原文内容请购买
基于模式矩阵的FP-growth改进算法
邓丰义;刘震宇
【期刊名称】《厦门大学学报(自然科学版)》
【年(卷),期】2005(044)005
【摘 要】数据挖掘中关联挖掘算法比较典型的有Apriori和FP-growth算法.实验和研究证明FP-growth算法优于Apriori算法.但是针对大型数据库这两种算法都存在着较大缺陷,不仅要两次或多次扫描数据库,而且很难处理支持度和数据变化等关联规则更新问题.作者提出了基于模式矩阵的FP-growth改进算法,它至多扫描数据库一次,特别在更新问题上不用重新扫描数据库.通过实验结果分析,验证了这种改进算法相对于原有FP-growth算法的优势,特别在大数据集下,大大降低了挖掘的时间复杂度.
关联规则挖掘方法的研究及应用
关联规则挖掘方法的研究及应用一、本文概述本文旨在深入研究关联规则挖掘方法,探索其在不同领域的应用价值。
关联规则挖掘是一种数据挖掘技术,旨在从大型数据集中发现项之间的有趣关系,如购物篮分析中经常一起购买的商品组合。
本文首先将对关联规则挖掘的基本概念、原理和方法进行详细的介绍和梳理,为后续的应用研究提供理论基础。
接着,本文将重点探讨关联规则挖掘在多个领域的应用。
这些领域包括但不限于零售业、电子商务、医疗保健、社交网络分析等。
在这些领域中,关联规则挖掘可以帮助我们理解客户行为、优化产品组合、预测疾病趋势、分析社交网络结构等,具有重要的实际应用价值。
本文还将对关联规则挖掘方法的优化和改进进行探讨。
尽管关联规则挖掘已经取得了一些重要的成果,但在处理大规模、高维度、复杂数据集时,仍然存在一些挑战。
因此,我们需要不断探索新的算法和技术,以提高关联规则挖掘的效率和准确性。
本文将总结关联规则挖掘方法的研究现状和未来发展趋势,为相关领域的研究和实践提供参考和借鉴。
通过本文的研究,我们希望能够为关联规则挖掘的应用提供更多的思路和方法,推动其在更多领域发挥更大的作用。
二、关联规则挖掘方法理论基础关联规则挖掘是数据挖掘领域中的一种重要技术,它主要用于发现数据集中项之间的有趣关系。
这些关系通常表现为形如“如果购买了A,则很可能也会购买B”的关联规则。
关联规则挖掘方法理论基础主要涉及到频繁项集和关联规则的产生,以及它们之间的度量指标——支持度和置信度。
我们需要明确什么是频繁项集。
在给定的事务数据库中,如果某个项集出现的频率高于用户设定的最小支持度阈值,那么这个项集就被称为频繁项集。
最小支持度阈值是用户根据实际需求设定的一个参数,它决定了项集被认为是“频繁”的最低标准。
在确定了频繁项集之后,我们可以进一步生成关联规则。
关联规则是一种形如“A -> B”的蕴含关系,其中A和B都是项集。
一个关联规则是否成立,取决于它的支持度和置信度是否满足用户设定的阈值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表 1 事务数据集
T D I Ie tms
一
个 重 要 研 究 方 向 , 9 3年 , 国 IM l dn eerh 19 美 B Amae R sac
始, 构造它的条件模式基 ( P Te 与后缀模式一起 出现的前 由F — re
缀路径集组成 ) 。然后 , 构造它的 F — re P Te 并递归地在该树上进
行挖 掘 。 在 F — rwh 法 的 实 现 步 骤 中 , 键 步 骤 是 建 立 F - re P G o t算 关 P Te
0 01 02 o 0 03 04 0 05 o
A, D, G, M , C, F, L, P A, C, L, , P B, F, M O, B, L, , F, H O B, K, N C, S, A, C, L, M , F, E, P, N
据库 , 并分别挖 掘每个条件数据库 , 产生频繁项集 ; 主要优 点 其
是: 不需要 产生候选 项 , 仅在产生频繁 1 项集和创建 F — r 时 一 P Te e 遍历数据集; 其缺点是 : 需要 占用大量内存 。 文 中 , 者在 分析 F — rwh 法 的基础 上 , 算法 建 立 笔 P Go 算 t 对 F — r 的过程进行 了改进 , P Te e 并结合关 系数据库管理系统强大的
C ne etr的A rw l等人 首先提 出了从交易数据库 中发现用户模 ga a 式 的相 关 性 问题 , 且 提 出 了 基 于 频 繁 集 的 A r r算 法 。 并 pi i o
A r r算法 是一 种最有 影响 的挖 掘布 尔关 联规则 频繁项 集算 pi i o 法, 该算法使用频繁项集性质 的先验知识 , 采用 一种称作逐层搜 索的迭代方法 ,一 k 项集用 于探索 (+ ) 项集。但是 , pi i k 1一 A r r算法 o
5 0 河南科技2 l . OO 上 6
步调用 isr t e [f1T 算法 都将遍历 T的子节点 , ne —r ( P , ) t e p 且遍历子
M:
P 2 :
N:l
图 1 表 1 据 生成 的 F — re 数 P Te
子N使得 N的节点数值与P的节点数值相同 , N的计数加 1否 则 ;
则创建一个新节点 , 将其节点数值设置为 P的节点数值 , 计数设
置 为 1链 接 到 其 父 节 点 T, 果 P 空 , 归 调 用 isr t e P , 如 非 递 net r ( , —e
信"
黔
蔫
一
謇 瞧 鞠
熊 术 D
誓囊
绷 藏国露憨豌赛
信阳师范学院计算机与信息技术学院 尤 磊
关联 规则 ( soitn R ls挖掘 是数据挖 掘研究 领域 的 A scao ue) i
兰 洋
的 过程 。对 于一 个 事 务数 据 集 , 照 F — rwh算法 建 立 的 按 P Got F — re P Te 能够反映数据集频繁项信息 , 对数据集的挖掘转变为对
N) 。
对事务数 据集 的每个事务逐个调用 isr t e[i】 ) ne _r ( P, 算法 t e p T 的过 程 就是 建 立 F - r P Te e的过 程 。 现设 “ 是频 繁 表项 , T是 F — re l ] 示 l的第 j , 有 p L[lP L[] ・i ]调 用 P Te , [表 i j i 项 则 = i ,= i .L[ , 1 2. n
骤如下。
1 . 频繁 1项集排序 。首先 , 一 扫描一遍数据库 , 得到频繁 1项 一 集和每个频繁项集 的支持度 , 得到频繁 1项集 L 一 。 2 . F — re 建立 P Te 。首先 , 创建树的根节点并用 “ U L 标记 , N L” 第二次扫描数 据库 , 对每个事务 中的频繁项按 L中的次序排 列 , 设排 序后 的频 繁项表 为[i , 中 , 是第一个元素 , P p 1其 P P 而 是剩余 元素的表 。调用 isr t e [I]T , 算法执行 如下 : net r ( P, )该 e p 如果 T 有
数 据 处理 功 能 , 现 了改 进算 法 。 实
一
l l
0 0 6 0 0 7
A ,F , ,C ,P B ,M O . N
、
F — rwh 析 P Go t分
F — rwh Fe un— a e G o h 算法是一种不产生候 P G o (rq etP tr t tn r ) t w 选项集而采用模式增 长的方式挖掘频 繁模式 的算法 , 主要步 其
isr t e n et r 算法将频繁表项 li e iJ I压缩到频繁模式树 F — re 根 ‘ P Te 中,
_
3F — re . Te 挖掘。 由长度为 1 P 的频繁模式 ( 初始后缀模式 ) 开
据算法 原理 , 首先判断 T是否有子节 点 N与 P 即L[ 的数值相 ( il 1 同) 同则计数 加 1否则创 建一个新 的T的子节点 。即在每一 相 ,
有两大缺点 : 一是可能产生大量 的候选集 , 二是 可能需要重复扫 描数 据 库 。Jne i w i n等 人 在 20 a Ha 0 0年 提 出 了 F — r t P Go h w ( rqe tP t r G o t) Feun— a e t n rwh 算法 。其 主要 思想是 : 首先 , 将提供 频繁项集 的数据库压缩到一棵频繁模式树 (P Te ) , F — re 中 但仍保 留项集关联信息 , 然后 , 将这种压缩后 的数据库分成一组条件数