Tuning the Tadpole Improved Clover Wilson Action on Coarse Anisotropic Lattices

合集下载

SBN陶瓷英文文献

SBN陶瓷英文文献

Ferroelectric and piezoelectric properties of tungsten substituted SrBi 2Ta 2O 9ferroelectric ceramicsIndrani Coondoo *,S.K.Agarwal a ,A.K.Jha ba Superconductivity and Cryogenics Division,National Physical Laboratory,Dr K.S.Krishnan Road,New Delhi 110012,India bDepartment of Applied Physics,Delhi College of Engineering,Bawana Road,Delhi 110042,India1.IntroductionDefects in crystals significantly influence physical and various other properties of materials [1].For instance,as it is well known,doping by other elements leads to significant changes in the electrical properties of silicon.Historically,‘‘defect engineering’’has been developed in the field of semiconducting materials such as compound semiconductors as well as in diamond,Si and Ge [2–4].Subsequently,the concept of defect engineering has been applied to other functional materials,and the significant improve-ment in material properties have been achieved in high transition-temperature superconductors [5],amorphous SiO 2[6],photonic crystals [7]and also in the field of ferroelectrics,such as BaTiO 3,Pb(Ti,Zr)O 3(PZT),etc.[8,9].Various structural and electrical properties of bismuth layer-structured ferroelectrics (BLSF)are also strongly affected on deviation from stoichiometric composi-tions and defects have been recognized as a crucially important factor [10–13].It has been found that in BLSF small changes in chemical composition result in significantly altered dielectric and ferroelectric properties including dielectric constant and remanent polarization.In SrBi 2Ta 2O 9(SBT)and SrBi 2Nb 2O 9(SBN),orthor-hombic structural distortions with non-centrosymmetric spacegroup A 21am cause spontaneous ferroelectric polarization (P s )along a axis [14,15].SBT,a member of the BLSF family,has occupied an important position among the Pb-free ferroelectric memory materials [16–18].Tungsten (W 6+)has recently been investigated as a dopant for bismuth titanates and lanthanum doped bismuth titanates,in which the remanent polarization was observed to enhance when a small amount of Ti 4+was substituted by W 6+[19,20].With the objective to improve structural,dielectric and ferroelectric proper-ties,the hexavalent tungsten (W 6+)was chosen as a donor cation for partial replacement of the pentavalent tantalum (Ta 5+)SBT.In this report,the effect of tungsten substitution in SBT (SBTW),on the microstructural,ferroelectric and piezoelectric properties is reported.The results including the improvement in polarization properties have been discussed.2.ExperimentalSamples of compositions SrBi 2(W x Ta 1Àx )2O 9(SBWT),with x =0.0,0.025,0.050,0.075,0.10and 0.20were synthesized by solid-state reaction method taking SrCO 3,Bi 2O 3,Ta 2O 5and WO 3(all from Aldrich)in their stoichiometric proportions.The powder mixtures were thoroughly ground and passed through sieve of appropriate size and then calcined at 9008C in air for 2h.The calcined mixtures were ground and admixed with about 1–1.5wt%polyvinyl alcohol (Aldrich)as a binder and then pressed at $300MPa into disk shaped pellets.The pellets were sintered at 12008C for 2h in air.Materials Research Bulletin 44(2009)1288–1292A R T I C L E I N F O Article history:Received 3October 2008Received in revised form 5December 2008Accepted 6January 2009Available online 15January 2009Keywords:A.CeramicsC.X-ray diffractionD.FerroelectricityA B S T R A C TTungsten substituted samples of compositions SrBi 2(W x Ta 1Àx )2O 9(x =0.0,0.025,0.050,0.075,0.10and 0.20)were synthesized by solid-state reaction method and studied for their microstructural,electrical conductivity,ferroelectric and piezoelectric properties.The X-ray diffractograms confirm the formation of single phase layered perovskite structure in the samples with x up to 0.05.The temperaturedependence of dc conductivity vis-a`-vis tungsten content shows a decrease in conductivity,which is attributed to the suppression of oxygen vacancies.The ferroelectric and piezoelectric studies of the W-substituted SBT ceramics show that the remanent polarization and d 33values increases with increasing concentration of tungsten up to x 0.05.Such compositions with low conductivity and high P r values should be excellent materials for highly stable ferroelectric memory devices.ß2009Elsevier Ltd.All rights reserved.*Corresponding author.Present address:Liquid Crystal Group,National Physical Laboratory,Dr K.S.Krishnan Road,New Delhi 110012,India.Tel.:+919810361727;fax:+911125170387.E-mail address:indrani_coondoo@ (I.Coondoo).Contents lists available at ScienceDirectMaterials Research Bulletinj o ur n a l h o m e p a g e :w w w.e l se v i e r.c om /l oc a t e /m a t r e sb u0025-5408/$–see front matter ß2009Elsevier Ltd.All rights reserved.doi:10.1016/j.materresbull.2009.01.001X-ray diffractograms of the sintered samples were recorded using a Bruker diffractometer in the range 108 2u 708with CuK a radiation.The sintered pellets were polished to a thickness of 1mm and coated with silver paste on both sides for use as electrodes and cured at 5508C for half an hour.Electrical conductivity was performed using Keithley’s 6517A Electrometer.The polarization–electric field (P –E )hysteresis measurements were done at room temperature using an automatic P –E loop tracer based on Sawyer–Tower circuit.Piezoelectric charge co-efficient d 33was measured using a Berlincourt d 33meter after poling the samples in silicone–oil bath at 2008C for half an hour under a dc electric field of 60–70kV/cm.3.Results and discussion3.1.Structural and micro-structural studiesThe phase formation and crystal structure of the ceramics were examined by X-ray diffraction (XRD),which is shown in Fig.1.The XRD patterns of the samples show the characteristic peaks of SBT.The peaks have been indexed with the help of a computer program–POWDIN [21]and the refined lattice parameters are given in Table 1.It is observed that a single phase layered perovskite structure is maintained in the range 0.0 x 0.05.Owing to the same co-ordination number i.e.6and the smallerionic radius of W (0.60A˚)in comparison to Ta (0.64A ˚),there is a high possibility of tungsten occupying the tantalum site.The observance of unidentified peak of very low intensity in the compositions with x >0.05indicates the solubility limit of W concentration in SBT.The unidentified peak is possibly due to tungsten not occupying the Ta sites in the structure as the intensity of this peak is observed to increase with tungsten content.Composition and sintering temperature influences the micro-structure such as grain growth and densification of the specimen,which in turn control other properties of the material [11,13].The effects of W substitution on the microstructure have been examined by SEM and the obtained micrographs are shown in Fig.2.It shows the microstructure of the fractured surface of the studied samples.It is clearly observed that W substitution has pronounced effect on the average grain size and homogeneity of the grains.Randomly oriented and anisotropic plate-like grains are observed in all the samples.It is also observed that the average grain size increases gradually with increasing W content.The average grain size in the sample with x =0.0is $2–3m m while that in the sample with x =0.20the size increases to $5–7m m.3.2.Electrical studiesThe electrical conductivity of ceramic materials encompasses a wide range of values.In insulators,the defects w.r.t.the perfect crystalline structure act as charge carriers and the consideration of charge transport leads necessarily to the consideration of point defects and their migration [22].Many mechanisms were put forward to explain the conductivity mechanism in ceramics.Most of them are approximately divided into three groups:electronic conduction,oxygen vacancies ionic conduction,and ionic and p-type mixed conduction [22].Intrinsic conductivity results from the movement of the component ions,whereas conduction resulting from the impurity ions present in the lattice is known as extrinsic conductivity.At low temperature region (ferroelectric phase),the conduction is dominated by the extrinsic conduction,whereas the conduction at the high-temperature paraelectric phase ($300–7008C)is dominated by the intrinsic ionic conduction [23,25].Fig.3shows the temperature dependence of dc conductivity (s dc )for the undoped and doped SBT samples.The curves show that the conductivity increases with temperature.This is indicative of negative temperature coefficient of resistance (NTCR)behavior,a characteristic of dielectrics [22].It is observed in Fig.3that throughout the temperature range,the dc conductivity of the doped samples are nearly two to three orders lower than that of the undoped sample.Two predominant conduction mechanisms indicated by slope changes in the two different temperature regions are observed in Fig.3.Such changes in the slope in the vicinity of the ferro-paraelectric transition region have been observed in other ferroelectric materials as well [23,24].In addition,it is also observed (Table 2)that the activation energy calculated using the Arrhenius equation [22]in the paraelectric phase increase from $0.80eV for the undoped sample to $2eV for the doped samples.The X-ray photoemission spectroscopic study has confirmed that when Bi 2O 3evaporates during high-temperature processing,vacancy complexes are formed in the (Bi 2O 2)2+layers [26].As a result,defective (Bi 2O 2)2+layers are inherently present in SBT.The undoped SBT shows n-type conductivity,since when oxygen vacancies are created,it leaves behind two trapped electrons [27]:O o !12O 2"þV o þ2e 0(1)where O o is an oxygen ion on an oxygen site,V o is a oxygen vacant site and e 0represents electron.The conductivity in the perovskites can be described as an ordered diffusion of oxygen vacancies [28].Their motion is manifested by enhanced ionic conductivity associated with an activation energy value of $1eV [26].These oxygen vacancies can be suppressed by addition of donors,since the donor oxide contains more oxygen per cation than the host oxide it replaces [29].It has been reported that conductivity in Bi 4Ti 3O 12(BIT)can be significantly decreased,up to three orders of magnitude with the addition of donors,such as Nb 5+and Ta 5+at the Ti 4+sites [23,30].A few other studies on layered perovskites have also reported a decrease inconductivityFig.1.XRD patterns of SrBi 2(W x Ta 1Àx )2O 9samples sintered at 12008C.Table 1Lattice parameters of SrBi 2(W x Ta 1Àx )2O 9samples.Concentration of W a (A ˚)b (A ˚)c (A ˚)0.0 5.5212 5.513924.92230.025 5.5214 5.520225.10790.05 5.5217 5.519925.05850.075 5.5191 5.504525.05670.10 5.5142 5.506125.0850.205.51335.493925.0861I.Coondoo et al./Materials Research Bulletin 44(2009)1288–12921289with addition of donors [23,24,31].In the present study,the Ta 5+-site substitution by W 6+in SBT can be formulated using a defect chemistry expression as WO 3þV o!Ta 2O 512W Ta þ3O o (2)It shows that the oxygen vacancies are reduced upon the substitution of donor W 6+ions for Ta 5+ions.Hence,it is reasonable to believe that the conductivity in SBT is suppressed by donor addition.As per the above discussion,the high s dc observed in the undoped SBT (Fig.3)can be attributed to the motion of oxygen vacancies.As already discussed,the doped samples show reduced conductivity because the transport phenomena involving oxygen vacancies are greatly reduced.The high E a value of $1.75–2eVcorresponding to the high-temperature region in the doped ceramics is consistent with the fact that in the donor-doped materials,the ionic conduction reduces [32].The activation energy E a in the low temperature ferroelectric region (Table 2)corre-sponds to extrinsic conduction.At lower temperatures the extrinsic conductivity results from the migration of impurity ions in the lattice.Some of these impurities may also be associated with lattice defects.Pure SBT has large number of Schottky defects (oxygen vacancies)in addition to impurity ions whereas in the doped samples,due to charge neutrality,there is relatively less content of oxygen vacancies.Thus,in the doped samples the conductivity in the low temperature region is largely due to the impurity ions only.This explains the high activation energy in pure SBT in the low temperature region compared to doped samples (Table 2).In the high-temperature region,the value of E a in the doped samples is observed to increase with W concentration up to x =0.05but beyond that,it decreases (Table 2).The decrease in the activation energy for samples with x >0.05suggests an increase in the concentration of mobile charge carriers [33].This observation can be ascribed to the existence of multiple valence states of tungsten.Since tungsten is a transitional metal element,the valence state of W ions in a solid solution most likely varies from W 6+to W 4+depending on the surrounding chemical environment [34].When W 4+are substituted for the Ta 5+sites,oxygen vacancies would be created,i.e.one oxygen vacancy would be created for every two tetravalent W ions entering the crystal structure,whichFig.3.Variation of dc conductivity with temperature in SrBi 2(W x Ta 1Àx )2O 9samples.Fig.2.SEM micrographs of fractured surfaces of SrBi 2(W x Ta 1Àx )2O 9samples with (a)x =0.0,(b)x =0.025,(c)x =0.050,(d)x =0.075,(e)x =0.10and (f)x =0.20Table 2Activation energy (E a )in the high-temperature paraelectric region and low temperature ferroelectric region;Curie temperature (T c )in SrBi 2(W x Ta 1Àx )2O 9samples.Concentration of W E a (high temp.)(eV)E a (low temp.)(eV)T c (8C)0.00.790.893110.025 1.920.593080.05 1.960.543250.075 1.940.543380.10 1.860.573680.201.740.54390I.Coondoo et al./Materials Research Bulletin 44(2009)1288–12921290explains the increase in the concentration of mobile charge carriers which ultimately results in an decrease in the E a beyond x>0.05. Hence it is reasonable to conclude that W ions in the SBWT exists as a varying valency state,i.e.at lower doping concentration they exist in hexavalent state(W6+)and at a higher doping concentra-tion,they tend to exist in lower valency states[8].The P–E loops of SrBi2(Ta1Àx W x)2O9are shown in Fig.4.It is observed that W-doping results in formation of well-defined hysteresis loops.Fig.5shows the compositional dependence of remanent polarization(2P r)and the coercivefield(2E c)of SrBi2(Ta1Àx W x)2O9samples.Both the parameters depend on W content of the samples.It is observed that2P rfirst increases with x and then decreases while2E cfirst decreases with x and then increases(Fig.5).The optimum tungsten content for maximum2P r ($25m C/cm2)is observed to be x=0.075.It is known that ferroelectric properties are affected by compositional modification,microstructural variation and lattice defects like oxygen vacancies[10,35,36].In hard ferroelectrics, with lower valent substituents,the associated oxide vacancies are likely to assemble in the vicinity of domain walls[37,38].These domains are locked by the defects and their polarization switching is difficult,leading to an increase in E c and decrease in P r[38]. On the other hand,in soft ferroelectrics,with higher valent substituents,the defects are cation vacancies whose generation in the structure generally increases P r.Similar observations have been made in many reports[38–41].Watanabe et al.[42]reported a remarkable improvement in ferroelectric properties in the Bi4Ti3O12ceramic by adding higher valent cation,V5+at the Ti4+ site.It has also been reported that cation vacancies generated by donor doping make domain motion easier and enhance the ferroelectric properties[43].Further,it is known that domain walls are relatively free in large grains and are inhibited in their movement as the grain size decreases[44].In the larger grains, domain motion is easier which results in larger P r.Also for the SBT-based system,it is known that with increase in the grain size the remanent polarization also increases[45,46].Based on the obtained results and above discussion,it can be understood that in the undoped SBT,the oxygen vacancies assemble at sites near domain boundaries leading to a strong domain pinning.Hence,as observed,well-saturated P–E loop for pure SBT is not obtained.But in the doped samples,the suppression of the oxygen vacancies reduces the pinning effect on the domain walls,leading to enhanced remanent polarization and lower coercivefield.Also,the increase in grain size in tungsten added SBT,as observed in SEM micrographs(Fig.2)contribute to the increase in polarization values.In the present study,the grain size is observed to increase with increasing W concentration.However, the2P r values do not monotonously increase and neither the E c decreases continuously with increasing W concentration(Fig.5). The variation of P r and E c beyond x>0.05,seems possibly affected by the presence of secondary phases(observed in XRD diffracto-grams),which hampers the switching process of polarization [47–50].Also,beyond x>0.05the increase in the number of charge carriers in the form of oxygen vacancies leads to pinning of domain walls and thus a reduction in the values of P r and increase in E c is observed.Fig.6shows the variation of piezoelectric charge coefficient d33 with x in the SrBi2(Ta1Àx W x)2O9.The d33values increases with increase in W content up to x=0.05.A decrease in d33values is observed in the samples with x!0.075.The piezoelectric coefficient,d33,increases from13pC/N in the sample with x=0.0to23pC/N in the sample with x=0.05.It is known that the major drawback of SBT is its relatively higher conductivity,which hinders proper poling[51].High resistivity is therefore important for maintenance of poling efficiency at high-temperature[52,53].The W-doped SBT samples show an electrical conductivity value up to three orders of magnitude lower than that of undoped sample(Fig.3).The positional variation of2P r and2E c in SrBi2(W x Ta1Àx)2O9samples.Fig.6.Variation of d33in SrBi2(W x Ta1Àx)2O9samples.Fig. 4.P–E hysteresis loops in SrBi2(W x Ta1Àx)2O9samples recorded at roomtemperature.I.Coondoo et al./Materials Research Bulletin44(2009)1288–12921291decrease in conductivity upon donor doping improve the poling efficiency resulting in the observed higher d33values.Moreover, since the grain size increases with W content in SBT,it is reasonable to believe that the increase in grain size will also contribute to the increase in d33values[54].The decrease in the value of d33for samples with x!0.075is possibly due to the presence of secondary phases as observed in diffractograms[1,51,55]and the increase in oxygen vacancies for samples with x>0.05.4.ConclusionsX-ray diffractograms of the samples reveal that the single phase layered perovskite structure is maintained in the samples with tungsten content x0.05.SEM micrographs reveal that the average grain size increases with increase in W concentration. The temperature dependence of the electrical conductivity shows that tungsten doping results in the decrease of conductivity by up to three order of magnitude compared to W free SBT.All the tungsten-doped ceramics have higher2P r than that of the undoped sample.The maximum2P r($25m C/cm2)is obtained in the composition with x=0.075.The reduced conductivity allows high-temperature poling of the doped samples.Such compositions with low loss and high P r values should be excellent materials for highly stable ferroelectric memory devices.The d33value is observed to increase with increasing W content up to x0.05.The value of d33 in the composition with x=0.05is$23pC/N as compared to$13 pC/N in the undoped sample.AcknowledgmentsThe authors sincerely thank Prof.P.B.Sharma,Dean,Delhi College of Engineering,India for his generous support and providing ample research infrastructure to carry out the research work.The authors are thankful to Dr.S.K.Singhal,Scientist, National Physical Laboratory,India for his fruitful discussion and suggestions.References[1]Y.Noguchi,M.Miyayama,K.Oikawa,T.Kamiyama,M.Osada,M.Kakihana,Jpn.J.Appl.Phys.41(2002)7062.[2]A.Bonaparta,P.Giannozzi,Phys.Rev.Lett.84(2000)3923.[3]S.Connell,E.Siderashaddad,K.Bharuthram,C.Smallman,J.Sellschop,M.Bos-senger,Nucl.Instrum.Methods B85(1994)508.[4]T.Derry,R.Spits,J.Sellschop,Mater.Sci.Bull.11(1992)249.[5]K.Salama,D.F.Lee,Supercond.Sci.Technol.7(1994)177.[6]H.Hosono,Y.Ikuta,T.Kinoshita,M.Hirano,Phys.Rev.Lett.87(2001)175501.[7]S.Noda,A.Chutinan,M.Imada,Nature407(1999)608.[8]S.Shannigrahi,K.Yao,Appl.Phys.Lett.86(2005)092901.[9]G.H.Heartling,nd,J.Am.Ceram.Soc.54(1971)1.[10]H.Watanabe,T.Mihara,H.Yoshimori,C.A.Paz De Araujo,Jpn.J.Appl.Phys.34(1995)5240.[11]T.Atsuki,N.Soyama,T.Yonezawa,K.Ogi,Jpn.J.Appl.Phys.34(1995)5096.[12]T.Noguchi,T.Hase,Y.Miyasaka,Jpn.J.Appl.Phys.35(1996)4900.[13]M.Noda,Y.Matsumuro,H.Sugiyama,M.Okuyama,Jpn.J.Appl.Phys.38(1999)2275.[14]R.E.Newnham,R.W.Wolfe,R.S.Horsey,F.A.D.Colon,M.I.Kay,Mater.Res.Bull.8(1973)1183.[15]A.D.Rae,J.G.Thompson,R.L.Withers,Acta Crystallogr.Sect.B:Struct.Sci.48(1992)418.[16]H.M.Tsai,P.Lin,T.Y.Tseng,J.Appl.Phys.85(1999)1095.[17]Y.Shimakawa,Y.Kubo,Y.Nakagawa,T.Kamiyama,H.Asano,F.Izumi,Appl.Phys.Lett.74(1999)1904.[18]Y.Noguchi,M.Miyayama,T.Kudo,Phys.Rev.B63(2001)214102.[19]J.K.Kim,T.K.Song,S.S.Kim,J.Kim,Mater.Lett.57(2002)964.[20]W.T.Lin,T.W.Chiu,H.H.Yu,J.L.Lin,S.Lin,J.Vac.Sci.Technol.A21(2003)787.[21]Wu E.,POWD,An interactive powder diffraction data interpretation and indexingprogram Ver2.1,School of Physical Science,Flinders University of South Australia, Bedford Park,S.A.JO42AU.[22]R.C.Buchanan,Ceramic Materials for Electronics:Processing,Properties andApplications,Marcel Dekker Inc.,New York,1998.[23]H.S.Shulman,M.Testorf,D.Damjanovic,N.Setter,J.Am.Ceram.Soc.79(1996)3124.[24]M.M.Kumar,Z.G.Ye,J.Appl.Phys.90(2001)934.[25]Y.Wu,G.Z.Cao,J.Mater.Res.15(2000)1583.[26]B.H.Park,S.J.Hyun,S.D.Bu,T.W.Noh,J.Lee,H.D.Kim,T.H.Kim,W.Jo,Appl.Phys.Lett.74(1999)1907.[27]C.A.Palanduz,D.M.Smyth,J.Eur.Ceram.Soc.19(1999)731.[28]C.R.A.Catlow,Superionic Solids&Solid Electrolytes,Academic Press,New York,1989.[29]M.V.Raymond,D.M.Symth,J.Phys.Chem.Solids57(1996)1507.[30]S.S.Lopatin,T.G.Lupriko,T.L.Vasiltsova,N.I.Basenko,J.M.Berlizev,Inorg.Mater.24(1988)1328.[31]M.Villegas,A.C.Caballero,C.Moure,P.Duran,J.F.Fernandez,J.Eur.Ceram.Soc.19(1999)1183.[32]Y.Wu,G.Z.Cao,J.Mater.Sci.Lett.19(2000)267.[33]B.H.Venkataraman,K.B.R.Varma,J.Phys.Chem.Solids66(2005)1640.[34]C.D.Wagner,W.M.Riggs,L.E.Davis,F.J.Moulder,Handbook of X-ray Photoelec-tron Spectroscopy,Perkin Elmer Corp.,Chapman&Hall,1990.[35]Y.Noguchi,I.Miwa,Y.Goshima,M.Miyayama,Jpn.J.Appl.Phys.39(2000)1259.[36]M.Yamaguchi,T.Nagamoto,O.Omoto,Thin Solid Films300(1997)299.[37]W.Wang,J.Zhu,X.Y.Mao,X.B.Chen,Mater.Res.Bull.42(2007)274.[38]T.Friessnegg,S.Aggarwal,R.Ramesh,B.Nielsen,E.H.Poindexter,D.J.Keeble,Appl.Phys.Lett.77(2000)127.[39]Y.Noguchi,M.Miyayama,Appl.Phys.Lett.78(2001)1903.[40]Y.Noguchi,I.Miwa,Y.Goshima,M.Miyayama,Jpn.J.Appl.Phys.39(2000)L1259.[41]B.H.Park,B.S.Kang,S.D.Bu,T.W.Noh,L.Lee,W.Joe,Nature(London)401(1999)682.[42]T.Watanabe,H.Funakubo,M.Osada,Y.Noguchi,M.Miyayama,Appl.Phys.Lett.80(2002)100.[43]S.Takahashi,M.Takahashi,Jpn.J.Appl.Phys.11(1972)31.[44]R.R.Das,P.Bhattacharya,W.Perez,R.S.Katiyar,Ceram.Int.30(2004)1175.[45]S.B.Desu,P.C.Joshi,X.Zhang,S.O.Ryu,Appl.Phys.Lett.71(1997)1041.[46]M.Nagata,D.P.Vijay,X.Zhang,S.B.Desu,Phys.Stat.Sol.(a)157(1996)75.[47]J.J.Shyu,C.C.Lee,J.Eur.Ceram.Soc.23(2003)1167.[48]I.Coondoo,A.K.Jha,S.K.Agarwal,Ferroelectrics326(2007)35.[49]T.Sakai,T.Watanabe,M.Osada,M.Kakihana,Y.Noguchi,M.Miyayama,H.Funakubo,Jpn.J.Appl.Phys.42(2003)2850.[50]C.H.Lu,C.Y.Wen,Mater.Lett.38(1999)278.[51]R.Jain,V.Gupta,A.Mansingh,K.Sreenivas,Mater.Sci.Eng.B112(2004)54.[52]I.S.Yi,M.Miyayama,Jpn.J.Appl.Phys.36(1997)L1321.[53]A.J.Moulson,J.M.Herbert,Electroceramics:Materials,Properties,Applications,Chapman&Hall,London,1990.[54]H.T.Martirena,J.C.Burfoot,J.Phys.C:Solid State Phys.7(1974)3162.[55]R.Jain,A.K.S.Chauhan,V.Gupta,K.Sreenivas,J.Appl.Phys.97(2005)124101.I.Coondoo et al./Materials Research Bulletin44(2009)1288–1292 1292。

矿物加工技术双语翻译

矿物加工技术双语翻译

PartI words Chapter1 Introductionalluvial mining---冲积矿床开采aluminium—铝an optimum grind size—最佳磨矿粒度barytes—重晶石comminution—粉碎degree of liberation—解离度diamond ores—金刚石矿石Electrical conductivity properties—导电性fluorite—萤石fundamental operations—基本选别流程release/liberation—解离Galena—leadsulphide—方铅矿sphalerite-zincsulphide—闪锌矿cassiterite-tin oxide—锡石grinding—磨矿Laboratory and pilot scale test-work—试验室和半工业实验Line flowsheet—线流程locking of mineral and gangue—连生体Middlings—中矿mill(concentrator)--- 选矿厂milling costs—磨矿消耗Minerals definition(p.1)metallic ore processing –金属矿石加工gangue—脉石Mineral—矿物ore—矿石crust of the earth—地壳sea-bed—河床non-metallic ores—非金属矿石bauxite—氧化铝optical properties—光学性质Ore bodies—矿体part per million(ppm)Primary grind—粗磨product handling—产品处理pyrite –黄铁矿Recovery—回收率Refractory bricks—耐火砖abrasives—磨料Separation—分离Smelter—熔炼sorting—拣选subsequent concentration process—后续选别流程Tailings retreatment—尾矿再处理as-mined(run of mine)—原矿mineral processing(ore dressing/mineral dressing/milling(磨选))—矿物加工portion/concentrate—精矿discard/tailing—尾矿the flowsheet—工艺流程The minimum metal content(grade)—最低金属含量The valuable mineral—有用矿物complex ores—复合矿The waste minerals—脉石enrichment process—富集工艺metal losses—金属损失the enrichment ratio—富集比efficiency of mineral processing operations—矿物加工作业效率The ratio of concentration –选别比the grade/assay—品位ultra-fine particles—超细颗粒unit concentration processes—单元选别流程Chapter2Ore handingopen-pit ore(露天开采的矿石p30,左下)run-of-mine ore(原矿)Typical washing plant flowsheet(洗矿车间典型流程figure 2.2) tipper (卸料器p33 右上)Shuttle belt (梭式胶带p33 右中)Gravity bucket elevator (斗式重力提升机p33 右下)Ore storage(矿物储存p35 右上)包括:stockpile (矿场)bin(矿仓)tank (贮槽)Front-end loader (前段式装载机p35 右上)Bucket-wheel reclaimer(斗轮式装载机p35 右上)Reclaim tunnel system(隧道装运系统p35 右上)The amount of reclaimable material/the live storage(有效贮量p35 右中figure 2.7) Conditioning tank (调和槽p36 左上)Chain-feeder (罗斯链式给矿机figure 2.9)Cross-section of elliptical bar feeder (椭圆形棒条给矿机figure 2.10)Vibrating grizzly feeder (振动格筛给矿机p37 左上)Apron feeder (板式给矿机figure 2.11)Belt feeder (胶带给矿机p37 右下)Chapter 4 particle size analysisacicular(针状);adverse(相反的);algorithm(算法);angular(多角状);aperture(孔径);apex (顶点);apparatus(仪器);arithmetic(运算器,算术); assaying(化验);attenuation(衰减);beaker decantation(烧杯倾析); blinding(阻塞);calibration(校正);charge(负荷);congest(充满);consecutive(连续的);contract(压缩);convection current(对流); conversion factor(转化因子); crystalline(晶体状);cyclosizer(旋流分析仪);de-aerated(脱气);derive:(得出);dilute(稀释);dimensionless quantity(无量纲量); dispersing agent(分散剂);distort(变形);duplicate(重复); electrical impedence(电阻); electroetching(电蚀刻); electroform(电铸);elutriation(淘析);epidote(绿帘石);equilateral triangle(等边三角形); flaky(薄片状);flask(烧瓶);fractionated sample(分级产品); gauze(筛网);geometric(几何学的);granular(粒状的);graticule(坐标网);gray scale(灰度);ground glass(毛玻璃);hand sieve(手动筛);histogram(直方图);immersion(浸没);inter-conversion(相互转变); interpolate(插值);intervals(区间);laminar flow(粘性流体);laser diffraction(激光衍射);light scattering method(光散射法); line of slope(斜率);logarithmic(对数的);machine sieve(机械筛); mechanical constraint(机械阻力);mesh(目);modular(系数的,制成有标准组件的);near size(临界筛孔尺寸);nominal aperture();nylon(尼龙);opening(开口);ordinate(纵坐标);perforated(多孔的);pipette(吸管);plotting cumulative undersize(累积筛下曲线); median size(中间粒度d50);polyhedron(多面体); reflection(反射); procure(获得);projected area diameter(投影面直径);ratio of the aperture width(筛比);refractive index(折射率);regression(回归) ;reproducible(可再生的);sedimentation balance(沉降天平); sedimentation(沉降) ;segment(片);sensor section(传感器); sieve shaker(振动筛,振筛器); spreadsheet(电子表格);simultaneously(同时地);size distribution(粒度分布);spectrometer(摄谱仪);stokes diameter(斯托克斯直径);subdivide(细分);sub-sieve(微粒);suction(吸入);syphon tube(虹吸管);tabulate(列表);tangential entry(切向入口);terminal velocity(沉降末速);truncate(截断);twill(斜纹图);two way cock(双通塞);ultra sonic(超声波);underside(下侧);vertex(顶点);vortex outlet (涡流出口);wetting agent(润湿剂);Chapter 5 comminutionattrition----- 研磨batch-type grindability test—小型开路可磨性实验bond’s third theory—邦德第三理论work index----功指数breakage—破碎converyor--- 运输机crack propagation—裂隙扩展crushing and grinding processes—破碎磨矿过程crushing----压扎crystalline material—晶状构体physical and chemical bond –物理化学键diameter—直径elastic—弹性fine-grained rocks—细粒岩石coarse-grained rocks—粗粒岩石chemical additives—化学添加剂fracture----碎裂free surface energy—自由表面能potential energy of atoms—原子势能graphical methods---图解法grindability test—可磨性实验crushing and grinding efficiency--- 破碎磨矿效率grinding media—磨矿介质gyratory crusher---旋回破碎机tumbling mill --- 筒形磨矿机impact crusher—冲击式破碎机high pressure griding roll--高压辊磨impact breaking-冲击破碎impact—冲击jaw—颚式破碎机material index-材料指数grindability—可磨性mill----选矿厂non-linear regression methods--- 非线性回归法ore carry--- 矿车Parameter estimation techniques—参数估计技术reduction ratio—破碎比roll crusher—辊式破碎机operating work indices—操作功指数Scraper—电铲slurry feed—矿浆SPI(SAG Power Index)—SAG 功指数simulation of comminution processes and circuits—粉碎工艺流程模拟stirred mill—搅拌磨stram energy---应变能the breakage characteristics—碎裂特性the crystalline lattice—晶格the reference ore---参比矿石product size distribution--- 产品粒度分布theory of comminution—粉碎理论brittle—脆性的tough material--- 韧性材料platstic flow—塑性流动Tracer methods—示踪法vibration mill-- 振动磨矿机Chapter 6CrushersAG/SAG mills(autogenousgrinding/semiautogenous grinding) 自磨、半自磨Alternating working stresses交替工作应力Amplitude of swing 摆幅Arrested or free crushing 夹压碎矿、自由碎矿Bell-shaped 钟形Belt scales 皮带秤Binding agents 粘结剂Bitumen 沥青Blending and rehandling 混合再处理Breaker plate 反击板Capital costs 基建费用Capstan and chain 铰杆铰链Cast iron or steel 铸铁铸钢Chalk 白垩Cheek plates 夹板Choke fed 阻塞给矿(挤满给矿)Choked crushing 阻塞碎矿Chromium carbide 碳铬合金Clay 粘土Concave 凹的Convex 凸的Corrugated 波纹状的Cross-sectional area 截面积Cross-section剖面图Crusher gape 排矿口Crusher throat 破碎腔Crushing chamber 破碎腔Crushing rolls 辊式碎矿机Crushing 破碎Discharge aperture 排矿口Double toggle 双肘板Drilling and blasting 打钻和爆破Drive shaft 驱动轴Eccentric sleeve 偏心轴套Eccentric 偏心轮Elliptical 椭圆的Epoxy resin 环氧树脂垫片Filler material 填料Fixed hammer impact mill 固定锤冲击破碎机Flakes 薄片Flaky 薄而易剥落的Floating roll 可动辊Flywheel 飞轮Fragmentation chamber 破碎腔Grizzlies 格条筛Gypsum 石膏Gyratory crushers 旋回破碎机Hammer mills 锤碎机Hydraulic jacking 液压顶Idle 闲置Impact crushers 冲击式破碎机Interparticle comminution 粒间粉碎Jaw crushers 颚式破碎机Limestone 石灰岩Lump 成块Maintenance costs 维修费Manganese steel mantle 锰钢罩Manganese steel 锰钢Mechanical delays 机械检修Metalliferous ores 有色金属矿Nip 挤压Nodular cast iron 球墨铸铁Nut 螺母Pack 填充Pebble mills 砾磨Pillow 垫板Pitman 连杆Pivot 轴Plates 颚板Primary crushing 初碎Receiving areas 受矿面积Reduction ratio 破碎比Residual stresses 残余应力Ribbon 流量Rivets 铆钉Rod mills 棒磨Roll crushers 辊式碎矿机Rotary coal breakers 滚筒碎煤机Rotating head 旋回锥体Scalp 扫除Secondary crushing 中碎Sectionalized concaves分段锥面Set 排矿口Shales 页岩Silica 二氧化硅Single toggle 单肘板Skips or lorries 箕斗和矿车Spider 壁架Spindle 竖轴Springs 弹簧Staves 环板Steel forgings 锻件Stroke 冲程Stroke 冲程Surge bin 缓冲箱Suspended bearing 悬吊轴承Swell 膨胀Swinging jaw 动颚Taconite ores 铁燧岩矿石Tertiary crushing 细碎The (kinetic) coefficient of friction (动)摩擦系数The angle of nip啮角The angle of repose 安息角The cone crusher 圆锥破碎机The cone lining 圆锥衬里The gyradisc crusher 盘式旋回碎矿机Thread 螺距Throughput 处理量Throw 冲程Tripout 停机Trommel screen 滚筒筛Valve 阀Vibrating screens 振动筛Wear 磨损Wedge-shaped 锥形Chapter 7 grinding millsAbrasion 磨蚀Alignment Amalgamation 融合/汞剂化Asbestos 石棉Aspect ratio 纵横比/高宽比Attrition 磨蚀Autogenous mill 自磨机Ball mill 棒磨Barite 重晶石Bearing 轴承Bellow 吼叫Belly 腹部Best-fit 最优化Bolt 螺栓Brittle 易碎的Build-up 增强Butt-weld 焊接Capacitance 电容量Cascade 泻落Cataract 抛落Central shaft 中心轴Centrifugal force 离心力Centrifugal mill 离心磨Chipping 碎屑Churning 搅拌器Circulating load 循环负荷Circumferential 圆周Clinker 渣块Cobbing 人工敲碎Coiled spring 盘簧Comminution 粉碎Compression 压缩Contraction 收缩Corrosion 腐蚀Corrugated 起褶皱的Crack 裂缝Critical speed 临界速度Crystal lattice 晶格Cushion 垫子Cyanide 氰化物Diagnose 诊断Dilute 稀释Discharge 放电Drill coreElastic 有弹性的Electronic belt weigher 电子皮带秤Elongation 延长率Emery 金刚砂Energy-intensive 能量密度Entangle 缠绕Expert system 专家系统Explosives 易爆炸的Flange 破碎Fracture 折断、破碎Front-end loader 前段装备Gear 齿轮传动装置Girth 周长Granulate 颗粒状的Grate discharge 磨碎排矿GreenfieldGrindability 可磨性Grinding media 磨矿介质Groove 沟槽Helical 螺旋状的High carbon steel 高碳钢High pressure grinding roll 高压滚磨Hopper 加料斗Housing 外壳Impact 冲击Impeller 叶轮IntegralInternal stress 内部压力Kinetic energy 运动能Least-square 最小平方Limestone 石灰岩Liner 衬板Lock 锁Lubricant 润滑剂Magnetic metal liner 磁性衬板Malleable 有延展性的Manhole 检修孔Material index 材料指数Matrix 矿脉Muffle 覆盖Multivariable control 多元控制Newtonian 牛顿学的Nodular cast iron 小块铸铁Non-Newtonian 非牛顿的Normally 通常Nuclear density gauge 核密度计Nullify废弃Oblique间接地,斜的Operating 操作Orifice 孔Output shaft 产量轴Overgrinding 过磨Parabolic 像抛物线似地Pebble 砾石Pebble mill 砾磨PendulumPilot scale 规模试验Pinion 小齿轮Pitting 使留下疤痕Plane 水平面PloughPotential energy 潜力Pressure transducer 压力传感器Prime moverPrismatic 棱柱形的Probability 可能性/概率Propagation 增值Pulp density 矿浆密度Pulverize 粉碎Quartzite 石英岩Radiused 半径Rake 耙子Reducer还原剂Reduction ratio 缩小比Retention screenRetrofit 改进Rheological 流变学的Rib骨架Rod 棒Roller-bearing 滚动轴承Rotor 旋转器Rubber liner 橡胶衬板Rupture 裂开ScatsScoop铲起Scraper 刮取器Screw flight 螺旋飞行Seasoned 干燥的SegregationSet-point 选点Shaft 轴Shear 剪Shell 外壳Simulation 模拟SlasticitySpalling 击碎Spigot 龙头Spill 溢出/跌落Spin 使什么旋转Spiral classifier 螺旋分级机Spout 喷出Stationary 静止的Stator 固定片Steady-state 不变的Steel plate 钢盘Steel-capped 钢帽Stirred mill搅拌磨Stress concentration 应力集中Sump 水池Taconite 铁燧岩Tensile stress 拉伸力Thicken 浓缩Throughput 生产量Thyristor 半导体闸流管Time lag 时间间隔Tower mill塔磨Trajectory 轨迹Trial and error 反复试验Trunnion 耳轴Tube millTumbling mill 滚磨Undergrinding 欠磨Underrun 低于估计产量Unlock 开启Vibratory mill 振动磨Viscometer 黏度计Viscosity 黏性Warp 弯曲Wearing linerWedged 楔形物Work index 功指数Chapter 8Industrial screeningBauxite 铝土矿Classification 分级Diagonal 斜的Dry screening 干筛Efficiency or partition curve 效率曲线、分离曲线Electrical solenoids 电磁场Elongated and slabby particles 细长、成板层状颗粒Granular 粒状Grizzly screens 格筛Hexagons 六边形Hydraulic classifiers 水力旋流器Linear screen 线性筛Mesh 网眼Mica 云母Near-mesh particles 近筛孔尺寸颗粒Octagons 八边形Open area 有效筛分面积Oscillating 振荡的Perpendicular 垂直的Polyurethane 聚氨酯Probabilistic 概率性的Resonance screens 共振筛Rhomboids 菱形Rinse 漂洗Rubber 橡胶Screen angle 颗粒逼近筛孔的角度Shallow 浅的Static screens 固定筛Tangential 切线的The cut point(The separation size)分离尺寸Trommels 滚筒筛Vibrating screens 振动筛Water sprays 喷射流Chapter9 classification added increment(增益)aggregate(聚集)alluvial(沉积)apex(顶点) deleterious(有害) approximation(概算,近似值)apron(挡板)buoyant force(浮力)correspond(符合,相符)critical dilution(临界稀释度)cut point(分离点)descent(降落)dilute(稀释的)drag force(拖拽力)duplex(双)effective density(有效比重)emergent(分离出的)equilibrium(平衡)exponent(指数)feed-pressure gauge(给矿压力表)free-settling ratio(自由沉降比)full teeter(完全摇摆流态化)geometry(几何尺寸)helical screw(螺旋沿斜槽)hindered settling(干涉沉降)hollow cone spray(中空锥体喷流)Hydraulic classifier(水力分级机)imperfection(不完整度)incorporated(合并的)infinite(任意的)involute(渐开线式)Mechanical classifier(机械分级机)minimize(最小限度的)multi-spigot hydro-sizer(多室水力分级机)pressure-sensitive valve(压敏阀)Newton’s law(牛顿定律)orifice(孔)overflow(溢流)parallel(平行的,并联的)performance or partition curve(应用特性曲线)predominate(主导)pulp density(矿浆比重)quadruple(四倍)quicksand(流砂体)Reynolds number(雷诺数)scouring(擦洗)Settling cones(圆锥分级机)shear force(剪切力)simplex(单)simulation(模拟)slurry(矿浆)sorting column(分级柱)spherical(球形的)spigot(沉砂)Spiral classifiers(螺旋分级机)Stokes’ law(斯托克斯定律)surging(起伏波动)suspension(悬浮液)tangential(切线式)Teeter chamber(干涉沉降室)teeter(摇摆)terminal velocity(末速)The rake classifier(耙式分级机) turbulent resistance(紊流阻力)underflow (底流)vertical axis(垂直轴)vessel(分级柱)viscosity(粘度)viscous resistance(粘滞阻力) vortex finder(螺旋溢流管)well-dispersed(分散良好的)Chapter 10gravity concentrationactive fluidised bed(流化床); amplitude(振幅);annular(环状的); asbestos(石棉); asymmetrical (非对称的); baddeleyite (斜锆石); barytes (重晶石); cassiterite (锡石); chromite(铬铁矿);circular (循环的); circumference (圆周); closed-circuit (闭路);coefficient of friction (摩擦系数); compartment (隔箱);concentration criterion (分选判据); conduit(管);contaminated(污染);counteract (抵消);degradation (降解);density medium separation (重介质分选); detrimental(有害的);diaphragm (隔膜);dilate (使膨胀);displacement (置换);divert (转移);dredge (挖掘船);eccentric drive(偏心轮驱动); encapsulate (密封);equal settling rate(等沉降比);evenly(均匀的);excavation (采掘);exhaust (废气);feed size range (给矿粒度范围); fiberglass (玻璃纤维);flash floatation (闪浮);flattened(变平);float (浮子);flowing film (流膜);fluid resistance (流体阻力);gate mechanism (开启机制);halt(停止);hand jig (手动跳汰机);harmonic waveform (简谐波);helical(螺旋状的);hindered settling (干涉沉降);hutch(底箱);immobile (稳定);interlock (连结);interstice (间隙);jerk(急拉);kyanite (蓝晶石);lateral (侧向的,横向的);linoleum (漆布);mica(云母);momentum (动量) ;mount(安装);multiple (多重的);multi-spigot hydrosizer (多室水力分级机); natural gravity flower (自流); neutralization (中和作用);nucleonic density gauge (核密度计); obscure (黑暗的,含糊不清的); obsolete (报废的);onsolidation trickling (固结滴沉);open-circuit (开路);pebble stone/gravels(砾石); periphery(周边的);pinched (尖缩的) ;platelet(片晶);platinum(铂金);plunger (活塞);pneumatic table(风力摇床); pneumatically (靠压缩空气); porus(孔);preset(预设置);pressure sensing(压力传感的); pressurize (加压);pulsating (脉动的);pulsion/suction stroke (推/吸冲程); quotient (商);radial(径向的);ragging (重物料残铺层);rate of withdraw (引出速率);raw feed (新进料);reciprocate(往复);refuse (垃圾);render (使得);residual (残留的);retard(延迟);riffle (床条);rinse(冲洗);rod mill (棒磨);rotary water vale (旋转水阀); rubber(橡胶);saw tooth (锯齿形的);scraper(刮板);sectors(扇形区);semiempirical(半经验的); settling cone (沉降椎);shaft (轴);side-wall (侧壁);sinterfeed (烧结料);sinusoidal (正弦曲线);slime table(矿泥摇床);sluice (溜槽);specular hematite (镜铁矿); spinning (自转;离心分离); splitters (分离机);starolite (星石英);staurolite (十字石);stratification (分层); stratum (地层); submerge (浸没);sump (池); superimposed (附加的); surge capacity (缓冲容量); synchronization (同步的); throughput(生产能力); tilting frames (翻筛); timing belt (同步带); trapezoidal shaped (梯形的); tray (浅盘) ;trough(槽);tungsten (钨);uneven (不均匀的);uniformity(均匀性);uranolite (陨石);validate(有效);vicinity (附近);water (筛下水);wolframite (黑钨矿,钨锰铁矿);Chapter 11 dense medium separation(DMS) barite(重晶石)Bromoform(溴仿)bucket(桶)carbon tetrachloride(四氯化碳)centrifugal(离心的)chute(陡槽)Clerici solution(克莱利西溶液)corrosion(腐蚀)dependent criterion(因变判据)discard(尾渣)disseminate(分散,浸染)DMS(重介质分选)dominant(主导)Drewboy bath(德鲁博洗煤机)drum separator(双室圆筒选矿机)Drum separator(圆筒选矿机)Dyna Whirlpool()effective density of separation(有效分选比重)envisage(设想)feasibility(可行性)ferrosilicon(硅铁)flexible sink hose(沉砂软管)fluctuation(波动)fluorite(萤石)furnace(炉)grease-tabling(涂脂摇床)hemisphere(半球)incombustible(不可燃烧的)incremental(递增的)initially(最早地)installation(设备)LARCODEMS(large coal dense medium separator)lead-zinc ore(铅锌矿)longitudinal(纵向)magneto-hydrostatic(磁流体静力)mathematical model(数学模型)metalliferous ore(金属矿)nitrite(亚硝酸盐)Norwalt washer(诺沃特洗煤机)olfram(钨)operating yield(生产回收率)optimum(最佳)organic efficiency(有机效率)paddle(搅拌叶轮)Partition coefficient or partition number(分配率)Partition or Tromp curve(分配或特劳伯曲线)porous(多孔的)probable error of separation;Ecart probable (EP)(分选可能误差)raw coal(原煤)recoverable(可回收的)residue(残渣)revolving lifter(旋转提升器)two-compartmentrigidity(稳定性)sand-stone(砂岩)shale(页岩)siliceous(硅质的)sink-discharge(排卸沉砂)sodium(钠)sulphur reduction(降硫)tabulate(制表)tangential(切线)tedious (乏味)Teska Bash()Tetrabromoethane(TBE,四溴乙烷)theoretical yield(理论回收率)toxic fume(有毒烟雾)tracer(示踪剂)typical washability curves(典型可选性曲线)Vorsyl separator(沃尔西尔选矿机)weir(堰板)well-ventilated(通风良好的)Wemco cone separator(维姆科圆锥选矿机)yield stress(屈服应力)yield(回收率)Chapter 12 Froth flotationActivator(活化剂)adherence (附着,坚持)adhesion(附着)adhesion(粘附)adjoining(毗邻,邻接的)adsorption(吸附)aeration(充气)aeration(充气量)aerophilic(亲气疏水的)aerophilic(亲气性)Aggregation(聚集体)agitation(搅动)agitator(搅拌机)allegedly(据称)Amine(胺)baffle(析流板)Bank(浮选机组)barite(重晶石)Barren(贫瘠的)batch(开路)Borne(承担)Bubble(泡沫)bubble(气泡)bubble-particle(泡沫颗粒)bulk flotation (混合浮选)capillary tube(毛细管)cassiterite (锡石)cerussite(白铅矿) chalcopyrite(黄铜矿)circulating load(循环负荷)cleaner(精选)clearance(间隙)Collector(捕收剂)collide(碰撞,抵触)compensate(补偿,抵偿)component(组成)concave(凹)concentrate trade(精矿品位)Conditioning period(调整期)conditioning tank(调和槽)cone crusher(圆锥破碎机)configuration(表面配置,格局) Conjunction(关联,合流)contact angle measurement(接触角测量)contact angle(接触角)copper sulphate(硫酸铜)copper-molybdenum(铜钼矿)core(核心)correspondingly(相关的)cylindrical(圆柱)Davcra cell(page305)decantation(倾析)depressant(抑制剂)deteriorating(恶化)Dilute(稀释)Direct flotation(正浮选)disengage(脱离,解开)dissemination(传播)dissolution(解散)distilled water(蒸馏水)diverter(转向器)drill core(岩心)drill(钻头,打眼)duplication(复制)dynamic(动态,能动)economic recovery(经济回收率)Elapse(过去,推移)electrolyte(电解质)electrowinning(电积)Eliminating(消除)enhance(提高、增加)Entail(意味着)entrainment(夹带)erosion(腐蚀)Fatty acid(脂肪酸)fatty acids(脂肪酸)faulting(断层)FCTRfiltration(过滤)fine particle(较细颗粒)floatability(可浮性)flotation rate constant(浮选速率常数)flowsheet(工艺流程)fluctuation(波动)fluorite(萤石)frother(起泡剂)Frother(起泡剂)Gangue(脉石)grease(润滑脂)grindability(可磨性)gross(毛的,)Hallimond tube technique(哈利蒙管)hollow(凹,空心的)hydrophilic(亲水性)Hydrophobic(疏水)Impeller(叶轮)in situ(原位)Incorporate(合并)indicator(指标,迹象)inert(惰性的)intergrowth(连生)intermediate-size fraction(中等粒度的含量)ionising collector(离子型捕收剂)amphoteric(两性)irrespective(不论)jaw crusher(颚式破碎机)jet(喷射,喷出物)laborious(费力的)layout(布局,安排)layout(布局,设计)liable(负责)magnitude(幅度)maintenance(维修)malachite(孔雀石)manganese(锰)mathematically (数学地) mechanism(进程)metallurgical performance(选矿指标)metallurgical(冶金的)MIBC(methyl isobutyl carbinol)(甲基异丁甲醇)Microflotation(微粒浮选)Mineralized(矿化的)mineralogical composition(矿物组成) mineralogy(矿物学)mineralogy(岩相学)MLA(mineral liberation analyser)modify(改变)molybdenite(辉钼矿)multiple(复合的)multiple-step(多步)Natural floatability(天然可浮性)hydrophobic(疏水性的)neutral(中性的)non-metallic(非金属)non-technical(非技术)nozzle(喷嘴)optimum(最佳)organic solvent(有机溶剂)oxidation(氧化)oxyhydryl collector(羟基捕收剂)xanthate(黄药)Oxyhydryl collector(羟基捕收剂)palladium(钯)parallel(平行)penalty(惩罚,危害)penetrate(穿透)peripheral(周边)peripheral(周边的)permeable base(透气板)personnel(人员)pH modifier(pH调整剂)pinch(钉)platinum(铂)pneumatic(充气式)polishing(抛光)portion(比例)postulate(假设)predetermined value(预定值)prior(优先)Pulp potential(矿浆电位)pyramidal tank(锥体罐)pyrite(黄铁矿)QEMSCAN(p288)reagent(药剂)rectangular(长方形)regulator(调整剂)reluctant(惰性的)residual(残留物)reverse flotation(反浮选)rod mill(棒磨机)rougher concentrate(粗选精矿)rougher-scavenger split(粗扫选分界)scale-up(扩大)scavenger(少选精矿)scheme(计划,构想)SE(separation efficienty)sealed drum(密封桶)severity(严重性)Sinter(烧结)sleeve(滚轴)slipstream(汇集)smelter(熔炼)sparger(分布器)sphalerite(闪锌矿)sphalerite(闪锌矿)Standardize(标定,规范)stationary(静止的)stator(定子,静片)storage agitator(储存搅拌器) Straightforward(直接的)Subprocess(子过程)subsequent(随后)Sulphide(硫化物)summation(合计)sustain(保留)swirling(纷飞)tangible(有形,明确的)tensile force(张力)texture(纹理)theoretical(原理的)thickener (浓密机)titanium(钛)TOF-SIMStonnage(吨位)Tube(管,筒)turbine(涡轮)ultra-fine(极细的)undesirable(不可取) uniformity(统一性)unliberated(未解离的)utilize(使用)Vigorous(有力,旺盛)weir-type(堰式)whereby(据此)withdrawal(撤回)Work of adhesion(粘着功)XPSAgglomeration-skin flotation(凝聚-表层浮选p316 左中)Associated mineral (共生矿物)by-product (副产品)Chalcopyrite (黄铜矿)Coking coal (焦煤p344 左下)Control of collector addition rate(p322 last pa right 捕收剂添加率的控制) Control of pulp level(矿浆液位控制p321 last pa on the right )Control of slurry pH(矿浆pH控制p322 2ed pa on the left)DCS--distributed control system(分布式控制系统p320 右中)Denver conditioning tank(丹佛型调和槽figure 12.56)Electroflotation (电浮选p315 右中)feed-forward control(前馈控制p323 figure 12.60)Galena(方铅矿)Molybdenum (钼)Nickel ore (镍矿的浮选p343 左)PGMs--platinum group metals(铂族金属)PLC--programmable logic controller(可编程序逻辑控制器p320 右中)porphyry copper(斑岩铜矿)Table flotation (摇床浮选俗称“台选”p316 左中)Thermal coal (热能煤p344 左下)Ultra-fine particle(超细矿粒p315 右中)Wet grinding(湿式磨矿)Chapter 13 Magnetic and electrical separationCassiterite(锡石矿) wolframite(黑钨矿) Diamagnetics(逆磁性矿物) paramagnetics(顺磁性矿物) Ferromagnetism(铁磁性) magnetic induction(磁导率)Field intensity(磁场强度) magnetic susceptibility(磁化系数) Ceramic(瓷器) taconite(角岩)Pelletise(造球) bsolete(废弃的)Feebly(很弱的) solenoid(螺线管)Cobbing(粗粒分选) depreciation(折旧)Asbestos(石棉) marcasite(白铁矿)Leucoxene(白钛石) conductivity(导电性)Preclude(排除) mainstay(主要组成)Rutile(金红石) diesel(柴油)Cryostat(低温箱)Chapter 14 ore sortingappraisal(鉴别);audit(检查);barren waste(废石); beryllium isotope(铍同位素); boron mineral(硼矿物); category(范围);coil(线圈);downstream(后处理的); electronic circuitry(电路学); feldspar(长石); fluorescence(荧光);grease(油脂);hand sorting(手选);infrared(红外的);irradiate(照射);laser beam(激光束); limestone(石灰石); luminesce(发荧光); luminescence(荧光); magnesite(菱镁矿); magnetic susceptivity(磁敏性); matrix(基质); microwave(微波);monolayer(单层);neutron absorption separation(中子吸收法); neutron flux (中子通量);oleophilicity(亲油的);phase shift(相变);phosphate(磷酸盐);photometricsorting(光选);photomultiplier(光电倍增管);preliminary sizing(预先分级);proximity(相近性);radiometric (放射性的);scheelite(白钨矿);scintillation(闪烁);seam(缝隙);sequential heating(连续加热);shielding(防护罩);slinger(投掷装置);subtle discrimination(精细的鉴别);talc(滑石);tandem(串联的);thermal conductivity(热导率);ultraviolet(紫外线); water spray(喷水); Chapter15DewateringAcrylic(丙烯酸) monomer(单分子层) Allotted(分批的)jute(黄麻) Counterion(平衡离子) amide(氨基化合物) Diaphragm(隔膜) blanket(覆盖层) Electrolyte(电解液) gelatine(动物胶) Flocculation(聚团) decant(倒出)Gauge(厚度,测量仪表) rayon(人造纤维丝) hyperbaric(高比重的) Membrane(薄膜) coagulation(凝结) miscelaneous(不同种类的) barometric(气压的) Potash(K2CO3)tubular(管状的) Sedimentation(沉淀) filtration(过滤)Thermal drying(热干燥) polyacrylamide(聚丙烯酰胺)Chapter16 tailings disposalBack-fill method—矿砂回填法tailings dams—尾矿坝impoundment—坝墙Cyclone—旋流器Dyke—坝体slimes—矿泥Floating pump—浮动泵站compacted sand—压实矿砂Lower-grade deposits -- 低品位矿床heavy metal—重金属mill reagent—选矿药剂Neutralization agitator—中和搅拌槽thickener---浓密池overflow –溢流River valley—河谷upstream method of tailings-dam construction –上流筑坝法Sulphur compound—硫化物additional values—有价组分the resultant slimes—脱出的矿泥surface run-off-- 地表水lime—石灰the downstream method—下游筑坝法the centre-line method –中线筑坝法drainage layer—排渗层Underflow—沉砂water reclamation—回水利用reservoir—贮水池Part II ElaborationsChapter2 Ore handing1.The harmful materials and its harmful effects(中的有害物质,及其影响) -----P30 右2.The advantage of storage (贮矿的好处)-----p35 左下Chapter 4 particle size analysis3.equivalent diameter (page90);4.:stokes diameter (page98) ; median size (page95,left and bottom); 80% passing size (page95,right) ; cumulative percentage(page94-95under the title’presentation of results’); Sub-sieve;(page 97,right)5.why particle size analysis is so important in the plant operation? (page90, paragraph one); some methods of particle analysis, their theory and the applicable of thesize ranges.(table4.1+theory in page91-106)7.how to present one sizing test?(page94)8.how to operate a decantation test?(page98 sedimentation test)9.advantage and disadvantage of decantation in comparison with elutriation? (Page99 the second paragraph on the left +elutriation technique dis/advantage in page 102 the second paragraph on the left)Chapter 6Crushers10.The throw of the crusher: Since the jaw is pivoted from above, it moves a minimum distance at the entry point and a maximum distance at the delivery. This maximum distance is called the throw of the crusher.11.Arrested(free) crushing: crushing is by the jaws only12.Choked crushing: particles break each other13.The angle of nip:14.1)the angle between the crushing members2)the angle formed by the tangents to the roll surfaces at their points of contact withthe particle(roll crushers)15.Ore is always stored after the crushers to ensure a continuous supply to the grinding section. Why not have similar storage capacity before the crushers and run this section continuously?(P119,right column, line 13)16.The difference between the jaw crusher and the gyratory crusher?(P123,right column, paragraph 3)17.Which decide whether a jaw or a gyratory crusher should be used in a particular plant?(p125,left column, paragraph 2)18.Why the secondary crushers are much lighter than the heavy-duty, rugged primary machines?(P126,right column, paragraph 4)19.What’s the difference between the 2 forms of the Symons cone crusher, the Standard and the short-head?(P128,left column, paragraph3 )20.What’s the use of the parallel section in the cone crusher?(P128,left column, paragraph4)21.What’s the use of the distributing plate in the cone crusher?(P128,right column, paragraph1)22.Liner wear monitoring(P129,right column, paragraph2)23.Water Flush technology(P130, left column, paragraph1)24.What’s the difference between the gyradisc crusher and the conventional cone crusher?(P130,right column, paragraph 4)25.What’s the use of the storage bin?(P140,left column, paragraph 2)26.Jaw crushers(p120)27.the differences between the Double-toggle Blake crushers and Single-toggle Blakecrushers(p121, right column, paragraph 3)28.the use of corrugated jaw plates(p122, right column, line 8)29.the differences between the tertiary crushers and the secondary crushers?(p126,right column, paragraph 5)30.How to identify a gyratory crusher, a cone crushers?(p127, right column, paragraph 3)31.the disadvantages of presence of water during crushing(p130,right column, paragraph 2)32.the relationship between the angle of nip and the roll speed?(p133, right column)33.Smooth-surfaced rolls——used for fine crushing; corrugated surface——used for coarse crushing;(p134, left column, last paragraph)Chapter 7 grinding mills34.Autogenous grinding:An AG mill is a tumbling mill that utilizes the ore itself as grinding media. The ore must contain sufficient competent pieces to act as grinding media.P16235.High aspect ratio mills: where the diameter is 1.5-3 times of the length. P16236.Low aspect ratio mills:where the length is 1.5-3 times of the diameter. P16237.Pilot scale testing of ore samples: it’s therefore a necessity in assessing the feasibility of autogenous milling, predicting the energy requirement, flowsheet, and product size.P16538.Semi-autogenous grinding: An SAG mill is an autogenous mill that utilizes steel balls in addition to the natural grinding media. P16239.Slurry pool:this flow-back process often leads to higher slurry hold-up inside an AG or SAG mill, and may sometimes contribute to the occurrence of “slurry pool”, which has adverse effects on the grinding performance.P16340.Square mills:where the diameter is approximately equal to the length.P16241.The aspect ratio: the aspect ratio is defined as the ratio of diameter to length. Aspect ratios generally fall into three main groups: high aspect ratio mills、square mills and low aspect ratio mills.P16242.grinding circuit: Circuit are divided into two broad classifications: open and closed.( 磨矿回路p170)43.closed circuit: Material of the required size is removed by a classifier, which returns oversize to the mill.(闭路p170左最后一行)44.Circulation load: The material returned to the mill by the classifier is known as circulation load , and its weight is expressed as a percentage of the weight of new feed.(循环负荷p170右)45.Three-product cyclone: It is a conventional hydrocyclone with a modified top cover plate and a second vortex finder inserted so as to generate three product streams. (p171右)46.Parallel mill circuit: It increase circuit flexibility, since individual units can be shut down or the feed rate can be changed, with little effect on the flowsheet.(p172右) 47.multi-stage grinding: mills are arranged in series can be used to produce。

悬垂线

悬垂线

#3lxk_cool工程师精华0积分125帖子63水位125技术分0???趣??铨的提出固定??的?端,在重力?中?它自然垂下(?二),???的曲?方程式是什??呃就是著名的「????铨」(the hanging chain problem)。

在1690年由仝可比‧?努利(Jakob Bernoulli,1654~1705)公檫提出?,向??界挑?,徵求答案。

在微峰分初??期,它正好可用?考?微峰分的威力。

呃是一段有趣而又?具?办性的?史,值得我?重?一遍,??品味。

在大自然中,除了?垂的??陪蜘蛛咀的水珠??外,我??可以愚察到吊?上方的?垂?索(?三),以及?根???之殓所架韵的??(?四),呃些都是???(catenary)。

由大自然引?出?的??,?我?迂得「有土、有根」,?且沾染、散办著「就在身?的尤切感」。

?里斯多德陪伽利略的邋锗大家都看咿海豚苡水的表演(?五),以及石钷(或宠?)秣咿天肴的?象,?且知道它?的?叟都是?物?(parabola),呃是超乎?氏?何的曲?。

基本上,?氏?何只研究由直?陪?所交?出?的?形世界。

?里斯多德的邋锗然而古希拍?大哲?家(百科全?般的人物)?里斯多德(Aristotle,384~322B.C.),他?帐?石钷秣咿天空的?道?如?六所示,因?根?他的「有?目的愚」的物理?陪哲?,地面上的「自然?印梗?atural motion)是直?,所以石钷秣出去是直?,掉下?也是直??且垂直地面。

呃?邋锗?千年後才由伽利略(Galileo, 1564~1643)加以修正,?且得到?叟的正催方程式?二次函? y=ax2+bx+c,呃不必用到微峰分就可以求出?。

事?上,伽利略不懂微峰分,那?微峰分?未真正昭生。

伽利略的邋锗伽利略比?努利更早注意到???,但是「螳螂捕象,?雀在後」,他也犯了邋锗:他猜??????物?。

?外表看起?(?二),???的催很像?物?,然而?肴上?不是!惠更斯(Huygens, 1629~1695)在1646年(??17?),?由物理的?酌,得知伽利略的猜?不?,但正催的答案呃??候他也求不出?。

Deformable wing kinematics in the desert

Deformable wing kinematics in the desert

Deformable wing kinematics in the desert locust:how and why do camber,twist and topography vary through the stroke?Simon M.Walker,Adrian L.R.Thomas and Graham K.Taylor*Department of Zoology,University of Oxford,South Parks Road,Oxford OX13PS,UK Here,we present a detailed analysis of the wing kinematics and wing deformations of desert locusts (Schistocerca gregaria ,Forska ˚l)flying tethered in a wind tunnel.We filmed them using four high-speed digital video cameras,and used photogrammetry to reconstruct the motion of more than 100identified points.Whereas the hindwing motions were highly stereotyped,the forewing motions showed considerable variation,consistent with a role in flight control.Both wings were positively cambered on the downstroke.The hindwing was cambered through an ‘umbrella effect’whereby the trailing edge tension compressed the radial veins during the downstroke.Hindwing camber was reversed on the upstroke as the wing fan corrugated,reducing the projected area by 30per cent,and releasing the tension in the trailing edge.Both the wings were strongly twisted from the root to the tip.The linear decrease in incidence along the hindwing on the downstroke precisely counteracts the linear increase in the angle of attack that would otherwise occur in root flapping for an untwisted wing.The consequent near-constant angle of attack is reminiscent of the optimum for a propeller of constant aerofoil section,wherein a linear twist distribution allows each section to operate at the unique angle of attack maximizing the lift to drag ratio.This implies tuning of the structural,morphological and kinematic parameters of the hindwing for efficient aerodynamic force production.Keywords:kinematics;photogrammetry;angle of attack;camber;locust;morphing1.INTRODUCTIONInsect wings change shape substantially during flapping flight (Wootton 1979).The shape of rigid model wings is known to be important in determining the aerodynamic forces under steady conditions (Vogel 1967;Rees 1975;Nachtigall 1981;Buckholz 1986;Okamoto et al.1996;Kesel 2000),but attempts to model the effects of static camber and twist under unsteady flow conditions have proven inconclusive (Dickinson &Go ¨tz 1993;Sunada et al.1993;Usherwood &Ellington 2002;Wang et al.2003).A recent parametric study simulating the effects of wing deformation has shown that camber,and to a lesser degree twist,is indeed important in determining the gross flight performance (Du &Sun 2008).This suggests that detailed quantitative measurements of the wing defor-mations of real insects will be essential in determining the effects of wing shape upon the aerodynamics of insect flight.Wing deformations have been described qualitatively in many insects (e.g.locusts:Jensen 1956,Baker &Cooter 1979a ,Wortmann &Zarnack 1993;hawkmoths:Willmott &Ellington 1997;butterflies:Wootton 1993;craneflies,hoverflies and bees:Ellington 1984),and quantitative measurements of these defor-mations have been made for several species (dragonflies:Zeng et al.1996,Song et al.2001,Wang et al.2003;moths:Sunada et al.2002;bumblebees:Zeng et al.2000).However,the quantitative measurements made to date are limited in spatial resolution,typically giving camber and the angle of incidence at only five spanwise stations Locusts (Orthoptera)have been extensively studied with attention paid to almost all aspects of their flight,from musculature and neurophysiology (e.g.Wilson &Weis-Fogh 1962;Gettrup 1966;Baker &Cooter 1979a )to flight kinematics and forces (e.g.Jensen 1956;Weis-Fogh 1956;Baker &Cooter 1979a ,b ;Cloupeau et al.1979;Baker et al.1981;Nachtigall 1981;Pfau &Nachtigall 1981;Wilkin 1990;Bomphrey et al.2005).In spite of this,we still lack good quantitative measurements of the camber and the angle of attack distributions across the wing,and of how these change through the wingbeat.metric method using high-speed digital video cameras to reconstruct instantaneous topographic maps of the wing surfaces of insects.In this paper,we describe and interpret the detailed kinematics of wingbeats from four desert locusts (Schistocerca gregaria ,Forska ˚l).The wing surfaces are reconstructed as a topographical mesh to allow accurate measurements of the deformations that occur during flight.We examine in detail how the camber,the angle of attack and the surface area of the wingvary *Author for correspondence (graham.taylor@).Received 3October 2008Accepted 20November 2008This journal is q 2008The Royal Societyalong the wing (Walker et al.2009).Walker et al.(2009)have described a photogram-735doi:10.1098/rsif.2008.0435J.R.Soc.Interface (2009)6,735–747Published online 16 D ecember 2008through the stroke.We then discuss how these defor-mations are produced,and consider their likely signi-ficance for aerodynamics,stability and control.2.MATERIALS AND METHODS2.1.Wing kinematics measurementsThe methods used are those described in Walker et al. Desert locusts were tethered by the ventral thorax in a wind tunnel designed specifically for insectflight experiments.The wind speed was set to3.3m s K1and the locust was set at a body angle of98(measured from the underside of the thorax relative to the free stream). These conditions are close to the equilibriumflight speed and body angle for this species(Taylor& Z˙bikowski2005).Two NAC Hi-DCam II cameras (NAC Image Technology,CA,USA)with Nikkor 50mm lenses and two Photron Ultima APX cameras (Photron Ltd,Bucks,UK)with Nikkor60mm macro lenses were used forfilming.Two cameras were positioned above and behind the tethered locust and the other two cameras were positioned beneath and to the right of the locust.This gave good views of the right side of the locust with minimal overlap of the forewings and the hindwings.Two ARRI125W pocket lights (Arnold&Richter Cine Technik GmbH&Co.Betriebs KG,Munich,Germany)were pointed onto white cards on the other side of the locust to provide backlighting. The lights were aligned with the centre line of the wind tunnel to reduce steering by the locust.The cameras were triggered manually when the locust wasflying in the completeflight posture(Weis-Fogh1956)and were set to record for1000frames at974frames per second.A shutter speed of less than100m s was used in each camera,which was sufficient to eliminate motion blur. In total,we used two male and two female locusts (hereafter called L1,L2,L3and L4),analysing thefirst five complete wingbeats from10separate recordings, giving a total of50wingbeats.Custom-written software in M ATLAB(M ATLAB v.7.4, The Mathworks Inc.,Natick,MA)was used to calibrate the cameras.Full details of the calibration can be found in Walker et al.but briefly the method involves a bundle adjustment,which uses a nonlinear least-squares solver to produce jointly optimal esti-mates of the camera parameters and the spatial coordinates of points on a two-dimensional calibra-tion grid in a range of positions and orientations.A combination of manual and semi-automatic track-ing was used to identify the image coordinates ofapproximately100marked points on the hindwings and of approximately15natural features on the forewings.The estimated spatial coordinates of these points had a mean absolute error of approximately the identified points were then forwards–backwards filtered using a third-order low-pass Butterworthfilter with a K3dB cut-off frequency of150Hz.This was chosen by autocorrelation analysis as the lowestfilter frequency that did not remove any underlying signal from the data.Finally,cubic splines werefitted to points lying along the wing veins or outline,and an interpolated100!100point mesh wasfitted to these splines to provide the wing surface map.All of the spatial measurements we present for each wing are given in a right-handed laboratory-fixed frame of reference(x,y,z),centred on the wing root,in which the x-axis points opposite to the free-stream velocity vector and the z-axis points vertically down(figure1a). The local angle of incidence and the camber of each wing were measured with respect to a rotating frame of reference(x,y w,z w)sharing the same x-axis as the(a)(b)Figure1.(a)Definition sketch of wing-tip kinematic para-meters with respect to the laboratory-fixed frame of reference (x,y,z).This forms a right-handed coordinate system with the x-axis aligned opposite to the free-stream velocity vector and the z-axis pointing vertically downward.The solid green line marks the wing-tip path.The stroke plane angle(S)is defined as the angle between the z-axis and the projection onto the xz-plane of the line joining the wing-tip positions at the top and bottom of the stroke.The stroke amplitude(A)is defined as the angle between the lines joining the wing root to the wing tip at the top and bottom of the stroke.The deviation angle(D)is defined as the angle between the lines joining the wing root to the wing tip as the wing passes through the horizontal on the downstroke and the upstroke,respectively.(b)Definition sketch of the wing camber and the angle of incidence with respect to a frame of reference rotating with the wings (x,y w,z w).This axis system has the same x-axis as the laboratory-fixed frame,but rotates about this axis such that the line joining the wing root and tip always lies in the xy w-plane.The local angle of incidence(angle a)was defined as the angle between the xy w-plane and the line joining the leading and trailing edge parallel to the xz w-plane.The local camber was defined as the ratio of the mid-chord height(c h),measured parallel to the z w-axis,to the chord length(c l)parallel to the x-axis.Defining the camber and the angle of incidence with respect to this rotating frame of reference removes the effects of changing wing-tip elevation on these variables.Wing kinematics in the desert locust S.M.Walker et al. (2009),so we provide only a brief summary here.(2009),0.11mm(Walker et al.2009).The coordinates of736J.R.Soc.Interface(2009)laboratory-fixed frame,but rotating about this axis such that the line joining the wing root and tip always lies in the xy w-plane(figure1b).Defining camber and the angle of incidence with respect to this rotating frame of reference allows us to control for the effects of changing wing-tip elevation on the angle of attack and camber.The local angle of incidence was defined as the angle between the xy w-plane and the line joining the leading and trailing edge parallel to the xz w-plane.The standard deviation of the error in the angle of incidence measurements was an inverse function of the local chord length,but was at worst0.518(Walker et al. angle between the line joining the leading and trailing edge,and the local relative air velocity at the mid-chord point,both drawn parallel to the xz w-plane of the rotating frame of reference.This takes account of both the local wing velocity and the free-stream velocity,and provides our best estimate of the true aerodynamic angle of attack,although it does not take into account the effects of the inducedflow.The local camber was defined as the ratio of the mid-chord height,measured parallel to the z w-axis of the rotating frame of reference,to the chord length parallel to the x-axis(figure1b).We used the mid-chord height rather than the maximum chord height in defining the camber,because the complicated corrugated shape of the wings means that the maximum chord height changes discontinuously at times,and so does not reflect the continuous changes in the camber of the aerofoil asa whole.2.2.Smoke wireflow visualizationIn a separate experiment,a single locust wasflown tethered under the sameflight conditions,and used for a smoke visualization analysis of the inducedflow.One Photron APX camera with a50mm Nikkor lens was positioned to give a lateral view of the tethered locust. Smoke lines were generated using Johnson’s baby oil on an electrically heated0.1mm nichrome wire.Two ARRI pocket lights were used to backlight the smoke.Record-ings were made at1000fps of smoke incident at each of four spanwise stations along the wing.Custom-written software in M ATLAB was used to measure the angle of the smoke lines just ahead of the forewing leading edge,and the change in this angle through the wingbeat was used to provide a measure of the changes in the inducedflow.In total,we analysed36wingbeats.For each frame,a Canny edge detector(Canny1986)was used to determine the image coordinates of the edges surrounding the smoke lines.The local angle of the smoke line at each image coordinate was then determined from the vector formed by the horizontal and vertical intensity gradients, calculated using a Sobel operator(Parker1997),from which the mean angle of the smoke lines was calculated.3.RESULTS3.1.Wing-tip kinematicsFigure2plots lateral views of the wing-tip paths for the four locusts to provide a qualitative indication of the variation between and within individuals.It is clear that whereas the hindwing path is relatively consistent between and within individuals,the forewing tip path shows considerably more variation between individ-uals.This variation is quantified in table1,which gives the mean and standard deviation of various wing-tip kinematic parameters measured in the laboratory-fixed frame of reference(figure1).The downstroke duration is defined as the pro-portion of the wingbeat period during which the wing moves in a downward direction.The stroke plane angle is defined as the angle between the z-axis and the projection onto the xz-plane of the line joining the wing-tip positions at the top and bottom of the stroke(figure1).The stroke amplitude is defined as the angle between the lines joining the wing root to the wing tip at the top and bottom of the stroke(figure1). The deviation angle is defined as the angle between the lines joining the wing root to the wing tip as the wing passes through the horizontal on the downstroke and upstroke,respectively(figure1).The stroke plane angles we measured for the forewing and the wing-tip path for both wings are similar to those measured for free-flying locusts(Baker&Cooter1979a).All of these summary parameters show greater variation for the forewing than for the hindwing across individuals,and the same is true in most cases within individuals.We tested these differences in variance statistically using the Brown–Forsythe version of the classical Levene’s test for equality of variance(Brown& Forsythe1974),which is robust to deviations from normality in the underlying distributions.Lumping all(a)(b)teral projection onto the xz-plane of the right wing-tip paths of the(a)hindwing and(b)forewing for the four locusts(red,L1;green,L2;blue,L3;black,L4).The black dot denotes the position of the wing root.All distances are normalized by the wing length to enable comparison among individuals.The scale bars denote wing length.The anterior of the insect points to the right.The wing tips move in the clockwise direction along the path through the stroke. Note that the wing-tip paths are highly stereotyped between and within individuals for the hindwing,but show consider-able variation for the forewing.Wing kinematics in the desert locust S.M.Walker et al. 2009).The local angle of attack was defined as the737 J.R.Soc.Interface(2009)of the data together,the variance is significantly higher for the forewing than the hindwing with respect to the stroke plane angle,the stroke amplitude and the downstroke duration (one-tailed,p Z 0.007,p !0.001,p Z 0.038,respectively).Among the four wing-tip kinematic parameters we tested,only the deviation angle had a variance that was not significantly greater for the forewing than the hindwing (one-tailed,p Z 0.412).3.2.Projected area of the hindwingThe hindwing is a corrugated,fan-like structure that folds into the body when the locust is at rest,and changes area continuously through the course of the wingbeat.During the upstroke,as the backward sweep of the wing increases,its proximal sections fold into the body and the more distal sections corrugate,resulting in a substantial decrease in the projected area.This is quantified in figure 3,which plots the change in the projected area of the hindwing through the course of the wingbeat (measured relative to the xy -plane of the rotating frame of reference).The projected area is of the order of 30per cent smaller during the upstroke (when the wing has a negative angle of attack and takes negative loads)than during the downstroke (when the wing has a positive angle of attack and generates useful lift).3.3.Wing camberFigure 4shows how the instantaneous wing profile varies through the wingbeat at 20,40,60and 80per cent wing length for locust L4.The stage of thestroke is denoted by the normalized time ^t,which is defined as the time after the start of the downstroke divided by the wingbeat period.There are substantial changes in wing profile,both through the course of the wingbeat and along the wing.In general,the wings are flatter at the tip,and the camber on the hindwing is further aft on the more distal portions of the wing,as shown by the position of the asterisk marking the point of maximum camber in figure 4.The hindwing has strong positive camber throughout the downstroke (^tZ 0.0–0.6),although the leading edge is reflexed upward throughout the downstroke on the inner portionsof the wing.These inner portions of the wing becomenotably corrugated during the upstroke (^tZ 0.7–0.9).The forewing is positively cambered throughout the stroke,but shows the classic ‘z -profile’described by Jensen (1956)during the later stages of the upstroke andthe early downstroke (^tZ 0.8–1.0).These features are most prominent in the proximal portion of the forewing,and are clearly visible at 20per cent wing length,but as with the hindwing,the forewing relief becomes less pronounced moving towards the tip.These changes in wing profile are quantified in our measurements of local instantaneous camber.Figure 5a ,c plots camber against distance along thewing for each locust at the mid-downstroke (^tZ 0.3),averaged across wingbeats.The shaded region around each line represents the standard deviation and provides a measure of the variation between wingbeats within an individual.Both the forewing and the hindwing mesh models show a decrease in camber from root to tip at this point mid-downstroke,with–20–1001020c h a n g e i n p r o j e c t e d s u r f a c e a r e a (%)0.20.40.60.81.0Figure 3.Percentage change in projected area of the hindwing through the wingbeat for the four locusts.The solid lines show the instantaneous mean for each locust (red,L1;green,L2;blue,L3;black,L4)and the shaded region around those lines displays the instantaneous standard deviation.The hindwingdownstroke begins at ^tZ 0and ends at approximately the point denoted by the vertical line,which marks the mean start time of the hindwing upstroke.The wing is swept forwards during the downstroke,increasing the wing area to reach its maximum mid-downstroke.During the upstroke,the wing is swept back,causing the basal regions to fold into the body and causing the rest of the wing to corrugate,thereby reducing the area to its minimum by the late-upstroke.Table 1.Mean G standard deviation for summary wing-tip kinematic parameters for each locust,and for all of the locusts combined.(The forewing shows significantly more variation than the hindwing with respect to most of the wing-tip kinematic parameters (see the text for statistical analysis).The downstroke duration is defined as the proportion of the wingbeat period during which the wing moves in a downward direction.The stroke plane angle is defined as the angle between the z -axis and the projection onto the xz -plane of the line joining the wing-tip positions at the top and bottom of the stroke.The stroke amplitude is defined as the angle between the lines joining the wing root to the wing tip at the top and bottom of the stroke.The deviation angle is defined as the angle between the lines joining the wing root to the wing tip as the wing passes through the horizontal on the downstroke and upstroke,respectively (figure 1).)downstroke duration (%)stroke plane angle (8)stroke amplitude (8)deviation angle (8)locust (wingbeats)fore hind fore hind fore hind fore hind L1(5)56.1G 0.956.6G 0.734.1G 0.726.0G 0.280.0G 1.380.9G 1.39.2G 0.420.3G 1.4L2(20)61.6G 1.058.5G 1.628.4G 2.022.9G 1.180.5G 3.879.2G 5.99.8G 2.517.7G 1.0L3(5)55.9G 1.757.2G 0.239.0G 0.827.7G 0.385.0G 2.686.3G 1.912.3G 1.218.3G 0.6L4(20)61.3G 1.655.6G 1.533.2G 2.028.2G 1.057.8G 3.375.6G 2.811.9G 0.821.0G 1.4overall mean58.4G 2.657.0G 1.931.9G 3.825.8G 2.771.8G 12.178.8G 5.310.8G 2.019.4G 1.9Wing kinematics in the desert locust S.M.Walker et al.738J.R.Soc.Interface (2009)a comparably strong negative correlation in both cases (product moment correlation coefficients:K 0.72for the hindwing and K 0.68for the forewing).Figure 5b ,d plots the instantaneous camber at 50per cent wing length against normalized time.The hindwing camber is positive throughout the downstroke,reaching a maximum of 8per cent late in the downstroke (^tZ 0.4).During the upstroke the camber becomes negative,reaching a minimum of K 4per cent at ^tZ 0.75.The forewing is positively cambered for the entire wingbeat except for in locust L3,which is negatively cambered during the upstroke,reaching a minimum of K 4per cent The forewing camberincreases until late in the downstroke at ^tZ 0.4,when it reaches a maximum of 8per cent.In order to test for the consistency of our camber measurements within and between individuals,we calculated the product moment correlation coefficients between wingbeats of the local instantaneous camber through the wingbeat for each of 60spanwise stations between 20and 80per cent wing length.We excluded spanwise stations near the wing root and tip from this correlation analysis because the measurement error is inversely related to the chord length,and because folding of the hindwing near the base can generatespurious results.The mean of all pairwise correlation coefficients between wingbeats within the same indi-vidual was 0.95for the hindwing and 0.57for the forewing,while the mean of all pairwise correlation coefficients between wingbeats from different individ-uals was 0.88for the hindwing and 0.29for the forewing (table 2).These results indicate that the changes in hindwing camber through the stroke are highly correlated between wingbeats,both within and between individuals.By contrast,the changes in the forewing camber through the stroke are much less highly correlated within individuals,and even less correlated between individuals.Hence,the changes in camber through a wingbeat are highly consistent for the hindwing,but much less consistent for the forewing.This demonstrates that as well as changing its tip trajectory to a greater extent than the hindwing (see §3.2),the forewing also changes the detailed properties of its relief to a greater extent than the hindwing from one wingbeat to the next.3.4.Angle of incidenceFigure 6a ,e plots the angle of incidence (i.e.geometric angle of the chord relative to the xy -plane ofthe= 0= 0.1= 0.2= 0.3= 0.4= 0.5= 0.6= 0.7= 0.8= 0.98°u p s t r o k ed o w n s t r o k eu p s t r o k ed o w n s t r o k e20°22°14°11°12°9°5°2°4°8°24°27°12°4°5°2°0°–1°1°7°25°33°13°–1°–3°–5°–5°–6°–2°8°30°39°14°–5°–9°–11°–9°–9°–4°= 0= 0.1= 0.2= 0.3= 0.4= 0.5= 0.6= 0.7= 0.8= 0.9–3°16°8°–6°–12°–14°–13°–11°–4°–8°1°27°11°–7°–12°–17°–18°–12°–1°–6°6°36°17°–5°–12°–18°–17°–11°5°–1°14°48°26°2°–10°–17°–17°–9°9°2°10mm10mm(a )(b )(c )(d )(e )(f )(g )(h )Figure 4.Wing profile sections through the wingbeat and across the wing for the (a –d )hindwing and (e –h )forewing of locust L4.((a ,e )20%wing length,(b ,f )40%wing length,(c ,g )60%wing length and (d ,h )80%wing length.)These profile sections are typical of all the locusts that we made measurements for.The leading edge of the wing is at the left of each profile.The vertical bars through the sections indicate the positions of major wing veins.The asterisks denote the location of the maximum absolute chord height,the position of which varies discontinuously through the stroke.Note the decrease in the camber along the wing,and the marked changes in the camber through the stroke.See the text for discussion.The angle to the left of each profile section is the instantaneous local angle of incidence.Wing kinematics in the desert locustS.M.Walker et al.739J.R.Soc.Interface (2009)rotating frame of reference)against the distance alongthe wing for each locust at the mid-downstroke (^tZ 0.3),averaged across all of the measured wingbeats.The shaded region around each line represents the standard deviation and provides a measure of the variation between wingbeats.Both the forewing and the hind-wing display washout:the hindwing shows an approxi-mately linear decrease in the angle of incidence with distance along the wing (figure 6a :linear regression slope of K 0.30,R 2Z 95%),while the forew-ing angle of incidence shows a much weaker and more curvilinear negative correlation (figure 6e :linear regression slope of K 0.09,R 2Z 22%).Note that we use linear regression only as a tool for parameter fitting,and not as a statistical test of significance:statistical analysis of these data is confounded by the non-independence of the points in the fitted mesh (both regressions are highly significant when adjacent fitted points in the mesh are treated as if they were statistically independent).Figure 6c ,g plots how the hindwing and forewing angles of incidence change through the wingbeat at 50per cent wing length for each locust.The hindwing shows relatively little change in the angle of incidence during the downstroke,with the angle of incidence close to 08at the midpoint of the wing.During the upstroke,the angle of incidence increases,reaching up to 408atthe mid-upstroke (^tZ 0.8)at the midpoint of the wing.The forewing angle of incidence is much more varied during the downstroke than that of the hindwing,and is typically negative,reaching as low as K 258.During the upstroke,the forewing increases its angle of incidence,reaching angles greater than 408at the mid-upstroke0–10–50510051015(a )(c )(b )(d )0.2h i n d w i n g c a m b e r (%)h i n d w i n g c a m b e r (%)–10–50510051015f o r e w i n g c a m b e r (%)f o r e w i ng c a m b e r (%)0.40.60.8 1.000.2304050distance along wing length (%)607080304050distance along wing length (%)6070800.40.60.8 1.0Figure 5.The average camber (a ,c )across the wing and (b ,d )through the wingbeat for the (a ,b )hindwing and (c ,d )forewing of the four locusts.The solid lines show the mean instantaneous camber for each locust (red,L1;green,L2;blue,L3;black,L4)and the shaded region around those lines displays the instantaneous standard deviation.(a ,c )The camber at the mid-downstroke against percentage distance along the wing.Both wings show a negative correlation between the camber and the percentage distance along the wing.(b ,d )The camber at 50%wing length against normalized time.The solid vertical line indicates the mean timing of the end of the hindwing downstroke in (b )and the mean timing of the end of the forewing downstroke in (d ).The dashed vertical line indicates the average start time of the forewing downstroke in (d ).Camber increases during the downstroke until ^tZ 0.4,when it reaches a maximum of approximately 8%for both wings.Camber is negative during the upstroke for the hindwing,but is only negative for one locust (L3)for the forewing.Table 2.Correlation analysis to test for the consistency of theinstantaneous local camber,the angle of incidence and the angle of attack of the forewing and the hindwing within and between individuals.(The camber,the angle of incidence and the angle of attack are all highly consistent for the hindwing both between and within individuals.The forewing shows relatively little variation in the angle of incidence and the angle of attack within individuals,but is highly variable between individuals.The forewing camber shows relatively little consistency either between or within individuals.See the text for further explanation.)mean correlation coefficient within individualsbetween individuals hindwing camber 0.950.88forewing camber0.570.29hindwing angle of incidence 0.980.95forewing angle of incidence 0.960.84hindwing angle of attack 0.980.93forewing angle of attack0.860.66Wing kinematics in the desert locust S.M.Walker et al.740J.R.Soc.Interface (2009)。

机械专业英语

机械专业英语

机械专业英语词汇(很全)金属切削 metal cutting 切削深度 cutting depth机床 machine tool 前刀面 rake face金属工艺学 technology of metals 刀尖 nose of tool刀具 cutter 前角 rake angle摩擦 friction 后角 clearance angle联结 link 龙门刨削 planing传动 drive/transmission 主轴 spindle轴 shaft 主轴箱 headstock弹性 elasticity 卡盘 chuck频率特性 frequency characteristic 加工中心 machining center 误差 error 车刀 lathe tool响应 response 车床 lathe定位 allocation 钻削 镗削 bore机床夹具 jig 车削 turning动力学 dynamic 磨床 grinder运动学 kinematic 基准 benchmark静力学 static 钳工 locksmith分析力学 analyse mechanics 锻 forge拉伸 pulling 压模 stamping压缩 hitting 焊 weld剪切 shear 拉床 broaching machine扭转 twist 拉孔 broaching弯曲应力 bending stress 装配 assembling强度 intensity 铸造 found三相交流电 three-phase AC 流体动力学 fluid dynamics 磁路 magnetic circles 流体力学 fluid mechanics 变压器 transformer 加工 machining异步电动机 asynchronous motor 液压 hydraulic pressure 几何形状 geometrical 切线 tangent精度 precision 稳定性 stability正弦形的 sinusoid 介质 medium交流电路 AC circuit 液压驱动泵 fluid clutch 机械加工余量 machining allowance 液压泵 hydraulic pump变形力 deforming force 阀门 valve变形 deformation 失效 invalidation应力 stress 强度 intensity硬度 rigidity 载荷 load热处理 heat treatment 应力 stress退火 anneal 安全系数 safty factor正火 normalizing 可靠性 reliability脱碳 decarburization 螺纹 thread渗碳 carburization 螺旋 helix电路 circuit 键 spline半导体元件 semiconductor element 销 pin反馈 feedback 滚动轴承 rolling bearing发生器 generator 滑动轴承 sliding bearing直流电源 DC electrical source 弹簧 spring门电路 gate circuit 制动器 arrester brake逻辑代数 logic algebra 十字结联轴节 crosshead外圆磨削 external grinding 联轴器 coupling内圆磨削 internal grinding 链 chain平面磨削 plane grinding 皮带 strap变速箱 gearbox 精加工 finish machining离合器 clutch 粗加工 rough machining绞孔 fraising 变速箱体 gearbox casing绞刀 reamer 腐蚀 rust螺纹加工 thread processing 氧化 oxidation螺钉 screw 磨损 wear铣削 mill 耐用度 durability铣刀 milling cutter 随机信号 random signal功率 power 离散信号 discrete signal工件 workpiece 超声传感器 ultrasonic sensor齿轮加工 gear mechining 集成电路 integrate circuit齿轮 gear 挡板 orifice plate主运动 main movement 残余应力 residual stress主运动方向 direction of main movement 套筒 sleeve进给方向 direction of feed 扭力 torsion进给运动 feed movement 相图 phase diagram合成进给运动 resultant movement of feed 热处理 heat treatment合成切削运动 resultant movement of cutting 固态相变 solid state phase changes合成切削运动方向 direction of resultant movement of cutting 有色金属 nonferrous metal机电一体化 mechanotronics mechanical-electrical integration 陶瓷 ceramics气压 air pressure pneumatic pressure 合成纤维 synthetic fibre冷加工 cold machining 电化学腐蚀 electrochemical corrosion电动机 electromotor 车架 automotive chassis汽缸 cylinder 悬架 suspension过盈配合 interference fit 转向器 redirector热加工 hotwork 变速器 speed changer摄像头 CCD camera 板料冲压 sheet metal parts倒角 rounding chamfer 孔加工 spot facing machining优化设计 optimal design 车间 workshop工业造型设计 industrial moulding design 工程技术人员 engineer有限元 finite element 气动夹紧 pneuma lock滚齿 hobbing 数学模型 mathematical model插齿 gear shaping 画法几何 descriptive geometry伺服电机 actuating motor 机械制图 Mechanical drawing铣床 milling machine 投影 projection钻床 drill machine 视图 view镗床 boring machine 剖视图 profile chart步进电机 stepper motor 标准件 standard component丝杠 screw rod 零件图 part drawing导轨 lead rail 装配图 assembly drawing组件 subassembly 尺寸标注 size marking可编程序逻辑控制器 Programmable Logic Controller PLC 技术要求 technical requirements电火花加工 electric spark machining 刚度 rigidity电火花线切割加工 electrical discharge wire - cutting 动能 kinetic energy内力 internal force 势能 potential energy位移 displacement 机械能守恒 conservation of mechanical energy 截面 section 动量 momentum疲劳极限 fatigue limit 桁架 truss断裂 fracture 轴线 axes塑性变形 plastic distortion 余子式 cofactor脆性材料 brittleness material 逻辑电路 logic circuit刚度准则 rigidity criterion 触发器 flip-flop垫圈 washer 脉冲波形 pulse shape垫片 spacer 数模 digital analogy直齿圆柱齿轮 straight toothed spur gear 液压传动机构 fluid drive mechanism 斜齿圆柱齿轮 helical-spur gear 机械零件 mechanical parts直齿锥齿轮 straight bevel gear 淬火冷却 quench运动简图 kinematic sketch 淬火 hardening齿轮齿条 pinion and rack 回火 tempering蜗杆蜗轮 worm and worm gear 调质 hardening and tempering虚约束 passive constraint 磨粒 abrasive grain曲柄 crank 结合剂 bonding agent摇杆 racker 砂轮 grinding wheel凸轮 cams 曲率 curvature共轭曲线 conjugate curve 偏微分 partial differential范成法 generation method 毛坯 rough定义域 definitional domain 游标卡尺 slide caliper值域 range 千分尺 micrometer calipers导数\\微分 differential coefficient 攻丝 tap求导 derivation 二阶行列式 second order determinant 定积分 definite integral 逆矩阵 inverse matrix不定积分 indefinite integral 线性方程组 linear equations排列组合 permutation and combination 概率 probability气体状态方程 equation of state of gas 随机变量 random variable塑件模具相关英文compre sion molding压缩成型 runner system浇道系统flash mold溢流式模具 stress crack应力电裂plsitive mold挤压式模具 orientation定向split mold分割式模具 sprue gate射料浇口,直浇口 cavity型控 母模 nozzle射嘴core模心 公模 sprue lock pin料头钩销(拉料杆) taper锥拔 slag well冷料井leather cloak仿皮革 side gate侧浇口shiver饰纹 edge gate侧缘浇口flow mark流痕 tab gate搭接浇口welding mark溶合痕 film gate薄膜浇口post screw insert螺纹套筒埋值 flash gate闸门浇口self tapping screw自攻螺丝 slit gate缝隙浇口striper plate脱料板 fan gate扇形浇口piston活塞 dish gate因盘形浇口cylinder汽缸套 diaphragm gate隔膜浇口chip细碎物 ring gate环形浇口handle mold手持式模具 subarine gate潜入式浇口 encapsulation molding低压封装成型、射出成型用模具 tunnel gate隧道式浇口two plate两极式(模具) pin gate针点浇口well type蓄料井 Runner less无浇道insulated runner绝缘浇道方式 (sprue less)无射料管方式hot runner热浇道 long nozzle延长喷嘴方式runner plat浇道模块 sprue浇口;溶渣valve gate阀门浇口 eject pin顶出针band heater环带状的电热器 knock pin顶出销spindle阀针 return pin回位销反顶针spear head刨尖头 sleave套筒slag well冷料井 stripper plate脱料板cold slag冷料渣 insert core放置入子air vent排气道 runner stripper plate浇道脱料板 welding line熔合痕guide pin导销subzero深冷处理 three plate三极式模具机械设计及周边其他用语英汉对照assembly drawing 装配图 auto tool change cycle 自动换刀时间周期 beam 横梁 bending moment 弯矩bending stress 弯曲应力 bottoming 底靠buckling 纵弯曲 chamfering 去角斜切channel 凹槽 chattering 颤动check point 查核点 chip 切屑chip conveyor 排屑输送机 coefficient of friction 摩擦系数 compact 小型的 cooling pipe 冷却管coupon 试样胚 deflection 挠曲量distortion 扭曲变形 draft taper 拔模锥度draw out 拉拔 fit tolerance 配合公差flexible rigidity 弯曲刚性 gas vent 气孔hatching 剖面线 heater cooler 加热器冷却装置hook cavity 钩穴 inching 寸动lug 凸缘 maintenance 维修保固metallurgy 冶金学 notch effect 切口效果out of roughness 真圆度 performance 动作性能pit 坑 plane strain 倒角应力plug mill 蕊棒轧管机 repeated load 重覆载荷riveted joint ?钉接合 sand paper 砂纸shift 偏移 shrink fit 热压配合shrinkage hole 缩孔 sinking 凹陷sketch 草图 spalling 剥落straightness 直度 submarine 深陷式surface roughness 表面粗度 tapping 攻螺丝thermocouple 热电耦 torsion load 扭转载荷toughness 韧性 tracing 描图under cut 凹割机床行业英汉对照1(1):按英文字母排序 3-Jaws indexing spacers 三爪、分割工具头 CNC engraving machines 电脑数控雕刻机A.T.C.system 加工中心机刀库 CNC grinding machines 电脑数控磨床 Aluminum continuous melting & holding furnaces 连续溶解保温炉 CNC lathes 电脑数控车床Balancing equipment 平衡设备 CNC machine tool fittings 电脑数控机床配件 Bayonet 卡口 CNC milling machines 电脑数控铣床Bearing fittings 轴承配件 CNC shearing machines 电脑数控剪切机 Bearing processing equipment 轴承加工机 CNC toolings CNC刀杆Bearings 轴承 CNC wire-cutting machines 电脑数控线切削机 Belt drive 带传动 Conveying chains 输送链Bending machines 弯曲机 Coolers 冷却机Blades 刀片 Coupling 联轴器Blades,saw 锯片 Crimping tools 卷边工具Bolts,screws & nuts 螺栓,螺帽及螺丝 Cutters 刀具Boring heads 搪孔头 Cutting-off machines 切断机Boring machines 镗床 Diamond cutters 钻石刀具Cable making tools 造线机 Dicing saws 晶圆切割机Casting,aluminium 铸铝 Die casting dies 压铸冲模Casting,copper 铸铜 Die casting machines 压铸机Casting,gray iron 铸灰口铁 Dies-progressive 连续冲模Casting,malleable iron 可锻铸铁 Disposable toolholder bits 舍弃式刀头 Casting,other 其他铸造 Drawing machines 拔丝机Casting,steel 铸钢 Drilling machines 钻床Chain drive 链传动 Drilling machines bench 钻床工作台Chain making tools 造链机 Drilling machines,high-speed 高速钻床 Chamfer machines 倒角机 Drilling machines,multi-spindle 多轴钻床 Chucks 夹盘 Drilling machines,radial 摇臂钻床 Clamping/holding systems 夹具/支持系统 Drilling machines,vertical 立式钻床CNC bending presses 电脑数控弯折机 drills 钻头CNC boring machines 电脑数控镗床Electric discharge machines(EDM) 电火花机 CNC drilling machines 电脑数控钻床 Electric power tools 电动刀具CNC EDM wire-cutting machines 电脑数控电火花线切削机 Engraving machines 雕刻机CNC electric discharge machines 电脑数控电火花机 Engraving machines,laser 激光雕刻机 Etching machines 蚀刻机 Laser cutting 激光切割Finishing machines 修整机 Laser cutting for SMT stensil 激光钢板切割机Fixture 夹具 Lathe bench 车床工作台Forging dies 锻模 Lathes,automatic 自动车床Forging,aluminium 锻铝 Lathes,heavy-duty 重型车床Forging,cold 冷锻 Lathes,high-speed 高速车床Forging,copper 铜锻 Lathes,turret 六角车床Forging,other 其他锻造 Lathes,vertical 立式车床Forging,steel 钢锻 Lubricants 润滑液Foundry equipment 铸造设备 Lubrication Systems 润滑系统Gear cutting machines 齿轮切削机 Lubricators 注油机Gears 齿轮 Machining centers,general 通用加工中心Gravity casting machines 重力铸造机 Machining centers,horizontal 卧式加工中心Grinder bench 磨床工作台 Machining centers,horizontal & vertical 卧式及立式加工中心 Grinders,thread 螺纹磨床 Machining centers,vertical 立式加工中心Grinders,tools & cutters 工具磨床 Machining centers,vertical double-column type 立式双柱加工中心 Grinders,ultrasonic 超声波打磨机 Magnetic tools 磁性工具Grinding machines 磨床 Manifolds 集合管Grinding machines,centerless 无心磨床 Milling heads 铣头Grinding machines,cylindrical 外圆磨床 Milling machines 铣床Grinding machines,universal 万能磨床 Milling machines,bed type 床身式铣床Grinding tools 磨削工具 Milling machines,duplicating 仿形铣床Grinding wheels 磨轮 Milling machines,horizontal 卧式铣床Hand tools 手工具 Milling machines,turret vertical 六角立式铣床Hard/soft and free expansion sheet making plant 硬(软)板(片)材及自由发泡板机组Heat preserving furnaces 保温炉 Milling machines,universal 万能铣床Heating treatment funaces 熔热处理炉 Milling machines,vertical 立式铣床Honing machines 搪磨机 Milling machines,vertical & horizontal 立式及卧式铣床Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines 精研机Lapping machines,centerless 无心精研机常用加工机械3D coordinate measurement 三次元量床 boring machine 搪孔机cnc milling machine CNC铣床 contouring machine 轮廓锯床copy grinding machine 仿形磨床 copy lathe 仿形车床copy milling machine 仿形铣床 copy shaping machine 仿形刨床cylindrical grinding machine 外圆磨床 die spotting machine 合模机drilling machine ?孔机 engraving machine 雕刻机engraving E.D.M. 雕模放置加工机 form grinding machine 成形磨床graphite machine 石墨加工机 horizontal boring machine 卧式搪孔机horizontal machine center 卧式加工制造中心 internal cylindrical machine 内圆磨床 jig boring machine 冶具搪孔机 jig grinding machine 冶具磨床lap machine 研磨机 machine center 加工制造中心multi model miller 靠磨铣床 NC drilling machine NC钻床NC grinding machine NC磨床 NC lathe NC车床NC programming system NC程式制作系统 planer 龙门刨床profile grinding machine 投影磨床 projection grinder 投影磨床radial drilling machine 旋臂?床 shaper 牛头刨床surface grinder 平面磨床 try machine 试模机turret lathe 转塔车床 universal tool grinding machine 万能工具磨床vertical machine center 立式加工制造中心 wire E.D.M. 线割放电加工机冲压机械及周边关连用语英汉对照back shaft 支撑轴 blank determination 胚料展开 hand press 手动冲床 hand rack pinion press 手动齿轮齿条式冲床 bottom slide press 下传动式压力机 board drop hammer 板落锤 hand screw press 手动螺旋式冲床 hopper feed 料斗送料brake 煞车 buckle 剥砂面 idle stage 空站 inching 微调尺寸camlachie cramp 铸包 casting on flat ?合 isothermal forging 恒温锻造 key clutch 键槽离合器chamotte sand 烧磨砂 charging hopper 加料漏斗 knockout 脱模装置 knuckle mechanic 转向机构clearance 间隙 closed-die forging 合模锻造 land 模具直线刀面部 level 水平clump 夹紧 clutch 离合器 loader 供料器 unloader 卸料机clutch brake 离合器制动器 clutch boss 离合器轮壳 loop controller 闭回路控制器 lower die 下模clutch lining 离合器覆盖 coil car 带卷升降运输机 micro inching device 微寸动装置 microinching equipment 微动装置 coil cradle 卷材进料装置 coil reel stand 钢材卷料架 motor 马达 moving bolster 活动工作台column 圆柱 connection screw 连杆调节螺钉 notching press 冲缺口压力机 opening 排料逃孔core compound 砂心黏结剂 counter blow hammer 对击锻锤 overload protection device 防超载装置 pinch roll 导正滚轮 cradle 送料架 crank 曲柄轴 pinion 小齿轮 pitch 节距crankless 无曲柄式 cross crank 横向曲轴 pressfit 压入 progressive 连续送料cushion 缓冲 depression 外缩凹孔 pusher feed 推杆式送料 pusher feeder 料片押片装置dial feed 分度送料 die approach 模口角度 quick die change system 快速换模系统 regrinding 再次研磨die assembly 合模 die cushion 模具缓冲垫 releasing 松释动作 reversed blanking 反转下料die height 冲压闭合高度 die life 模具寿命 robot 机器人 roll forming machine 辊轧成形die opening 母模逃孔 die spotting press 调整冲模用压力机 roll forming machine 辊轧成形机 roll release 脱辊double crank press 双曲柄轴冲床 draght angle 逃料倾斜角 roller feed 辊式送料 roller leveler 辊式矫直机edging 边锻伸 embedded core 加装砂心 rotary bender 卷弯成形机 safety guard 安全保护装置feed length 送料长度 feed level 送料高度 scrap cutter 废料切刀 scrap press 废料冲床filling core 埋入砂心 filling in 填砂 seamless forging 无缝锻造 separate 分离film play 液面花纹 fine blanking press 精密下料冲床 shave 崩砂 shear angle 剪角forging roll 辊锻机 finishing slag 炼後熔渣 sheet loader 薄板装料机 shot 单行程工作fly wheel 飞轮 fly wheel brake 飞轮制动器 shrinkage fit 收缩配合 shut height 闭合高度foot press 脚踏冲床 formboard 进模口板 sieve mesh 筛孔 sintering of sand 铸砂烧贴frame 床身机架 friction 摩擦 slide balancer 滑动平衡器 slug hole 逃料孔friction brake 摩擦煞车 gap shear 凹口剪床 spin forming machine 旋压成形机 spotting 合模gear 齿轮 gib 滑块引导部 stack feeder 堆叠拨送料机 stickness 黏模性gripper 夹具 gripper feed 夹持进料 straight side frame 冲床侧板 stretcher leveler 拉伸矫直机 gripper feeder 夹紧传送装置 hammer 槌机 strip feeder 料材送料装置 stripping pressure 弹出压力stroke 冲程 take out device 取料装置toggle press 肘杆式压力机 transfer 传送transfer feed 连续自动送料装置 turrent punch press 转塔冲床two speed clutch 双速离合器 uncoiler 闭卷送料机unloader 卸载机 vibration feeder 振动送料机wiring press 嵌线卷边机机械工具英语机械工具 spanner 扳子 (美作:wrench) double-ended spanner 双头扳子adjustable spanner, monkey wrench 活扳子,活络扳手box spanner 管钳子 (美作:socket wrench) calipers 卡规pincers, tongs 夹钳 shears 剪子 hacksaw 钢锯wire cutters 剪线钳 multipurpose pliers, universal pliers 万能手钳 adjustable pliers 可调手钳 punch 冲子 drill 钻 chuck 卡盘scraper 三角刮刀 reamer 扩孔钻 calliper gauge 孔径规rivet 铆钉 nut 螺母 locknut 自锁螺母,防松螺母 bolt 螺栓半自动化 semi-automation; semi-automatic 扳手 wrenchpin, peg, dowel 销钉 washer 垫圈 staple U形钉车床 lathe; turning lathe 车刀 lathe tooloil can 油壶 jack 工作服 grease gun 注油枪车轮车床 car wheel lathe 车削 turning 车轴 axle机械加工 拋光 polishing 安装 to assemble 衬套 bushing柄轴 arbor 部件 units; assembly parts 插床 slotting machine半机械化 semi-mechanization; semi-mechanized备件 spare parts 边刨床 side planer 变速箱 transmission gear半自动滚刀磨床 semi-automatic hob grinder拆卸 to disassemble 超高速内圆磨床 ultra-high-speed internal grinder心装置。

pull down buffer经典配方

pull down buffer经典配方

Arabidopsis EPSIN1Plays an Important Role in VacuolarTrafficking of Soluble Cargo Proteins in Plant Cells via Interactions with Clathrin,AP-1,VTI11,and VSR1WJinhee Song,Myoung Hui Lee,Gil-Je Lee,Cheol Min Yoo,and Inhwan Hwang1Division of Molecular and Life Sciences and Center for Plant Intracellular Trafficking,Pohang University of Scienceand Technology,Pohang790-784,KoreaEpsin and related proteins play important roles in various steps of protein trafficking in animal and yeast cells.Many epsin homologs have been identified in plant cells from analysis of genome sequences.However,their roles have not been elucidated.Here,we investigate the expression,localization,and biological role in protein trafficking of an epsin homolog, Arabidopsis thaliana EPSIN1,which is expressed in most tissues we examined.In the cell,one pool of EPSIN1is associated with actinfilaments,producing a network pattern,and a second pool localizes primarily to the Golgi complex with a minor portion to the prevacuolar compartment,producing a punctate staining pattern.Protein pull-down and coimmunoprecipitation experiments reveal that Arabidopsis EPSIN1interacts with clathrin,VTI11,g-adaptin-related protein(g-ADR),and vacuolar sorting receptor1(VSR1).In addition,EPSIN1colocalizes with clathrin and VTI11.The epsin1mutant,which has a T-DNA insertion in EPSIN1,displays a defect in the vacuolar trafficking of sporamin:greenfluorescent protein(GFP),but not in the secretion of invertase:GFP into the medium.Stably expressed HA:EPSIN1complements this trafficking defect.Based on these data,we propose that EPSIN1plays an important role in the vacuolar trafficking of soluble proteins at the trans-Golgi network via its interaction with g-ADR,VTI11,VSR1,and clathrin.INTRODUCTIONAfter translation in eukaryotic cells,a large number of proteins are transported to subcellular compartments by a variety of different mechanisms.Newly synthesized vacuolar proteins that are delivered to the endoplasmic reticulum(ER)by the cotrans-lational translocation mechanism are transported to the vacuole from the ER by a process called intracellular trafficking.Traffick-ing of a protein to the vacuole from the ER occurs through two organelles,the Golgi complex and the prevacuolar compartment (PVC)(Rothman,1994;Hawes et al.,1999;Bassham and Raikhel, 2000;Griffiths,2000).Transport of a protein from the ER to the Golgi complex is performed by coat protein complex II vesicles. Transport from the trans-Golgi network(TGN)to the PVC occurs via clathrin-coated vesicles(CCVs)(Robinson et al.,1998;Tang et al.,2005;Yang et al.,2005).Transport of a protein from the ER to the vacuole/lysosome requires a large number of proteins,including components of vesicles,factors involved in vesicle generation and fusion,reg-ulators of intracellular trafficking,adaptors for the cargo proteins, and other accessory proteins(Robinson and Kreis,1992;Bennett, 1995;Schekman and Orci,1996;da Silva Conceic¸a˜o et al.,1997;Kirchhausen,1999;Sever et al.,1999;Bassham and Raikhel, 2000;Griffiths,2000;Jin et al.,2001;Robinson and Bonifacino, 2001).Most of these proteins are found in all eukaryotic cells from yeast,animals,and plants,suggesting that protein traffick-ing mechanisms from the ER to the vacuole/lysosome may be highly conserved in all eukaryotic cells.Of the large number of proteins involved in intracellular traf-ficking,a group of proteins that have the highly conserved epsin N-terminal homology(ENTH)domain have been identified as playing a critical role at various trafficking steps in animal and yeast cells(Chen et al.,1998;De Camilli et al.,2002;Wendland, 2002;Overstreet et al.,2003;Legendre-Guillemin et al.,2004). The ENTH domain binds to phosphatidylinositols(PtdIns), although the lipid binding specificity differs with individual members of the epsin family.For example,epsin1binds to PtdIns(4,5)P2,whereas EpsinR and Ent3p bind to PtdIns(4)P and PdtIns(3,5)P2,respectively(Itoh et al.,2001).The ENTH domain is thought to be responsible for targeting these proteins to specific compartments and also for introducing curvature to the bound membranes to assist in the generation of CCVs(Legendre-Guillemin et al.,2004).However,the exact steps of intracellular trafficking in which ENTH-containing proteins play a role are complex.Epsin homologs can be divided into two groups based on the pathway in which they play a role.One group,which includes epsin1in animal cells and Ent1p and Ent2p in yeast cells,is involved in endocytosis from the plasma membrane (Chen et al.,1998;De Camilli et al.,2002;Wendland,2002).The other group,which includes EpsinR/clint/enthoprotin in animal cells and Ent3p and Ent4p in yeast cells,is involved in protein trafficking from the TGN to the lysosome/vacuole as well as1To whom correspondence should be addressed.E-mail ihhwang@postech.ac.kr;fax82-54-279-8159.The author responsible for distribution of materials integral to thefindings presented in this article in accordance with the policy describedin the Instructions for Authors()is:Inhwan Hwang(ihhwang@postech.ac.kr).W Online version contains Web-only data./cgi/doi/10.1105/tpc.105.039123The Plant Cell,Vol.18,2258–2274,September2006,ª2006American Society of Plant Biologistsretrograde trafficking from the early endosomes to the TGN (Kalthoff et al.,2002;Wasiak et al.,2002;Hirst et al.,2003; Chidambaram et al.,2004;Eugster et al.,2004;Saint-Pol et al., 2004).Another common feature of epsin-related proteins is that they play a role in CCV-mediated protein trafficking at both the TGN and the plasma membrane.These proteins can bind directly to clathrin through their multiple clathrin binding motifs;thus,they may recruit clathrin to the plasma membrane or the TGN to generate CCVs(Rosenthal et al.,1999;Wendland et al.,1999; Drake et al.,2000).In addition,these proteins interact with many other proteins,such as heterotetrameric clathrin adaptor complexes(APs),monomeric adaptor Golgi-localized,g-ear–containing Arf binding proteins(GGAs),and soluble NSF attach-ment protein receptors(SNAREs).Epsin1interacts with AP-2, Epsin15,and intersectin(Chen et al.,1998;Legendre-Guillemin et al.,2004),whereas EpsinR/enthoprotin/clint and Ent3p interact with SNAREs such as vti1b and vti1p,respectively (Chidambaram et al.,2004)and with adaptor proteins such as GGAs and AP-1(Duncan et al.,2003;Mills et al.,2003).In addition,epsin homologs have ubiquitin-interacting motifs and are ubiquitinated(Oldham et al.,2002;Shih et al.,2002).Protein ubiquitination acts as a signal for endocytosis from the plasma membrane and trafficking from the TGN through the endosome/ PVC to the lysosome/vacuole(Polo et al.,2002;Horak,2003; Raiborg et al.,2003;Scott et al.,2004).The binding of epsin homologs to ubiquitin raises the possibility that epsin homologs may bind directly to cargo proteins that are destined for the vacuole/lysosome from either the plasma membrane or the TGN (Chen and De Camilli,2005;Sigismund et al.,2005).In plant cells,sequence analysis of the entire Arabidopsis thaliana genome reveals several proteins with the highly con-served ENTH domains(Holstein and Oliviusson,2005).However, their biological roles have not been addressed.In this study,we investigate the functional role of EPSIN1,an Arabidopsis epsin homolog,at the molecular level.In particular,we focus on its possible role in protein trafficking in plant cells.We demonstrate that EPSIN1interacts with clathrin,AP-1,VSR1,and VTI11and plays an important role in the vacuolar trafficking of a soluble protein from the Golgi complex to the central vacuole.RESULTSEPSIN1,a Member of the Epsin Family,Is Ubiquitously Expressed in ArabidopsisThe Arabidopsis genome encodes three highly similar epsin-related proteins,EPSIN1,EPSIN2,and EPSIN3(Holstein and Oliviusson,2005).In this study,we investigated the biological role of EPSIN1.EPSIN1has the highly conserved ENTH domain at the N terminus.However,the rest of the molecule is less similar to other epsin-related proteins,although it has motifs,such as LIDL and DPF,that may function as clathrin and AP-1binding motifs,respectively.To understand the biological role of EPSIN1,its expression in various plant tissues was examined.An antibody was raised against the middle domain of EPSIN1(amino acid residues153to 337).The antibody recognized a protein band at90kD,which was much larger than the expected size,60kD,of EPSIN1 (Figure1A).It was shown previously that epsin-related proteins migrate slower than expected in SDS-PAGE(Chen et al.,1998). The control serum did not recognize any protein bands.This re-sult suggested that the antibody specifically recognized EPSIN1. To confirm this,protoplasts were transformed with EPSIN1 tagged with HA at the N terminus(HA:EPSIN1)and protein extracts from the transformed protoplasts were analyzed by protein gel blotting using anti-HA and anti-EPSIN1antibodies. The anti-HA antibody specifically recognized a protein band from the transformed protoplasts,but not from the untransformed protoplasts,at90kD(Figure1B).In addition,the90-kD protein species was recognized by the anti-EPSIN1antibody,confirming that the90-kD band was EPSIN1.The expression of EPSIN1in various tissues was examined using the anti-EPSIN1antibody. Protein extracts were prepared from various tissues at different stages of plant growth and used for protein gel blot analysis. EPSIN1was expressed in all of the tissues examined,with the highest expression in cotyledons andflowers(Figure1C). EPSIN1Produces Both Network and PunctateStaining PatternsTo examine the subcellular distribution of EPSIN1,total protein extracts from leaf tissues were separated into soluble and membrane fractions and analyzed by protein gel blotting using anti-EPSIN1antibody.EPSIN1was detected in both membrane (pellet)and soluble fractions(Figure2A).As controls for the fractionation,Arabidopsis aleurain-like protease(AALP)and Arabi-dopsis vacuolar sorting receptor(VSR)were detected with anti-AALP and anti-VSR antibodies,respectively(Sohn et al.,2003). AALP is a soluble protein present in the vacuolar lumen,and VSR is a membrane protein that is localized primarily to the PVC with a minor portion to the Golgi complex(da Silva Conceic¸a˜o et al., 1997;Ahmed et al.,2000).As expected,AALP and VSR were detected in the supernatant and pellet fractions,respectively. These results indicated that EPSIN1localized to multiple loca-tions,consistent with the behavior of other epsin-related proteins (Legendre-Guillemin et al.,2004).Next,we defined the subcellular localization of EPSIN1.Our initial attempts to localize the endogenous EPSIN1with the anti-EPSIN1antibody failed.Thus,we determined the localization of EPSIN1protein transiently expressed in protoplasts.EPSIN1 was tagged with the HA epitope,greenfluorescent protein(GFP), or redfluorescent protein(RFP).The amount of total EPSIN1 protein was determined using various amounts of HA:EPSIN1 plasmid DNA by protein gel blot analysis with anti-EPSIN1an-tibody and was found to be proportional to the amount of plasmid used(Figure2B).For the localization,we used a minimal amount(5to10m g)of EPSIN1plasmid DNAs.Protoplasts were transformed with HA:EPSIN1,and localization of EPSIN1 was determined by immunostaining with anti-HA antibody.HA: EPSIN1produced primarily a punctate staining pattern(Figure 2Ca).In addition to punctate stains,we occasionally observed weakly stained strings that connected punctate stains(Figure 2Cc,arrowheads).By contrast,the nontransformed controls did not produce any patterns(Figure2Ce).In protoplasts trans-formed with EPSIN1:GFP and EPSIN1:RFP,both EPSIN1fusionEPSIN1in Vacuolar Trafficking2259proteins produced a network pattern with punctate stains (Fig-ures 2Cg and 2Ch),whereas GFP and RFP alone produced diffuse patterns (Figures 2Dh and 2Di),indicating that EPSIN1produces the network pattern with punctate stains.These results were further confirmed by cotransforming the protoplasts with either EPSIN1:GFP and HA:EPSIN1or EPSIN1:GFP and EPSIN1:RFP .The punctate staining pattern of EPSIN1:GFP closely over-lapped that of HA:EPSIN1(Figures 2Da to 2Dc).In addition,the network and punctate staining patterns of EPSIN1:GFP closely overlapped those of EPSIN1:RFP (Figures 2De to 2Dg).However,the fine networks revealed by EPSIN1:GFP in the live protoplasts were nearly absent in the fixed protoplasts.Thus,the differences in the staining patterns between fixed and live protoplasts may be attributable to the fact that the network pattern of live protoplasts are not well preserved under the fixing conditions used.In addi-tion,the strings occasionally observed in the fixed protoplasts may represent the remnants of the network pattern revealed by HA:EPSIN1.These results strongly suggest that EPSIN1is re-sponsible for the network pattern as well as the punctate stains.The network pattern was reminiscent of the ER or actin pattern in plant cells (Boevink et al.,1998;Jin et al.,2001;Kim et al.,2005),whereas the punctate staining pattern suggested that EPSIN1may localize to the Golgi complex or endosomes,as observed previously with epsin homologs in animal and yeast cells (Wasiak et al.,2002;Chidambaram et al.,2004;Saint-Pol et al.,2004).Therefore,protoplasts were cotransformed with EPSIN1:RFP and GFP:talin ,a marker for actin filaments consist-ing of GFP and the actin binding domain of mouse talin (Kost et al.,1998;Kim et al.,2005).As expected,GFP:talin produced the network pattern (Figure 3A)(Kost et al.,1998;Kim et al.,2005).Furthermore,the red fluorescent network pattern of EPSIN1:RFP closely overlapped the green fluorescent network pattern of GFP:talin (Figure 3A),raising the possibility that EPSIN1:GFP bound to the actin filaments rather than to the ER.To confirm this,the EPSIN1:RFP pattern was examined after treatment with latrunculin B (Lat B),a chemical agent known to disrupt actin filaments (Spector et al.,1983).Lat B–treated protoplasts produced the diffuse green fluorescent pattern of GFP:talin (Figure 3A),an indication of solubilized actin filaments,as observed previously (Kim et al.,2005).In addition,the Lat B–treated protoplasts displayed a diffuse red fluorescent pattern of EPSIN1:RFP (Figure 3A),indicating that EPSIN1is associated with actin filaments but not with the ER.Furthermore,the punc-tate staining pattern of EPSIN1:RFP also was not observed in the presence of Lat B,indicating that actin filaments played a role in yielding the punctate staining pattern of EPSIN1.In the same conditions,BiP:GFP,an ER marker (Lee et al.,2002),produced a network pattern,indicating that Lat B does not disrupt the ER network patterns (Figure 3Ai).To identify the organelle responsible for the punctate staining pattern of EPSIN1,its localization was compared with that of ST:GFP and PEP12p/SYP21.ST:GFP,a chimericproteinFigure 1.EPSIN1Is Expressed in Various Arabidopsis Tissues.(A)Generation of anti-EPSIN1antibody.The middle domain,corresponding to amino acid residues 153to 337,was expressed as the Hisx6-tagged form in E.coli and used to raise antibody in a rabbit.Control serum was obtained from the rabbit before immunization.Total protein extracts were obtained from leaf tissues and used to test the anti-EPSIN1antibody.(B)Specificity of the anti-EPSIN1antibody.Protein extracts were obtained from protoplasts expressing EPSIN1tagged with the HA epitope at the N terminus and used for protein gel blot analysis using anti-HA and anti-EPSIN1antibodies.(C)Expression of EPSIN1in various tissues.Total protein extracts from the indicated tissues were analyzed by protein gel blotting using anti-EPSIN1antibody.Leaf tissues were harvested 11and 20d after germination.Cotyledons were obtained from 5-d-old plants.The membranes were stained with Coomassie blue to control for protein loading.RbcL,large subunit of the ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco)complex.2260The Plant CellFigure 2.EPSIN1Produces Both Network and Punctate Staining Patterns.(A)Subcellular fractionation of EPSIN1.Total (T)protein extracts of leaf tissues were separated into soluble (S)and pellet (P)fractions and analyzed by protein gel blotting using anti-EPSIN1,anti-AALP,and anti-VSR antibodies.(B)Expression level of EPSIN1in transformed protoplasts.Protoplasts were transformed with various amounts of HA:EPSIN1DNA,and the level of EPSIN1was determined by protein gel blotting with anti-EPSIN1antibody.Protein extracts from untransformed protoplasts were used as a control.The membrane was also stained with Coomassie blue to control for loading.(C)Localization of EPSIN1.Protoplasts were transformed with the indicated constructs (5to 10m g),and the localization of EPSIN1was examined either by immunostaining with anti-HA antibody or by direct detection of the GFP or RFP signal.Untransformed protoplasts were immunostained with anti-HA antibody as a control.Bars ¼20m m.(D)Colocalization of EPSIN1proteins.The localization of EPSIN1protein was examined in protoplasts transformed with HA:EPSIN1and EPSIN1:GFP or with EPSIN1:GFP and EPSIN1:RFP .As controls,GFP and RFP alone were transformed into protoplasts.Bars ¼20m m.EPSIN1in Vacuolar Trafficking 2261亚细胞定位可以荧光观察也可以做western 检测Figure 3.Localization of EPSIN1in Protoplasts.2262The Plant Cellbetween rat sialyltransferase and GFP,localizes to the Golgi complex,and PEP12p,a t-SNARE,localizes to the PVC(da Silva Conceic¸a˜o et al.,1997;Boevink et al.,1998;Jin et al.,2001). Protoplasts were cotransformed with HA:EPSIN1and ST:GFP. The localization of these proteins was examined after staining with anti-HA antibody.ST:GFP was observed directly with the greenfluorescent signals.A major portion of the HA:EPSIN1-positive punctate stains closely overlapped with those of ST:GFP (Figures3Ba to3Bc).To further confirm the Golgi localization of HA:EPSIN1,protoplasts transformed with HA:EPSIN1were treated with brefeldin A(BFA),a chemical known to disrupt the Golgi complex(Driouich et al.,1993),and the localization of HA:EPSIN1was examined.In the presence of BFA,HA:EPSIN1 yielded a largely diffuse pattern with aggregates,but not the punctate staining pattern,indicating that BFA affects EPSIN1 localization(Figure3Be).In the same conditions,ST:GFP pro-duced a network pattern with large aggregates(Figure3Bg), confirming that the Golgi complex was disrupted.These results support the notion that EPSIN1localizes to the Golgi complex. Next,we examined the possibility of EPSIN1localizing to the PVC.Protoplasts were cotransformed with EPSIN1:GFP and PEP12p:HA.The localization of PEP12p:HA was examined after staining with anti-HA antibody.EPSIN1:GFP was observed di-rectly with the greenfluorescent signals.Only a minor portion of the EPSIN1:GFP-positive punctate stains overlapped with the PEP12p:HA-positive punctate stains(Figures3Bi to3Bk,ar-rows).These results indicated that EPSIN1localized primarily to the Golgi complex with a minor portion to the PVC.To obtain independent evidence for the localization,we ex-amined the colocalization of EPSIN1with VTI11,a v-SNARE that is distributed equally to both the TGN and the PVC(Zheng et al., 1999;Bassham et al.,2000;Kim et al.,2005).Protoplasts were cotransformed with EPSIN1:GFP and VTI11:HA,and the local-ization of these proteins was examined by immunostaining with anti-HA antibody.EPSIN1-positive punctate stains largely colo-calized with those of VTI11:HA(Figures3Bm to3Bo),confirming that EPSIN1localizes to both the Golgi complex and the PVC. EPSIN1Binds to and Colocalizes with ClathrinThe members of the epsin family have two clathrin binding motifs (Rosenthal et al.,1999;Wendland et al.,1999;Drake et al.,2000). Sequence analysis indicated that EPSIN1has a potential clathrin binding motif.To explore the possibility that EPSIN1binds to clathrin,glutathione S-transferase–fused EPSIN1(GST:EPSIN1) was constructed for a protein pull-down assay(Figure4A).GST: EPSIN1was expressed in Escherichia coli and purified from E. coli extracts(Figure4B).The purified GST:EPSIN1was mixed with protein extracts obtained from leaf tissues.Proteins pelleted with glutathione–agarose were analyzed by protein gel blotting using anti-clathrin antibody.GST:EPSIN1,but not GST alone, precipitated from the plant extracts a180-kD protein species that was recognized by anti-clathrin antibody(Figure4C),indi-cating that EPSIN1bound to clathrin.To further examine its binding to clathrin,EPSIN1was divided into two regions,the ENTH and the remainder of the molecule (EPSIN1D N)(Figure4A).These regions were expressed in E.coli as GST fusion proteins,GST:ENTH and GST:EPSIN1D N,re-spectively(Figure4B).Protein pull-down experiments using leaf cell extracts were performed with purified GST:ENTH and GST: EPSIN1D N.GST:EPSIN1D N,but not GST:ENTH,precipitated clathrin from the plant extracts(Figure4C).To identify the clathrin binding motif,the C-terminal region containing the putative clathrin binding motif,LIDL(Lafer,2002),as well as GST:RIDL, which contained an Arg substitution of thefirst Leu residue in the motif,were expressed as GST fusion proteins in E.coli(Figures 4A and4B).GST:LIDL,but not GST:RIDL,precipitated clathrin from protein extracts(Figure4C),indicating that the LIDL motif functioned as a clathrin binding motif.The in vitro binding of EPSIN1with clathrin strongly suggested that EPSIN1was likely to colocalize with clathrin.Therefore, immunohistochemistry for the localization of EPSIN1and clathrin was performed.Protoplasts were transformed with HA:EPSIN1, and the localization of HA:EPSIN1and clathrin was examined by staining with anti-HA and anti-clathrin antibodies,respectively. The anti-clathrin antibody produced a punctate staining pattern (Figure4D).A majority(60to70%)of the HA:EPSIN1-positive punctate stains closely overlapped with a pool(40to50%)of clathrin-positive punctate stains(Figure4D),consistent with an interaction between EPSIN1and clathrin.There was also a pool of clathrin-positive punctate stains that lacked the HA:EPSIN1 signal,suggesting that clathrin also was involved in an EPSIN1-independent process.To further characterize the interaction between EPSIN1and clathrin,we examined whether or not EPSIN1is permanently associated with CCVs.Protein extracts from leaf tissues were first separated into soluble and pellet fractions by ultracentrifu-gation.The pellet fraction was treated with Triton X-100and further fractionated by gelfiltration,and the fractions were ana-lyzed by protein gel blotting using anti-clathrin,anti-EPSIN,and anti-VSR antibodies.Clathrin was detected in a peak between 443and669kD(see Supplemental Figure1online).Interestingly, VSR,the vacuolar cargo receptor,was eluted at the same posi-tion with clathrin.By contrast,EPSIN1was eluted at90kD. These results suggest that EPSIN1is not permanently associ-ated with CCVs.Figure3.(continued).(A)Colocalization of EPSIN1with actinfilaments.Protoplasts were transformed with the indicated constructs,and the localization of these proteins was examined in the presence(þLat B)and absence(ÿLat B)of Lat B(10m M).Bars¼20m m.(B)Localization of EPSIN1to the Golgi complex and the PVC.Protoplasts were transformed with the indicated constructs,and localization of the proteins was examined after immunostaining with anti-HA.The GFP signals were observed directly in thefixed protoplasts.For BFA treatment,BFA(30 m g/mL)was added to the transformed protoplasts at24h after transformation and incubated for3h.Arrows indicate the overlap between EPSIN1:GFP and PEP12p:HA.Bars¼20m m.EPSIN1in Vacuolar Trafficking2263Figure 4.EPSIN1Binds to and Colocalizes with Clathrin.(A)Constructs.GST was fused to the N terminus.ENTH,the epsin N-terminal homology domain.DLF and DPF motifs are similar to AP-1and AP-3binding motifs,respectively.Q11indicates a stretch of 11Glu residues.The clathrin binding motif (LIDL)and the Leu-to-Arg substitution in the clathrin binding motif (RIDL)are shown in the C-terminal region.The numbers indicate amino acid positions.(B)Expression of GST-fused EPSIN1proteins.Constructs were introduced into E.coli ,and their expression was induced by isopropylthio-b -galactoside.GST fusion proteins were purified from E.coli extracts with glutathione–agarose beads.Purified proteins were stained with Coomassie blue.(C)Interaction of EPSIN1with clathrin.GST-fused EPSIN1proteins were mixed with protein extracts from leaf tissues.EPSIN1binding proteins were precipitated using glutathione–agarose beads and analyzed by protein gel blotting using anti-clathrin antibody.Supernatants also were included in the protein gel blot analysis.Subsequently,the membranes were stained with Coomassie blue.Bead,glutathione–agarose beads alone;P,pellet;S,supernatant (10%of total).(D)Colocalization of EPSIN1with clathrin.Protoplasts transformed with HA:EPSIN1were fixed with paraglutaraldehyde,and the localization of HA:EPSIN1and clathrin was examined by immunostaining with anti-HA and anti-clathrin antibodies,respectively.Bar ¼20m m.2264The Plant CellEPSIN1Interacts with VTI11Epsin-related proteins in animal and yeast cells are involved in either endocytosis or vacuolar/lysosomal protein trafficking(Chen et al.,1998;De Camilli et al.,2002;Wendland,2002;Overstreet et al.,2003;Legendre-Guillemin et al.,2004).To elucidate the pathway of EPSIN1involvement,binding partners of EPSIN1 were examined.In animal and yeast cells,epsin-like proteins have been shown to interact with SNAREs(Chen et al.,1998; Chidambaram et al.,2004).Because EPSIN1localized to the Golgi complex and the PVC,EPSIN1interactions with Arabidop-sis VTI11and VTI12(formerly At VTI1a and At VTI1b,respectively) were examined.VTI11is a v-SNARE that localizes to the TGN and travels to the PVC(Zheng et al.,1999;Bassham et al.,2000). VTI11and VTI12were tagged with HA at the C terminus and introduced into protoplasts.The expression of VTI11:HA and VTI12:HA in protoplasts was confirmed by protein gel blot analysis using anti-HA antibody.The anti-HA antibody detected protein bands at33and35kD(Figure5A),the expected positions of VTI11:HA and VTI12:HA,respectively.Purified GST:EPSIN1 from E.coli extracts was mixed with plant extracts from the VTI11:HA-or VTI12:HA-transformed protoplasts,and GST: EPSIN1-bound proteins were precipitated from the mixture using glutathione–agarose beads.The pellet fraction was analyzed by protein gel blotting using anti-HA antibody.VTI11:HA,but not VTI12:HA,was detected from the pellet(Figure5A).GST alone did not precipitate VTI11:HA from the plant extracts.These results indicated that although VTI11and VTI12are highly similar to each other,EPSIN1specifically binds to VTI11:HA.To further confirm this interaction,we performed a reciprocal protein pull-down experiment(i.e.,pull-down of EPSIN1with VTI11)using protein extracts obtained from protoplasts transformed with VTI11:HA and EPSIN1:GFP.VTI11:HA-bound proteins were immunoprecipitated with anti-HA antibody,and the immunopre-cipitates were analyzed by protein gel blotting using anti-HA, anti-GFP,and anti-calreticulin antibodies.Anti-calreticulin anti-body was used as a negative control.In addition to VTI11:HA, EPSIN1:GFP was detected in the immunoprecipitates(Figure 5B).However,calreticulin was not detected in the pellet.These results further confirm the interaction between VTI11and EPSIN1. To determine the VTI11binding domain of EPSIN1,proteinpull-down experiments were performed using GST:ENTH and GST:EPSIN1D N.GST:ENTH,but not GST:EPSIN1D N,precipi-tated VTI11:HA from the plant extracts(Figure5C),indicating that the ENTH domain contained the VTI11binding motif.Similarly,in animal and yeast cells,EpsinR and Ent3p have been shown to bind to vti1b and vti1p,respectively(Chidambaram et al.,2004). EPSIN1Binds to the Arabidopsis Homolog of g-Adaptinof AP-1Epsin homologs bind to adaptor proteins(APs)(Duncan et al., 2003;Mills et al.,2003).In animal cells,EPSIN1binds to the a-adaptin of AP-2via the D F F/W(where F indicates a hydro-phobic amino acid)and FXDXF motifs(Figure4A)(Brett et al., 2002).Arabidopsis EPSIN1has three DPF motifs to which a-adaptin of AP-2could bind.In addition,EPSIN1has two regions with motifs similar to the acidic Phe motif for binding AP-1and GGAs(Duncan et al.,2003).Therefore,the interactions of EPSIN1with AP complexes were examined.We isolated the Arabidopsis proteins g-adaptin related protein(g-ADR),a-ADR, and d-ADR,which were most closely related to g-adaptin, a-adaptin,and d-adaptin of AP-1,AP-2,and AP-3,respectively. These Arabidopsis proteins were tagged with GFP and ex-pressed transiently in protoplasts.Protein extracts from the transformed protoplasts were mixed with purified GST:EPSIN1, and the GST:EPSIN1-bound proteins were precipitated.The pellet was analyzed by protein gel blotting using anti-GFP antibody.GFP:g-ADR,but not a-ADR:GFP or d-ADR:GFP,was detected in the pellet(Figure6A).The control for the protein pull-down assay,GST alone,did not precipitate any of these proteins. These results strongly suggested that EPSIN1interacts with g-ADR specifically.To further confirm the interaction between EPSIN1and g-ADR,we performed a reciprocal protein pull-down experiment(i.e.,pull down of EPSIN1proteins with Figure5.EPSIN1Binds to VTI11.(A)Protein extracts were prepared from VTI11:HA-and VTI12:HA-transformed protoplasts and mixed with GST alone or GST:EPSIN1. EPSIN1-bound proteins were precipitated from the mixture with gluta-thione–agarose beads and analyzed by protein gel blotting using anti-HA antibody.(B)Coimmunoprecipitation of EPSIN1:GFP with VTI11:HA.Protein ex-tracts from protoplasts cotransformed with VTI11:HA and EPSIN1:GFP were used for immunoprecipitation with anti-HA antibody.The immuno-precipitates were analyzed by protein gel blotting with anti-HA,anti-GFP, and anti-calreticulin antibodies.P,immunoprecipitate;S,supernatant;T, total protein extracts(5%of the input).(C)For binding experiments,protein extracts from protoplasts trans-formed with VTI11:HA were mixed with GST alone,GST:ENTH,and GST:EPSIN1D N.Proteins were precipitated with glutathione-agarose beads and analyzed by protein gel blotting using anti-HA antibody.The amount of the input proteins is indicated.EPSIN1in Vacuolar Trafficking2265。

美国关岛国际机场及其办公室均接获一


Centauri/
Your assignment, translate this to Arcturan:
1a. ok-voon ororok sprok . 1b. at-voon bichat dat . 2a. ok-drubel ok-voon anok plok sprok . 2b. at-drubel at-voon pippat rrat dat . 3a. erok sprok izok hihok ghirok . 3b. totat dat arrat vat hilat . 4a. ok-voon anok drok brok jok . 4b. at-voon krat pippat sat lat . 5a. wiwok farok izok stok . 5b. totat jjat quat cat . 6a. lalok sprok izok jok stok . 6b. wat dat krat quat cat . farok crrrok hihok yorok clok kantok ok-yurp 7a. lalok farok ororok lalok sprok izok enemok . 7b. wat jjat bichat wat dat vat eneat . 8a. lalok brok anok plok nok . 8b. iat lat pippat rrat nnat . 9a. wiwok nok izok kantok ok-yurp . 9b. totat nnat quat oloat at-yurp . 10a. lalok mok nok yorok ghirok clok . 10b. wat nnat gat mat bat hilat . 11a. lalok nok crrrok hihok yorok zanzanok . 11b. wat nnat arrat mat zanzanat . 12a. lalok rarok nok izok hihok mok . 12b. wat nnat forat arrat vat gat .

3D电极的介电泳力与惯性力的粒子连续分选仿真

2022年第41卷第3期 传感器与微系统(TransducerandMicrosystemTechnologies)DOI:10.13873/J.1000—9787(2022)03—0043—043D电极的介电泳力与惯性力的粒子连续分选仿真李晓红1,2,张斌珍1,段俊萍1,王佳云1,屈 增1,冀苗苗1(1.中北大学仪器科学与动态测试教育部重点实验室,山西太原030051;2.太原工业学院电子工程系,山西太原030008)摘 要:细胞分选在生物医学中起着重要的作用,而其中介电泳分选由于其无需生物标记,对粒子损伤小等优势得到了广泛的应用。

本文设计了一种结合三维(3D)电极的介电泳力和收缩—扩张结构的惯性力的微流控芯片,通过COMSOLMultiphysics仿真软件对流体的流速分布、电场分布及粒子的运动轨迹进行仿真分析。

仿真结果表明:三维电极相较于传统的平面电极,能够提供粒子垂直运动方向上的非均匀电场,更有助于实现粒子的高效率分选。

此外,当粒子随流体运动时,不同的流道收缩—膨胀比分选效果不同,当收缩—膨胀比为361时,分选效果会更好。

通过仿真证明了所设计结构的有效性,确定了芯片尺寸,为后续的粒子连续高通量高效率分选,提供了重要的参考价值。

关键词:微流控芯片;惯性力分选;介电泳力分选;三维电极中图分类号:TP212.3 文献标识码:A 文章编号:1000—9787(2022)03—0043—04Particlecontinuousseparationsimulationbasedon3DelectrodecoupledwithdielectricelectrophoresisforceandinertiaforceLIXiaohong1,2,ZHANGBinzhen1,DUANJunping1,WANGJiayun1,QUZeng1,JIMiaomiao1(1.KeyLaboratoryofInstrumentationScienceandDynamicMeasurement,MinistryofEducation,NorthUniversityofChina,Taiyuan030051,China;2.DepartmentofElectronicEngineering,TaiyuanInstituteofTechnology,Taiyuan030008,China)Abstract:Cellseparationplaysanimportantroleinbiomedicalapplications.Dielectrophoresisiswidelyusedduetoitsadvantagesofnorequirementforbiologicalmarkersandnodamagecausedtoparticles.Amicrofluidicchipcombinedwiththeelectrophoreticforceofthe3Delectrodeandtheinertiaforceofthecontract expansionstructureisdesigned.COMSOLMutiphysicssimulationsoftwareisusedtoanalyzetheflowfield,theelectrodefieldandparticletrajectory.Thesimulationresultsshowthatcomparedwithtraditionalplanarelectrodes,the3Delectrodescanprovidenon uniformelectricfieldinverticaldirection,whichismoreusefultorealizeefficientparticleseparation.Inaddition,whentheparticlesmovewiththefluid,theseparationresultsaredifferentwithdifferentcontraction expansionratio.Thesortingeffectisbetterwithwhenthecontraction expansionratiois361.Thedesignedstructureisprovedeffectivethroughthesimulations,andthesizeofthemicro deviceisconfirmed.Thisstructureprovidesanimportantreferencevalueforcontinuoushighthroughputandhighefficiencyseparationofparticles.Keywords:microfluidicschip;inertialforceseparation;electrophoresisseparation;3Delectrodes0 引 言随着微流控芯片的快速发展,与传统细胞分离技术如离心和过滤等相比,由于其样品消耗少,制备成本低,灵敏度高等潜在优势,得到了人们广泛的关注。

发动机怠速状态悬置优化设计


車輛研測資訊 2006-01 23
圖5 撞擊中心理論示意圖
圖6 彈性中心佈置於扭矩軸圖
三、引擎隔振系統最佳化
對引擎剛體模態而言,繞X軸翻滾(Rolling) 模態的解耦最為重要,本研究使用MATLAB軟體之 最佳化工具箱(Optimization Toolbox)撰寫最佳化 程式,將隔振墊彈性中心擺設置扭矩軸上,使繞X 軸翻滾模態能達到解耦的效果,並設法使剛性矩陣 儘量變成對角矩陣,減少系統彈性耦合,最後藉由 模態耦合指示因子(Mode Coupling Indicator)確認 六個自然頻率於最佳化計算後之解耦狀態。
引擎座標系中之慣性矩(Moment of inertia) 與慣性積(Product of inertia)等參數可藉由實驗量 測取得,這些參數可建構出慣性矩的二階張量 [ST],如式(1):
………………(1)
求解該張量[ST]之特徵值(Eigenvalue)即為 主慣性矩,特徵值所對應之特徵向量(Eigenvector) 即為所對應的主慣性軸在引擎座標系之方向餘弦, 由此方向餘弦便可得知主慣性軸在引擎座標系中之
………………………(22) 其中
rG:質心G點迴轉半徑
IG:質心G點之慣性矩 m:質量
若隔振墊平面與扭矩軸垂直,且彈性中心均落
於扭矩軸上,則可使引擎在Y方向的橫向振動、Z 方向的垂直振動及繞X方向的扭轉振動完全解耦, 此時隔振墊擺設如圖6,相關設計參數應滿足下式:
其中
…………………………(23) ………………………………(24)
本研究藉由量測方式取得引擎質量與慣性相關 參數,並於MATLAB程式中建立引擎隔振系統運動 方程式,將隔振墊彈性中心(Elastic center)擺設 至 扭 矩 軸 ( Torque roll axis) 上 , 運 用 最 佳 化 (Optimization)技術將剛性矩陣變為對角矩陣,期 達到隔振系統模態解耦之目標。最後依據計算結果 進行隔振墊試作與實車振動噪音驗證。

Mach_数和壁面温度对HyTRV_边界层转捩的影响

第9卷㊀第2期2024年3月气体物理PHYSICSOFGASESVol.9㊀No.2Mar.2024㊀㊀DOI:10.19527/j.cnki.2096 ̄1642.1098Mach数和壁面温度对HyTRV边界层转捩的影响章录兴ꎬ㊀王光学ꎬ㊀杜㊀磊ꎬ㊀余发源ꎬ㊀张怀宝(中山大学航空航天学院ꎬ广东深圳518107)EffectsofMachNumberandWallTemperatureonHyTRVBoundaryLayerTransitionZHANGLuxingꎬ㊀WANGGuangxueꎬ㊀DULeiꎬ㊀YUFayuanꎬ㊀ZHANGHuaibao(SchoolofAeronauticsandAstronauticsꎬSunYat ̄senUniversityꎬShenzhen518107ꎬChina)摘㊀要:典型的高超声速飞行器流场存在着复杂的转捩现象ꎬ其对飞行器的性能有着显著的影响ꎮ针对HyTRV这款接近真实高超声速飞行器的升力体模型ꎬ采用数值模拟方法ꎬ研究Mach数和壁面温度对HyTRV转捩的影响规律ꎮ采用课题组自研软件开展数值计算ꎬMach数的范围为3~8ꎬ壁面温度的范围为150~900Kꎮ首先对γ ̄Re~θt转捩模型和SST湍流模型进行了高超声速修正:将压力梯度系数修正㊁高速横流修正引入到γ ̄Re~θt转捩模型ꎬ并对SST湍流模型闭合系数β∗和β进行可压缩修正ꎻ然后开展了网格无关性验证ꎬ通过与实验结果对比ꎬ确认了修正后的数值方法和软件平台ꎻ最终开展Mach数和壁面温度对HyTRV边界层转捩规律的影响研究ꎮ计算结果表明ꎬ转捩区域主要集中在上表面两侧㊁下表面中心线两侧ꎻ增大来流Mach数ꎬ上下表面转捩起始位置均大幅后移ꎬ湍流区大幅缩小ꎬ但仍会存在ꎬ同时上表面层流区摩阻系数不断增大ꎬ下表面湍流区摩阻系数不断减小ꎻ升高壁面温度ꎬ上下表面转捩起始位置先前移ꎬ然后快速后移ꎬ最终湍流区先后几乎消失ꎮ关键词:转捩ꎻHyTRVꎻ摩阻ꎻMach数ꎻ壁面温度㊀㊀㊀收稿日期:2023 ̄12 ̄13ꎻ修回日期:2024 ̄01 ̄02基金项目:国家重大项目(GJXM92579)ꎻ广东省自然科学基金-面上项目(2023A1515010036)ꎻ中山大学中央高校基本科研业务费专项资金(22qntd0705)第一作者简介:章录兴(1998 )㊀男ꎬ硕士ꎬ主要研究方向为高超声速空气动力学ꎮE ̄mail:184****8082@163.com通信作者简介:张怀宝(1985 )㊀男ꎬ副教授ꎬ主要研究方向为空气动力学ꎮE ̄mail:zhanghb28@mail.sysu.edu.cn中图分类号:V211ꎻV411㊀㊀文献标志码:AAbstract:Thereisacomplextransitionphenomenonintheflowfieldofatypicalhypersonicvehicleꎬwhichhasasignifi ̄cantimpactontheperformanceofthevehicle.TheeffectsofMachnumberandwalltemperatureonthetransitionofHyTRVwerestudiedbynumericalsimulationmethods.Theself ̄developedsoftwareoftheresearchgroupwasusedtocarryoutnu ̄mericalcalculations.TherangeofMachnumberwas3~8ꎬandtherangeofwalltemperaturewas150~900K.Firstlyꎬthehypersoniccorrectionsoftheγ ̄Re~θttransitionmodelandtheSSTturbulencemodelwerecarriedout.Thepressuregradientcoefficientcorrectionandthehigh ̄speedcross ̄flowcorrectionwereintroducedintotheγ ̄Re~θttransitionmodelꎬandthecom ̄pressibilitycorrectionsoftheclosurecoefficientsβ∗andβoftheSSTturbulencemodelwerecarriedout.Thenꎬthegridin ̄dependenceverificationwascarriedoutꎬandthemodifiednumericalmethodandsoftwareplatformwereconfirmedbycom ̄paringwithexperimentalresults.FinallyꎬtheeffectsofMachnumberandwalltemperatureonthetransitionlawoftheHyTRVboundarylayerwerestudied.Theresultsshowthatthetransitionareaismainlyconcentratedonbothsidesoftheuppersurfaceandthecenterlineofthelowersurface.WiththeincreaseoftheincomingMachnumberꎬthestartingpositionoftransitionontheupperandlowersurfacesisgreatlybackwardꎬandtheturbulentzoneisgreatlyreducedꎬbutitstillex ̄ists.Atthesametimeꎬthefrictioncoefficientofthelaminarflowzoneontheuppersurfaceincreasescontinuouslyꎬandthefrictioncoefficientoftheturbulentzoneonthelowersurfacedecreases.Asthewalltemperatureincreasesꎬthestartingposi ̄tionoftransitionontheupperandlowersurfacesshiftsforwardꎬthenrapidlyshiftsbackwardꎬandfinallytheturbulentzonealmostdisappears.气体物理2024年㊀第9卷Keywords:transitionꎻHyTRVꎻfrictionꎻMachnumberꎻwalltemperature引㊀言高超声速飞行器具有突防能力强㊁打击范围广㊁响应迅速等显著优势ꎬ正逐渐成为各国空天竞争的热点[1]ꎮ高超声速飞行器边界层转捩是该类飞行器气动设计中的重要问题[2]ꎮ在边界层转捩过程中ꎬ流态由层流转变为湍流ꎬ飞行器的表面摩阻急剧增大到层流时的3~5倍ꎬ严重影响飞行器的气动性能与热防护系统ꎬ转捩还会导致飞行器壁面烧蚀㊁颤振加剧㊁飞行姿态控制难度大等一系列问题ꎬ对飞行器的飞行安全构成严重的威胁[3 ̄5]ꎬ开展高超声速飞行器边界层转捩研究具有十分重要的意义ꎮ影响边界层转捩的因素很多ꎬ例如ꎬMach数㊁Reynolds数㊁湍流强度㊁表面传导热等ꎮ在高超声速流动条件下ꎬ强激波㊁强逆压梯度㊁熵层等高超声速现象及其相互作用ꎬ会使得转捩流动的预测和研究难度进一步增大[6]ꎮ目前高超声速飞行器转捩数值模拟方法主要有直接数值模拟(DNS)㊁大涡模拟(LES)和基于Reynolds平均Navier ̄Stokes(RANS)的转捩模型方法ꎬ由于前两种计算量巨大ꎬ难以推广到工程应用ꎬ基于Reynolds平均Navier ̄Stokes的转捩模型在工程实践中应用最为广泛ꎬ其中γ ̄Re~θt转捩模型基于局部变量ꎬ与现代CFD方法良好兼容ꎬ目前已经有多项研究尝试从一般性的流动问题拓展到高超声速流动转捩模拟[6 ̄9]ꎮ目前高超声速流动转捩的研究对象主要是结构相对简单的构型ꎮMcDaniel等[10]研究了扩口直锥在高超声速流动条件下的转捩现象ꎮPapp等[11]研究了圆锥在高超声速流动条件下的转捩特性ꎮ美国和澳大利亚组织联合实施的HIFiRE计划[12]ꎬ研究了圆锥形状的HIFiRE1和椭圆锥形的HIFiRE5的转捩问题ꎮ杨云军等[13]采用数值模拟方法ꎬ分析了椭圆锥的转捩影响机制ꎬ并研究了Reynolds数对转捩特性的影响规律ꎮ另外ꎬ袁先旭等[14]于2015年成功实施了圆锥体MF ̄1航天模型飞行试验ꎮ以上对高超声速流动的转捩研究ꎬ都取得了比较理想的结果ꎬ然而所采用的模型都是圆锥㊁椭圆锥等简单几何外形ꎬ这与真实高超声速飞行器有较大差异ꎬ较难反映真实的转捩特性ꎮ为了有效促进对真实高超声速飞行器的转捩问题研究ꎬ中国空气动力研究与发展中心提出并设计了一款接近真实飞行器的升力体模型ꎬ即高超声速转捩研究飞行器(hypersonictransitionresearchvehicleꎬHyTRV)[15]ꎬ模型详细的参数见参考文献[16]ꎮHyTRV外形如图1所示ꎬ其整体外形较为复杂ꎬ不同区域发生转捩的情况也不尽相同ꎮ对HyTRV的转捩问题研究能够显著提高对真实高超声速飞行器转捩特性的认识水平ꎮLiu等[17]采用理论分析㊁数值模拟和风洞实验3种方法对HyTRV的转捩特性进行了研究ꎻ陈坚强等[15]分析了HyTRV的边界层失稳特征ꎻChen等[18]对HyTRV进行了多维线性稳定性分析ꎻQi等[19]在来流Mach数6㊁攻角0ʎ的条件下对HyTRV进行了直接数值模拟ꎻ万兵兵等[20]结合风洞实验与飞行试验ꎬ利用eN方法预测了HyTRV升力体横流区的转捩阵面形状ꎮ目前ꎬ相关研究主要集中在HyTRV的稳定性特征及转捩预测两个方面ꎬ而对若干关键参数ꎬ特别是Mach数和壁面温度对转捩的影响研究还比较少ꎮ(a)Frontview(b)Sideview㊀㊀㊀图1㊀HyTRV外形Fig.1㊀ShapeofHyTRV基于此ꎬ本文采用数值模拟方法ꎬ应用课题组自研软件开展Mach数和壁面温度对HyTRV转捩流动的影响规律研究ꎮ1㊀数值方法1.1㊀控制方程和数值方法控制方程为三维可压缩RANS方程ꎬ采用结构网格技术和有限体积方法ꎬ变量插值方法采用2阶MUSCL格式ꎬ通量计算采用低耗散的通量向量差分Roe格式ꎬ黏性项离散采用中心格式ꎬ时间推进方法采用LU ̄SGS格式ꎮ壁面采用等温㊁无滑移壁面条件ꎬ入口采用Riemann远场边界条件ꎬ出口采用零梯度外推边界条件ꎮ1.2㊀γ ̄Re~θt转捩模型γ ̄Re~θt转捩模型是Menter等[21ꎬ22]于2004年提01第2期章录兴ꎬ等:Mach数和壁面温度对HyTRV边界层转捩的影响出的一种基于拟合公式的间歇因子转捩模型ꎬ在2009年公布了完整的拟合公式及相关参数[23]ꎮ许多学者也开发了相应的程序ꎬ并进行了大量的算例验证[24 ̄28]ꎬ证明了该模型具有较好的转捩预测能力ꎬ预测精度较高ꎻ通过合适的标定ꎬγ ̄Re~θt转捩模型可以适用于多种情况下的转捩模拟ꎮ该模型构建了关于间歇因子γ的输运方程和关于转捩动量厚度Reynolds数Re~θt的输运方程ꎮ具体来说ꎬγ表示该位置是湍流流动的概率ꎬ取值范围为0<γ<1ꎮ关于γ的控制方程为Ə(ργ)Ət+Ə(ρujγ)Əxj=Pγ-Eγ+ƏƏxjμ+μtσfæèçöø÷ƏγƏxjéëêêùûúú其中ꎬPγ为生成项ꎬEγ为破坏项ꎮ关于Re~θt的输运方程为Ə(ρRe~θt)Ət+Ə(ρujRe~θt)Əxj=Pθt+ƏƏxjσθt(μ+μt)ƏRe~θtƏxjéëêêùûúú其中ꎬPθt为源项ꎬ其作用是使边界层外部的Re~θt等于Reθtꎬ定义式为Pθt=cθtρt(Reθt-Re~θt)(1.0-Fθt)Reθt采用以下经验公式Reθt=1173.51-589 428Tu+0.2196Tu2æèçöø÷F(λθ)ꎬTuɤ0.3Reθt=331.50(Tu-0.5658)-0.671F(λθ)ꎬTu>0.3ìîíïïïïF(λθ)=1+(12.986λθ+123.66λ2θ+405.689λ3θ)e-(Tu1.5)1.5ꎬ㊀λθɤ0F(λθ)=1+0.275(1-e-35.0λθ)e-(Tu0.5)ꎬλθ>0ìîíïïïï在实际计算中ꎬ通过γ ̄Re~θt转捩模型获得间歇因子ꎬ再通过间歇因子来控制SSTk ̄ω湍流模型中湍动能的生成ꎮγ ̄Re~θt转捩模型与SSTk ̄ω湍流模型耦合为Ə(ρk)Ət+Ə(ρujk)Əxj=γeffτijƏuiƏxj-min(max(γeffꎬ0.1)ꎬ1.0)ρβ∗kω+ƏƏxjμ+μtσkæèçöø÷ƏkƏxjéëêêùûúúƏ(ρω)Ət+Ə(ρujω)Əxj=γvtτijƏuiƏxj-βρω2+ƏƏxj(μ+σωμt)ƏωƏxjéëêêùûúú+2ρ(1-F1)σω21ωƏkƏxjƏωƏxj模型中具体参数定义见文献[23]ꎮ1.3㊀高超声速修正原始SST湍流模型及γ ̄Re~θt转捩模型都是基于不可压缩流动发展的ꎬ为了更好地预测高超声速流动转捩ꎬ本节引入了3种重要的高超声速修正方法ꎮ1.3.1㊀压力梯度修正压力梯度对边界层转捩的影响较大ꎬ在高Mach数情况下ꎬ边界层厚度较大ꎬ进而影响压力梯度的大小ꎬ因此在模拟高超声速流动时应该考虑Mach数对压力梯度的影响ꎮ本文采用张毅峰等[29]提出的压力梯度修正方法ꎬ具体修正形式如下λᶄθ=λθ1+γᶄ-12Maeæèçöø÷其中ꎬMae为边界层外缘Mach数ꎬγᶄ为比热比ꎮ1.3.2㊀高速横流修正在原始γ ̄Re~θt转捩模型中ꎬ没有考虑横流不稳定性对转捩的影响ꎬ对于横流模态主导的转捩ꎬ原始转捩模型计算的结果并不理想ꎮLangtry等[30]在2015年对γ ̄Re~θt转捩模型进行了低速横流修正ꎬ向星皓等[9]在Langtry低速横流修正的基础上ꎬ对高超声速椭圆锥转捩DNS数据进行了拓展ꎬ提出了高速横流转捩判据ꎬ本文直接采用向星皓提出的高速横流转捩方法ꎮLangtry将横流强度引入转捩发生动量厚度Reynolds数输运方程中Ə(ρRe~θt)Ət+Ə(ρujRe~θt)Əxj=Pθt+DSCF+ƏƏxjσθt(μ+μt)ƏRe~θtƏxjéëêêùûúú式中ꎬDSCF为横流源项ꎬLangtry低速横流修正为DSCF=cθtρtccrossflowmin(ReSCF-Re~θtꎬ0.0)Fθt2其中ꎬReSCF为低速横流判据ReSCF=θtρUlocal0.82æèçöø÷μ=-35.088lnhθtæèçöø÷+319.51+f(+ΔHcrossflow)-f(-ΔHcrossflow)其中ꎬh为壁面粗糙度高度ꎬθt为动量厚度ꎬ11气体物理2024年㊀第9卷ΔHcrossflow是横流强度抬升项ꎮ向星皓提出的高速横流转捩判据ꎬ其中高速横流源项DSCF ̄H为DSCF ̄H=cCFρmin(ReSCF ̄H-Re~θtꎬ0)FθtReSCF ̄H=CCF ̄1lnhlμ+CCF ̄2+(Hcrossflow)其中ꎬCCF ̄1=-9.618ꎬCCF ̄2=128.33ꎻlμ为粗糙度参考高度ꎬlμ=1μmꎻf(Hcrossflow)为抬升函数f(Hcrossflow)=60000.1066-ΔHcrossflow+50000(0.1066-ΔHcrossflow)2其中ꎬΔHcrossflow与Langtry低速横流修正中保持一致ꎮ1.3.3㊀SST可压缩修正高超声速流动具有强可压缩性ꎬ所以在进行高超声速计算时ꎬ应该对湍流模型进行可压缩修正ꎮSarkar[31]提出了膨胀耗散修正ꎬ对SST湍流模型中的闭合系数β∗ꎬβ进行了可压缩修正ꎬWilcox[32]在Sarkar修正的基础上考虑了可压缩生成项产生时的延迟效应ꎬ使得可压缩修正在湍流Mach数较小的近壁面关闭ꎬ在湍流Mach数较大的自由剪切层打开ꎬ本文采用Wilcox提出的可压缩性修正β∗=β∗0[1+ξ∗F(Mat)]β=β0-β∗0ξ∗F(Mat)其中ꎬβ0ꎬβ∗均为原始模型中的系数ꎬξ∗=1.5ꎮF(Mat)=[Mat-Mat0]H(Mat-Mat0)Mat0=1/4ꎬH(x)=0ꎬxɤ01ꎬx>0{其中ꎬMat=2k/a为湍流Mach数ꎬa为当地声速ꎮ2㊀网格无关性验证及数值方法确认2.1㊀网格无关性验证计算采用3套网格ꎬ考虑到HyTRV的几何对称性ꎬ生成3套半模网格ꎬ第1层网格高度为1ˑ10-6mꎬ确保y+<1ꎬ流向ˑ法向ˑ周向的网格数分别为:网格1是301ˑ201ˑ201ꎬ网格2是301ˑ301ˑ201ꎬ网格3是401ˑ381ˑ281ꎮ全模下表面如图2所示ꎬ选取y/L=0中心线和x/L=0.5处ꎬ对比3套网格的表面摩阻系数ꎬ计算结果如图3所示ꎮ采用网格1时ꎬ表面摩阻系数分布与另外两个结果存在明显差异ꎻ而采用网格2和网格3时ꎬ表面摩阻系数曲线基本重合ꎬ表明在流向㊁法向和周向均满足网格无关性ꎬ后续数值计算采用网格2ꎮ图2㊀截取位置示意图Fig.2㊀Schematicdiagramoftheinterceptionlocation(a)Surfacefrictionaty/L=0(b)Surfacefrictionatx/L=0.5图3㊀采用3套网格计算得到的摩阻对比Fig.3㊀Comparisonofthefrictiondragcalculatedusingthreesetsofgrids2.2㊀数值方法和自研软件的确认采用修正后的转捩模型对HyTRV开展计算ꎬ计算工况为Ma=6ꎬ来流温度Tɕ=97Kꎬ单位21第2期章录兴ꎬ等:Mach数和壁面温度对HyTRV边界层转捩的影响Reynolds数为Re=1.1ˑ107/mꎬ攻角α=0ʎꎬ来流湍流度FSTI=0.8%ꎬ壁面温度T=300Kꎮ为方便对比分析ꎬ计算结果与参考结果均采用上下对称形式布置ꎬ例如ꎬ图4是模型下表面计算结果与实验结果对比:对于下表面两侧转捩的起始位置ꎬ高超声速修正前的转捩位置在x=0.68m附近ꎬ高超声速修正后的计算结果与实验结果吻合良好ꎬ均在x=0.60m附近ꎬ并且湍流边界层区域形状基本一致ꎬ说明修正后的转捩模型能够较好地预测HyTRV转捩的位置ꎮ(a)Calculationofthefrictiondistribution(beforehypersoniccorrection)(b)Calculationofthefrictiondistribution(afterhypersoniccorrection)(c)Experimentalresultsoftheheatfluxdistribution[17]图4㊀下表面计算结果和实验结果对比Fig.4㊀Comparisonofthecalculatedandexperimentalresultsonthelowersurface3㊀HyTRV转捩的基本流动特性计算工况采用Ma=6ꎬ攻角α=0ʎꎬ来流湍流度FSTI=0.6%ꎬ分析HyTRV转捩的基本流动特性ꎮ从图5可以看出ꎬ模型两侧和顶端均出现高压区ꎬ高压区之间为低压区ꎬ横截面上存在周向压力梯度ꎬ流动从高压区向低压区汇集ꎬ从而在下表面中心线附近和上表面两侧腰部区域均形成流向涡结构(见图6)ꎬ沿流动方向ꎬ高压区域逐渐扩大ꎬ流向涡结构的影响范围也越大ꎮ在流向涡结构的边缘位置ꎬ壁面附近的低速流体被抬升到外壁面区域ꎬ外壁面区域的高速流体又被带入到近壁面区域ꎬ进而导致流向涡结构边缘处壁面的摩阻显著增加ꎬ最终诱发转捩ꎬ这些流动特征与文献[15]的结果一致ꎮ图7显示了上下表面摩阻的分布情况ꎬ其中上表面两侧区域在x/L=0.80附近ꎬ摩阻显著增加ꎬ出现明显的转捩现象ꎬ转捩区域分布在两侧边缘位置ꎻ而下表面两侧区域在x/L=0.75附近ꎬ也出现明显的转捩ꎬ转捩区域相对集中在中心线两侧ꎮ图5㊀不同截面位置处的压力云图Fig.5㊀Pressurecontoursatdifferentcross ̄sectionlocations图6㊀不同截面位置处的流向速度云图Fig.6㊀Streamwisevelocitycontoursatdifferentcross ̄sectionlocations31气体物理2024年㊀第9卷(a)Uppersurface㊀㊀㊀㊀㊀(b)Lowersurface图7㊀上下表面摩阻分布云图Fig.7㊀Frictioncoefficientcontoursontheupperandlowersurfaces4㊀不同Mach数对HyTRV转捩的影响保持来流湍流度FSTI=0.6%不变ꎬMach数变化范围为3~8ꎮ图8是不同Mach数条件下HyTRV上下表面的摩阻分布云图ꎬ从图中可知ꎬ随着Mach数的增加ꎬ上下表面的湍流区域均逐渐减少ꎬ其中上表面两侧转捩起始位置由x/L=0.56附近后移至x/L=0.92附近ꎬ下表面两侧转捩起始位置由x/L=0.48附近后移至x/L=0.99附近ꎬ上下表面两侧转捩起始位置均大幅后移ꎬ说明Mach数对HyTRV转捩的影响很大ꎮuppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(a)Ma=3uppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(b)Ma=4uppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(c)Ma=541第2期章录兴ꎬ等:Mach数和壁面温度对HyTRV边界层转捩的影响uppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(d)Ma=6uppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(e)Ma=7uppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(f)Ma=8图8㊀不同Mach数条件下摩阻系数分布云图Fig.8㊀FrictioncoefficientcontoursatdifferentMachnumbers上表面选取图7中z/L=0.12的位置ꎬ下表面选取z/L=0.10的位置进行分析ꎮ从图9中可以分析出ꎬ随着Mach数的增加ꎬ上表面转捩起始位置不断后移ꎬ当Mach数增加到7时ꎬ由于湍流区的缩小ꎬ此处位置不再发生转捩ꎬ此外ꎬMach数越高层流区摩阻系数越大ꎻ下表面转捩起始位置也不断后移ꎬ当Mach数增加到8时ꎬ此处位置不再发生转捩ꎬ此外ꎬMach数越高ꎬ湍流区的摩阻系数越小ꎬ这些结论与关于来流Mach数对转捩位置影响的普遍研究结论一致ꎮ(a)Uppersurface㊀㊀㊀㊀㊀(b)Lowersurface图9㊀不同位置摩阻系数随Mach数的变化Fig.9㊀VariationoffrictioncoefficientwithMachnumberatdifferentlocations51气体物理2024年㊀第9卷5㊀不同壁面温度对HyTRV转捩的影响保持来流湍流度FSTI=0.6%及Ma=6不变ꎬ壁面温度的变化范围为150~900Kꎮ图10是不同壁面温度条件下HyTRV上下表面的摩阻分布云图ꎬ可以看出随着壁面温度的增加ꎬ上表面两侧湍流区域先是缓慢扩大ꎬ在壁面温度为500K时湍流区域快速缩小ꎬ增加到900K时ꎬ已无明显湍流区域ꎻ下表面两侧湍流区域先是无明显变化ꎬ同样当壁面温度升高到500K时ꎬ湍流区域快速缩小ꎬ当壁面温度升高到700K时ꎬ两侧已经无明显的湍流区域ꎬ相比上表面两侧湍流区域ꎬ下表面湍流区域消失得更早ꎮ由此可以得出壁面温度对转捩的产生有较大的影响ꎬ壁面温度增加到一定程度将导致HyTRV没有明显的转捩现象ꎮuppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(a)T=150Kuppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(b)T=200Kuppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(c)T=300Kuppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(d)T=500K61第2期章录兴ꎬ等:Mach数和壁面温度对HyTRV边界层转捩的影响uppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(e)T=700Kuppersurface㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀lowersurface(f)T=900K图10㊀不同壁面温度条件下摩阻系数分布云图Fig.10㊀Frictioncoefficientcontoursatdifferentwalltemperatureconditions上表面选取z/L=0.125的位置ꎬ下表面选取z/L=0.100的位置进行分析ꎮ从图11中可以分析出ꎬ随着壁面温度的增加ꎬ上表面转捩起始位置先前移ꎬ当壁面温度增加到500K时ꎬ转捩起始位置后移ꎬ转捩区长度逐渐增加ꎬ层流区域的摩阻系数逐渐增加ꎬ当壁面温度增加到700K时ꎬ该位置已不再出现转捩ꎻ下表面转捩起始位置先小幅后移ꎬ当壁面温度增加到300K时ꎬ转捩起始位置开始后移ꎬ当壁面温度增加到700K时ꎬ由于湍流区域的减小ꎬ该位置不再发生转捩ꎮ(a)Uppersurface㊀㊀㊀㊀㊀(b)Lowersurface图11㊀不同位置摩阻系数随壁面温度的变化Fig.11㊀Variationoffrictioncoefficientwithwalltemperatureatdifferentlocations为进一步分析壁面温度的影响ꎬ本文分别在上下表面湍流区选取一点(0.9ꎬ0.029ꎬ0.14)ꎬ(0.97ꎬ-0.34ꎬ0.12)ꎬ分析边界层湍动能剖面ꎬ结果如图12所示ꎮ从图中可以看到ꎬ随着壁面温度升高ꎬ边界层厚度先略微变厚ꎬ再变薄ꎬ当壁面温度升高到700K时ꎬ边界层厚度迅速降低ꎮ这些结果与转捩位置先前移再后移的结论相符合ꎬ因为边界层厚度会影响不稳定波的时间和空间尺度ꎬ边界层厚度低时ꎬ不稳定波增长速度变慢ꎬ延迟转捩发生ꎮ需要指出的是ꎬ仅采用当前使用的方法ꎬ无法从更深层71气体物理2024年㊀第9卷次揭示转捩反转的流动机理ꎬ而须另外借助稳定性分析方法ꎬ例如ꎬ使用eN方法开展基于模态的稳定性研究ꎮ文献[33]采用该手段研究了大掠角平板钝三角翼随壁温比变化出现转捩反转的内在机理:壁温比升高促进横流模态和第1模态扰动增长ꎬ抑制第2模态发展ꎬ在第1㊁2模态联合作用影响下ꎬ出现转捩反转现象ꎮ我们将在后续开展进一步研究ꎮ(a)Uppersurface(b)Lowersurface图12㊀不同位置湍动能剖面随壁面温度的变化Fig.12㊀Variationofturbulentkineticenergywithwalltemperatureatdifferentlocations6㊀结论针对HyTRV转捩问题ꎬ在Mach数Ma=3~8ꎬ壁面温度T=150~900K的条件下ꎬ基于课题组自研软件ꎬ对γ ̄Re~θt转捩模型和SST湍流模型进行了高超声速修正ꎬ研究了Mach数和壁面温度对HyTRV转捩的影响ꎬ得出以下结论:1)经过高超声速修正后的γ ̄Re~θt转捩模型和SST湍流模型能够较为准确地预测HyTRV转捩位置ꎬ并且湍流边界层区域形状与实验结果基本一致ꎻHyTRV存在多个不同的转捩区域ꎬ上表面两侧转捩区域分布在两侧边缘位置ꎬ下表面两侧转捩区域分布在中心线两侧ꎮ2)Mach数的增加会导致上下表面转捩起始位置均大幅后移ꎬ湍流区大幅缩小ꎬ但当Mach数增加到8时ꎬ湍流区仍然存在ꎬ并没有消失ꎻ上表面层流区摩阻不断增加ꎬ下表面湍流区摩阻不断减小ꎮ3)壁面温度的增加会导致上下表面转捩起始位置先前移ꎬ再后移ꎬ这与边界层厚度变化规律一致ꎬ当壁面温度增加到700K时ꎬ下表面湍流区已经基本消失ꎬ当壁面温度增加到900K时ꎬ上表面湍流区也基本消失ꎻ上表面在层流区域的摩阻系数逐渐增大ꎬ在湍流区的摩阻系数逐渐减小ꎮ致谢㊀感谢中国空气动力研究与发展中心和空天飞行空气动力科学与技术全国重点实验室提供的HyTRV模型数据和实验数据ꎮ参考文献(References)[1]㊀OberingIIIHꎬHeinrichsRL.Missiledefenseforgreatpowerconflict:outmaneuveringtheChinathreat[J].Stra ̄tegicStudiesQuarterlyꎬ2019ꎬ3(4):37 ̄56. [2]ChengCꎬWuJHꎬZhangYLꎬetal.Aerodynamicsanddynamicstabilityofmicro ̄air ̄vehiclewithfourflappingwingsinhoveringflight[J].AdvancesinAerodynamicsꎬ2020ꎬ2(3):5.[3]BertinJJꎬCummingsRM.Fiftyyearsofhypersonics:whereweᶄvebeenꎬwhereweᶄregoing[J].ProgressinAerospaceSciencesꎬ2003ꎬ39(6/7):511 ̄536. [4]陈坚强ꎬ涂国华ꎬ张毅锋ꎬ等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报ꎬ2017ꎬ35(3):311 ̄337.ChenJQꎬTuGHꎬZhangYFꎬetal.Hypersnonicboundarylayertransition:whatweknowꎬwhereshallwego[J].ActaAerodynamicaSinicaꎬ2017ꎬ35(3):311 ̄337(inChinese).[5]段毅ꎬ姚世勇ꎬ李思怡ꎬ等.高超声速边界层转捩的若干问题及工程应用研究进展综述[J].空气动力学学报ꎬ2020ꎬ38(2):391 ̄403.DuanYꎬYaoSYꎬLiSYꎬetal.Reviewofprogressinsomeissuesandengineeringapplicationofhypersonicboundarylayertransition[J].ActaAerodynamicaSinicaꎬ2020ꎬ38(2):391 ̄403(inChinese).[6]ZhangYFꎬZhangYRꎬChenJQꎬetal.Numericalsi ̄81第2期章录兴ꎬ等:Mach数和壁面温度对HyTRV边界层转捩的影响mulationsofhypersonicboundarylayertransitionbasedontheflowsolverchant2.0[R].AIAA2017 ̄2409ꎬ2017. [7]KrauseMꎬBehrMꎬBallmannJ.Modelingoftransitioneffectsinhypersonicintakeflowsusingacorrelation ̄basedintermittencymodel[R].AIAA2008 ̄2598ꎬ2008. [8]YiMRꎬZhaoHYꎬLeJL.Hypersonicnaturalandforcedtransitionsimulationbycorrelation ̄basedintermit ̄tency[R].AIAA2017 ̄2337ꎬ2017.[9]向星皓ꎬ张毅锋ꎬ袁先旭ꎬ等.C ̄γ ̄Reθ高超声速三维边界层转捩预测模型[J].航空学报ꎬ2021ꎬ42(9):625711.XiangXHꎬZhangYFꎬYuanXXꎬetal.C ̄γ ̄Reθmodelforhypersonicthree ̄dimensionalboundarylayertransitionprediction[J].ActaAeronauticaetAstronauticaSinicaꎬ2021ꎬ42(9):625711(inChinese).[10]McDanielRDꎬNanceRPꎬHassanHA.Transitiononsetpredictionforhigh ̄speedflow[J].JournalofSpacecraftandRocketsꎬ2000ꎬ37(3):304 ̄309.[11]PappJLꎬDashSM.Rapidengineeringapproachtomodelinghypersoniclaminar ̄to ̄turbulenttransitionalflows[J].JournalofSpacecraftandRocketsꎬ2005ꎬ42(3):467 ̄475.[12]JulianoTJꎬSchneiderSP.InstabilityandtransitionontheHIFiRE ̄5inaMach ̄6quiettunnel[R].AIAA2010 ̄5004ꎬ2010.[13]杨云军ꎬ马汉东ꎬ周伟江.高超声速流动转捩的数值研究[J].宇航学报ꎬ2006ꎬ27(1):85 ̄88.YangYJꎬMaHDꎬZhouWJ.Numericalresearchonsupersonicflowtransition[J].JournalofAstronauticsꎬ2006ꎬ27(1):85 ̄88(inChinese).[14]袁先旭ꎬ何琨ꎬ陈坚强ꎬ等.MF ̄1模型飞行试验转捩结果初步分析[J].空气动力学学报ꎬ2018ꎬ36(2):286 ̄293.YuanXXꎬHeKꎬChenJQꎬetal.PreliminarytransitionresearchanalysisofMF ̄1[J].ActaAerodynamicaSinicaꎬ2018ꎬ36(2):286 ̄293(inChinese).[15]陈坚强ꎬ涂国华ꎬ万兵兵ꎬ等.HyTRV流场特征与边界层稳定性特征分析[J].航空学报ꎬ2021ꎬ42(6):124317.ChenJQꎬTuGHꎬWanBBꎬetal.Characteristicsofflowfieldandboundary ̄layerstabilityofHyTRV[J].ActaAeronauticaetAstronauticaSinicaꎬ2021ꎬ42(6):124317(inChinese).[16]陈坚强ꎬ刘深深ꎬ刘智勇ꎬ等.用于高超声速边界层转捩研究的标模气动布局及设计方法.中国:109969374B[P].2021 ̄05 ̄18.ChenJQꎬLiuSSꎬLiuZYꎬetal.Standardmodelaero ̄dynamiclayoutanddesignmethodforhypersonicboundarylayertransitionresearch.CNꎬ109969374B[P].2021 ̄05 ̄18(inChinese).[17]LiuSSꎬYuanXXꎬLiuZYꎬetal.Designandtransitioncharacteristicsofastandardmodelforhypersonicboundarylayertransitionresearch[J].ActaMechanicaSinicaꎬ2021ꎬ37(11):1637 ̄1647.[18]ChenXꎬDongSWꎬTuGHꎬetal.Boundarylayertran ̄sitionandlinearmodalinstabilitiesofhypersonicflowoveraliftingbody[J].JournalofFluidMechanicsꎬ2022ꎬ938(408):A8.[19]QiHꎬLiXLꎬYuCPꎬetal.Directnumericalsimulationofhypersonicboundarylayertransitionoveralifting ̄bodymodelHyTRV[J].AdvancesinAerodynamicsꎬ2021ꎬ3(1):31.[20]万兵兵ꎬ陈曦ꎬ陈坚强ꎬ等.三维边界层转捩预测HyTEN软件在高超声速典型标模中的应用[J].空天技术ꎬ2023(1):150 ̄158.WanBBꎬChenXꎬChenJQꎬetal.ApplicationsofHyTENsoftwareforpredictingthree ̄dimensionalboundary ̄layertransitionintypicalhypersonicmodels[J].AerospaceTechnologyꎬ2023(1):150 ̄158(inChinese). [21]MenterFRꎬLangtryRBꎬLikkiSRꎬetal.Acorrelation ̄basedtransitionmodelusinglocalvariables PartⅠ:modelformulation[J].JournalofTurbomachineryꎬ2006ꎬ128(3):413 ̄422.[22]LangtryRBꎬMenterFRꎬLikkiSRꎬetal.Acorrelation ̄basedtransitionmodelusinglocalvariables PartⅡ:testcasesandindustrialapplications[J].JournalofTur ̄bomachineryꎬ2006ꎬ128(3):423 ̄434.[23]LangtryRBꎬMenterFR.Correlation ̄basedtransitionmodelingforunstructuredparallelizedcomputationalfluiddynamicscodes[J].AIAAJournalꎬ2009ꎬ47(12):2894 ̄2906.[24]孟德虹ꎬ张玉伦ꎬ王光学ꎬ等.γ ̄Reθ转捩模型在二维低速问题中的应用[J].航空学报ꎬ2011ꎬ32(5):792 ̄801.MengDHꎬZhangYLꎬWangGXꎬetal.Applicationofγ ̄Reθtransitionmodeltotwo ̄dimensionallowspeedflows[J].ActaAeronauticaetAstronauticaSinicaꎬ2011ꎬ32(5):792 ̄801(inChinese).[25]牟斌ꎬ江雄ꎬ肖中云ꎬ等.γ ̄Reθ转捩模型的标定与应用[J].空气动力学学报ꎬ2013ꎬ31(1):103 ̄109.MouBꎬJiangXꎬXiaoZYꎬetal.Implementationandcaliberationofγ ̄Reθtransitionmodel[J].ActaAerody ̄namicaSinicaꎬ2013ꎬ31(1):103 ̄109(inChinese). [26]郭隽ꎬ刘丽平ꎬ徐晶磊ꎬ等.γ ̄Re~θt转捩模型在跨声速涡轮叶栅中的应用[J].推进技术ꎬ2018ꎬ39(9):1994 ̄2001.91气体物理2024年㊀第9卷GuoJꎬLiuLPꎬXuJLꎬetal.Applicationofγ ̄Re~θttran ̄sitionmodelintransonicturbinecascades[J].JournalofPropulsionTechnologyꎬ2018ꎬ39(9):1994 ̄2001(inChinese).[27]郑赟ꎬ李虹杨ꎬ刘大响.γ ̄Reθ转捩模型在高超声速下的应用及分析[J].推进技术ꎬ2014ꎬ35(3):296 ̄304.ZhengYꎬLiHYꎬLiuDX.Applicationandanalysisofγ ̄Reθtransitionmodelinhypersonicflow[J].JournalofPropulsionTechnologyꎬ2014ꎬ35(3):296 ̄304(inChi ̄nese).[28]孔维萱ꎬ阎超ꎬ赵瑞.γ ̄Reθ模式应用于高速边界层转捩的研究[J].空气动力学学报ꎬ2013ꎬ31(1):120 ̄126.KongWXꎬYanCꎬZhaoR.γ ̄Reθmodelresearchforhigh ̄speedboundarylayertransition[J].ActaAerody ̄namicaSinicaꎬ2013ꎬ31(1):120 ̄126(inChinese). [29]张毅锋ꎬ何琨ꎬ张益荣ꎬ等.Menter转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报ꎬ2016ꎬ37(4):397 ̄402.ZhangYFꎬHeKꎬZhangYRꎬetal.ImprovementandvalidationofMenterᶄstransitionmodelforhypersonicflowsimulation[J].JournalofAstronauticsꎬ2016ꎬ37(4):397 ̄402(inChinese).[30]LangtryRBꎬSenguptaKꎬYehDTꎬetal.Extendingtheγ ̄Reθtcorrelationbasedtransitionmodelforcrossfloweffects(Invited)[R].AIAA2015 ̄2474ꎬ2015. [31]SarkarS.Thepressure ̄dilatationcorrelationincompressi ̄bleflows[J].PhysicsofFluidsAꎬ1992ꎬ4(12):2674 ̄2682.[32]WilcoxDC.Dilatation ̄dissipationcorrectionsforadvancedturbulencemodels[J].AIAAJournalꎬ1992ꎬ30(11):2639 ̄2646.[33]马祎蕾ꎬ余平ꎬ姚世勇.壁温对钝三角翼边界层稳定性及转捩影响[J].空气动力学学报ꎬ2020ꎬ38(6):1017 ̄1026.MaYLꎬYuPꎬYaoSY.Effectofwalltemperatureonstabilityandtransitionofhypersonicboundarylayeronabluntdeltawing[J].ActaAerodynamicaSinicaꎬ2020ꎬ38(6):1017 ̄1026(inChinese).02。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档