荧光探针的应用与进展
荧光探针在生物传感器中的应用研究

荧光探针在生物传感器中的应用研究生物传感器是一种能够将生物成分转化为电信号的装置,利用生物成分的特异性,能够用来检测生物分子的存在和活性。
其中,荧光探针是生物传感器领域中常用的一种探针。
荧光探针可以通过荧光强度的变化来监测目标分子的浓度、特异性和空间分布等信息。
本文将会详细介绍荧光探针的工作原理,以及其在生物传感器中的应用研究进展。
一、荧光探针的工作原理荧光探针是一种可以发出荧光信号的分子,可以通过结构设计,实现特定的识别和信号放大功能,从而用于检测并定量分析特定的生物分子。
荧光探针的荧光发射强度受到多种因素的影响,例如环境温度、溶液 pH 值、离子强度等。
这些因素的变化都会影响荧光信号的强度和波长,从而影响荧光探针的检测灵敏度和特异性。
荧光探针的设计主要依据其工作原理。
其工作原理包括两个方面:第一,荧光探针与靶分子之间的特异性识别,这是实现高灵敏度和高特异性的关键。
第二,荧光探针与靶分子结合后会发生光化学反应或荧光共振能量转移等过程,导致荧光信号的变化。
二、荧光探针在生物传感器中的应用虽然许多荧光探针已经被广泛应用于生物传感领域,但生物分子的复杂性和多样性仍然对荧光探针的设计和应用提出了一些挑战。
以下是荧光探针在生物传感器中的应用研究进展的几个典型案例。
1. 荧光探针在生物标签上的应用生物标签是一种将荧光探针结合到所需要监测的靶分子上,用于定量或定性检测靶分子的方法。
由于靶分子的多样性,生物标签的设计和制备需要根据不同的靶分子结构特点进行调整。
目前,荧光探针在生物标签的应用主要包括:DNA/RNA中的荧光探针、细胞荧光探针和蛋白质荧光标记。
2. 荧光探针在病原体检测中的应用病原体的检测一直是生物传感器研究的主要领域之一。
荧光探针的出现不仅提高了检测病原体的检测灵敏度和特异性,同时也简化了检测过程。
例如,荧光共振能量转移(FRET)技术结合荧光探针可以实现快速、高灵敏度的单细胞病毒检测。
3. 荧光探针在人类疾病监测中的应用除了病原体检测,荧光探针还广泛应用于人类疾病监测领域。
荧光探针的应用领域

荧光探针的应用领域荧光探针的应用领域非常广泛,多用于生物医学、药物研发、环境监测、化学分析等领域。
以下是具体应用领域的介绍:1. 生物医学领域荧光探针被广泛应用于生物医学领域,如细胞成像、蛋白质分析、细胞代谢、细胞状态监测等。
1.1. 细胞成像荧光探针可以用于活体细胞和组织成像,通过改变荧光探针的结构和化学性质,可以使其在不同条件下发出不同的荧光信号,实现对不同细胞器和代谢过程的成像。
1.2. 蛋白质分析荧光探针可以用于蛋白质的分析,如蛋白质的抑制、激活、结合等,可以通过观察荧光强度的变化来监测蛋白质的功能。
荧光探针也可以用于细胞代谢的研究,如酶的反应、离子浓度变化等。
1.4. 细胞状态监测荧光探针还可以用于监测细胞状态的变化,例如细胞凋亡、活性氧的产生等重要过程。
2. 药物研发领域荧光探针也被广泛应用于药物研发领域,包括药物吸收、代谢和药效学等方面。
2.1. 药物吸收荧光探针可以用于药物吸收的研究,包括药物在不同场景下的吸附和释放,可以通过观察荧光信号的改变来解析不同方案下的药物吸收动力学。
荧光探针还可以用于药物代谢的研究,包括药物代谢产物的分析和代谢酶的活性测定等。
3. 环境监测领域荧光探针还可以用于环境监测领域,例如对污染物的探测、水质监测等。
3.1. 污染物检测荧光探针可以用于检测污染物,如重金属离子、有机污染物、农药等。
4. 化学分析领域荧光探针在化学分析领域也有广泛应用,如对有机分子的监测、金属配合物的分析等。
4.2. 金属配合物的分析荧光探针还可以用于金属配合物的分析,例如锌、铜等金属的配合物检测。
总之,荧光探针在生物医学、药物研发、环境监测、化学分析等多个领域有着广泛应用。
它能快速、准确地检测目标物质,成为这些领域中不可或缺的重要工具。
荧光探针技术的发展及其在生物成像领域中的应用

荧光探针技术的发展及其在生物成像领域中的应用随着生物学研究的深入,科学家们对于生物体内各种分子的结构和功能了解越来越深,而荧光探针技术正是在这个过程中应运而生的。
荧光探针技术利用特定的化学结构和荧光发射机制来探测和识别生物体内不同分子的存在和行为,成为一种重要的研究手段。
本文将简要探讨荧光探针技术的发展历程及其在生物成像领域中的应用。
一、荧光探针技术的历史发展荧光探针技术的前身可以追溯到19世纪中期。
当时,科学家们用一种叫做“量子青春石”的荧光物质,发现在激光光源照射下,这种物质会发出强烈的荧光信号,因而最早探索了用光源驱动探测荧光信号的可行性。
20世纪60年代到80年代,荧光探针技术得到了快速的发展。
在这段时间里,科学家们发现了很多可作为荧光探针的分子,比如荧光染料、荧光蛋白、量子点和金纳米粒子等。
荧光探针技术得到广泛应用,为生物学研究提供了新的思路和方法。
二、荧光探针技术在生物成像领域中的应用荧光探针技术在生物成像领域中的应用是多方面的,可以用于病原体检测、生物分子成像和细胞活动追踪等。
1. 病原体检测病原体检测是荧光探针技术的一个重要应用方向。
利用荧光探针对病原体进行标记,可以快速、敏感地检测病原体的存在和数量。
例如,科学家们利用绿色荧光蛋白对大肠杆菌进行标记,在实验中成功检测到该菌存在的位置和数量。
2. 生物分子成像生物分子成像是荧光探针技术在生物学中的一个主要应用方向。
荧光探针可以与特定的生物分子结合,形成可以被识别的荧光信号,从而用于实时观察生物分子的空间分布和动态变化。
例如,科学家们利用荧光探针对蛋白质进行标记,成功地观察到了蛋白质在细胞内的分布和运动轨迹。
3. 细胞活动追踪荧光探针还可以用于追踪细胞的活动。
例如,利用荧光探针对细胞进行标记,可以跟踪细胞在组织中的迁移和增殖情况。
此外,荧光探针还可以用于跟踪特定细胞的生物学活动,比如神经元的突触活动或心肌细胞的收缩情况等。
三、结语总的来说,荧光探针技术的发展历程迅速而丰富多彩。
荧光探针技术的应用和发展

荧光探针技术的应用和发展荧光探针技术是近年来发展迅速的一种化学分析技术,它广泛应用于生物医学、环境监测、食品安全等领域。
本文将从荧光探针的基本原理、应用场景以及未来发展方向三个方面,深入探讨荧光探针技术的应用和发展。
荧光探针的基本原理荧光探针是指一类能够发出荧光信号的化合物,其一般由两个部分组成:感受器和响应器。
感受器是一种可感知待检测样品中所含的目标化合物或参数的物质,响应器则是能转换感受器信号为荧光信号的物质。
当感受器与目标化合物或参数结合时,响应器发生某种变化,导致相应的荧光信号发生变化,从而实现对样品的检测和分析。
荧光探针的优点在于其高灵敏度、高选择性和非侵入性,可以实现快速、准确地监测多种目标化合物或参数,例如蛋白质、DNA、药物、病毒、细菌等。
同时,荧光探针还具有分子发光稳定、可控性强、测量自动化程度高等特点,能够满足现代化学分析的需求。
荧光探针的应用场景荧光探针技术在生物医学、环境监测、食品安全等方面均有广泛的应用。
以下将分别探讨其应用场景。
生物医学方面:荧光探针技术在临床医学、分子诊断和药物研发等领域得到了广泛应用。
例如,在癌症的早期诊断方面,荧光探针技术可以实现针对肿瘤生长、代谢和转移的特定标志物的检测,从而提高诊断准确度。
此外,荧光探针技术还可以用于实现特定蛋白质在活细胞中的定位和监测,有助于了解生命体系的运作机制。
环境监测方面:荧光探针技术可以实现对环境污染源的高灵敏监测。
例如,荧光探针可以用于监测水体中的重金属离子浓度,从而实现对水体质量的监测与评估。
此外,荧光探针还可以用于检测大气中的有害气体浓度、土壤中的有机化合物含量等。
食品安全方面:荧光探针技术可以用于监测食品中的农药残留、致病微生物和食品添加剂等有害物质。
例如,荧光探针可以实现对食品中的大肠杆菌、金黄色葡萄球菌等有害微生物的快速检测。
此外,荧光探针还可以用于对食品中的亚硝酸盐、硝酸盐、二氧化硫等添加剂的监测与检测。
荧光探针的应用与进展课件

环境监测
污染物检测
荧光探针可以用于检测水体、土 壤等环境中的有害物质,如重金 属、有机污染物等,为环境污染 治理和生态保护提供技术支持。
生物毒性测试
荧光探针可以用来评估化学物质 对生物体的毒性作用,通过观察 荧光信号的变化,快速、准确地
评估环境中有害物质的风险。
生态研究
利用荧光探针标记生物个体或种 群,通过观察荧光信号的分布和 动态变化,研究生物在生态系统
开发适用于环境监测和食品安全检测的荧光探针,保障人类健康和 生态安全。
加强荧光探针的基础研究与人才培养
基础研究投入
加大对荧光探针基础研究的投入 ,支持科研团队开展创新性研究 ,推动荧光探针技术的持续发展 。
人才培养与交流
加强荧光探针领域的人才培养和 学术交流,鼓励跨学科合作与交 流,促进荧光探针技术的普及和 应用。
荧光探针与其他技术的结合应用
总结词
荧光探针与其他技术的结合应用是荧光探针领域的重 要发展方向,通过将荧光探针与其他技术相结合,可 以实现更高效、更准确的检测和诊断。
详细描述
随着各种技术的不断发展,研究者们将荧光探针与其 他技术相结合,如光学成像技术、质谱技术、纳米技 术等。这些技术的结合可以充分发挥各自的优势,提 高荧光探针的应用范围和效果。例如,将荧光探针与 光学成像技术相结合,可以实现生物体内的高清成像 和可视化检测;将荧光探针与质谱技术相结合,可以 实现蛋白质组学和代谢组学的高灵敏度检测。
荧光探针的分类
总结词
荧光探针可以根据激发波长、发射波长、荧光染料类型等进 行分类。
详细描述
根据激发波长,荧光探针可以分为紫外激发和可见光激发两 类;根据发射波长,可以分为长波长发射和短波长发射两类 ;根据荧光染料类型,可以分为荧光染料、荧光量子点、荧 光蛋白等类型。
2024年荧光探针市场发展现状

荧光探针市场发展现状简介荧光探针是一种在生物学和化学研究中广泛使用的重要工具。
它们具有可灵敏地检测和测量目标分子或细胞组分的能力,被广泛应用于生物成像、药物筛选、疾病诊断等领域。
本文将重点探讨目前荧光探针市场的发展现状。
市场规模和增长趋势荧光探针市场在过去几年中持续增长,并有望继续保持增长势头。
根据市场研究机构的数据,2019年全球荧光探针市场规模约为xx亿美元,并预计到2025年将达到xx亿美元,年复合增长率为xx%。
这一市场规模和增长趋势主要受到以下几个因素的推动:技术进步和创新随着技术的不断进步和创新,荧光探针的设计和合成变得更加精确和高效。
新型荧光探针的出现大大提高了其对生物分子或细胞组分的灵敏度和选择性。
例如,近年来,一些新型的量子点荧光探针被广泛应用于生物成像领域,其高亮度、长寿命和较窄的发射光谱使其成为替代传统有机荧光染料的理想选择。
生物医学研究需求增加随着生物医学研究领域的不断发展,对荧光探针的需求也在不断增加。
在药物研发过程中,荧光探针被广泛用于药物靶点的筛选和药效评估。
此外,荧光探针在疾病早期诊断中的应用也越来越受到关注。
例如,一些特定的荧光探针可以被设计成只识别疾病相关的生物标志物,从而实现早期疾病的诊断。
医疗行业支持政策越来越多的国家和地区开始重视生物医学研究和创新,在政策层面提供支持和鼓励。
这些政策的出台为荧光探针市场的发展提供了机遇。
例如,一些国家出台了减税政策,鼓励企业投资研发新型荧光探针。
此外,一些医疗机构也提供研发经费和资源支持。
市场地域分布荧光探针市场在全球范围内呈现出不均衡的地域分布。
目前,北美地区是全球荧光探针市场的主要消费地和发展地。
这主要得益于北美地区在生物医学研究和药物研发领域的领先地位。
此外,亚太地区的市场份额也在不断增加,该地区的快速经济发展和医疗技术进步推动了荧光探针市场的增长。
其他地区如欧洲和拉丁美洲的市场份额相对较小,但也呈现出一定的增长势头。
荧光探针在细胞成像中的应用与发展

荧光探针在细胞成像中的应用与发展随着科技的进步和人们对于细胞研究的深入,细胞成像技术也逐渐得到了广泛应用。
细胞成像技术可以在体外或者体内观察细胞的各种生理进程,如细胞运动、分裂、凋亡等等。
而荧光探针作为细胞成像技术的重要工具,其应用范围越来越广泛,同时也在不断地发展与改进。
一、荧光探针在细胞成像中的应用荧光探针的主要作用是通过激发发射荧光分子来完成对待测分子或细胞组织的成像。
荧光探针的优点在于其非损伤性、高灵敏度、高空间分辨率等方面的特点。
在细胞成像中,荧光探针可以用于实时或高通量成像、亚细胞成像、功能成像等多个方面。
1.实时或高通量成像实时成像是指能够在不停歇的过程中观察细胞内的各种生物分子或过程,比如细胞内蛋白质的结构和功能变化。
荧光探针的高灵敏度和非损伤性质使得其成为实时成像的重要工具。
高通量成像则是指在相对短时间内同时对多个样本进行成像。
通过荧光探针的应用,高通量成像可以实现快速大规模数据的采集和分析。
2.亚细胞成像亚细胞成像是指观察及记录细胞内小分子在亚细胞级别上的分布和行为,如钙离子的扩散、小分子转移、蛋白间相互作用等。
荧光探针可以针对不同的亚细胞结构和分子特征进行定位,从而实现亚细胞级别的成像和分析。
3.功能成像功能成像是指通过成像技术结合功能分析,记录和分析细胞或组织中生物学分子和细胞功能的活动。
这种技术被广泛应用于药物筛选、生物分子功能研究、疾病诊断等多个领域。
荧光探针在功能成像中的应用则主要是借助其灵敏度和可选择性来探测不同细胞的药物反应、代谢变化等。
二、荧光探针的发展随着生命科学和化学领域的不断交叉与融合,荧光探针也呈现出不断发展和更新的趋势。
目前,荧光探针的设计和研发已经涵盖了各个方面,不仅有传统的小分子荧光探针,还有基于生物分子和介导不同转录、翻译进程等过程的荧光探针。
1.基于小分子的荧光探针小分子荧光探针直接与待测分子结合,借助荧光变化实现对目标分子的检测。
而最常用的小分子荧光探针包括螨草素、荧光素、荧光素同工异构体等。
荧光探针在生物医学领域中的应用及优势分析

荧光探针在生物医学领域中的应用及优势分析引言:生物医学领域的研究和应用需借助各种工具和技术来实现目标。
荧光探针作为一种常用的工具,在生物医学研究和临床应用中发挥着重要的作用。
本文将介绍荧光探针在生物医学领域中的应用,并分析其优势。
一、荧光探针在生物分子检测中的应用1. 荧光染料的标记荧光探针可以与生物分子结合,通过标记荧光染料实现生物分子的可视化检测。
例如,荧光标记的抗体可以用于检测特定蛋白质在细胞或组织中的表达情况。
通过观察荧光信号的强度、位置和分布,可以了解生物分子在生物体内的功能和变化。
2. 荧光探针的靶向性荧光探针可以通过特定的结构或配体具有靶向性,可以选择性地与生物体内的特定分子相互作用。
靶向性荧光探针可以用于检测疾病标志物、药物递送和肿瘤成像等领域。
例如,癌症标志物HER2在乳腺癌中的过表达,可以利用荧光标记的抗体探针进行早期诊断和治疗监测。
3. 荧光探针在基因组学研究中的应用荧光探针可以通过与DNA或RNA序列特异性结合,实现基因组学研究的目的。
荧光原位杂交( FISH)技术利用荧光探针可以检测染色体异常和基因突变。
此外,荧光探针还可用于探测基因表达、基因转录和蛋白质交互作用等方面的研究。
二、荧光探针在细胞成像中的应用1. 细胞器标记与成像荧光探针可以标记细胞器,如线粒体、内质网和高尔基体,通过荧光成像显示细胞器的形状、位置和功能。
这对于研究细胞的生理和病理过程非常有价值。
荧光探针的高选择性和灵敏性使得细胞器可以在活细胞中实时观察,从而深入了解细胞的内部结构和功能。
2. 荧光探针在细胞信号传导中的应用细胞信号传导是细胞内外相互作用的重要过程。
荧光探针可以用于研究钙离子、ROS(活性氧化物种)和其他重要小分子信号分子在细胞内的浓度和动态变化。
通过荧光成像和定量分析,可以揭示细胞内信号通路的调控机制。
三、荧光探针的优势分析1. 高灵敏度和高选择性荧光探针具有高灵敏度和高选择性,可以通过荧光信号变化准确检测生物分子的存在和浓度变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苯系衍生物、萘系衍生物、 吡啶衍生物、喹啉衍生物、 香豆素衍生物、芘类衍生 物和苯并五元杂环类衍生 物等 研究最多的是半导体纳 米微粒,也称为量子点
荧光蛋白
基因荧光探针 藻红蛋白
绿色荧光蛋白、增强绿 色荧光蛋白、红色荧光 蛋白等
荧光探针的优点:
灵敏度高 选择性好 使用方便
成本低
不需预处理 不受外界电磁场影响 远距离发光
F
Sቤተ መጻሕፍቲ ባይዱ
R
Analyte
strongly fluorescent
识别基团也称受体决定了探针分子的选择性和特异性,荧光基团则决定了 识别的灵敏度,而连接体部分则可起到分子识别枢纽的作用。
分类
影响 因素
目前 应用
应用 进展
优点
选择 原则
应用 举例
荧光探针的分类
有机小分子探针 化学荧光探针 纳米荧光探针 荧光探针
实现了对四种不同蛋白样品的特异性识别检测。不同的聚合物链与不
同的蛋白的结合常数不同,因而所构建的聚合物基质荧光探针对蛋白
具有良好的选择性。而通过调节聚合物链的长度,还可进一步调节蛋 白识别检测的灵敏度和选择性。 这个方法不但制备简单、普适性强,而且具有较高的荧光检测灵敏度 和较强的蛋白识别选择性,为构建新型聚合物基质的主客体复合物荧
荧光探针的选择原则
(1)荧光的定性或定量 (3)荧光探针的适用PH (4)激发波长与发射波长 (5)荧光强度与荧光寿命 (6)光稳定性、漂白性
斯托克斯位移 定性一般选择单波长激发探针,定量最好选择双波长激发的比率探针
(2)荧光探针的特异性和毒性
(7)荧光量子产率
荧光探针的目前应用:
大多数生物分子本身荧光较弱或基本无荧光,检测灵敏度较差,使
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
Using the two kinds of inclusion complexes, detection and differentiation of four proteins (serum albumin,myoglobin, pepsin, and concanavalin A)
谢谢观看 恳请老师和同学们批评指正!
得荧光探针检测技术的应用成为客观可能,广泛应用于生物分析以 及分析化学中。 常用于标记抗原抗体和核酸,还可以检测蛋白质的活性点位,细胞 检测免疫,研究DNA碱基损伤修复以及药物分子的化学反应活性, 尤其在肿瘤识别过程中起到了重要的作用。
荧光探针应用举例:
1
2
作为荧光基团的香豆素和作为识别基团的邻氨基苯硫醚以席夫碱相 连,加入锌离子后,与硫醚上的硫原子、席夫碱上的氮原子及香豆 素上的氧原子配位得到结构2,抑制了席夫碱上C=N键的旋转,实现 了荧光从无到有的变化。
Adv. Mater., 2016, DOI: 10.1002/adma.201602939
荧光探针的应用进展
2016年1月6日,Science子 刊《Science Translational Medicine》发表一篇将利用荧光 探针成像从而提高肿瘤切除完全 概率的文章。来自于杜克大学、 麻省理工学院(MIT)和 Lumicell公司的研究团队共同研 发出一种含有荧光探针能够识别、 标记癌变组织的蓝色制剂—— LUMO15,借助外源设备能够帮助 外科医生优化肿瘤切除手术,以 及提高放疗精准度。 2016年7月Nature Biotechnology杂 志发表一篇《一个能够用于双色显微成 像和增强生物发光的青色光可激发的橙 色荧光蛋白》实现了单一波长激发双色 荧光成像。来自中国科学院深圳先进技 术研究院储军主持研发了目前最高灵敏 度的生物发光探针Antares,为活体内 细胞追踪提供了高灵敏的平台,实现了 在小鼠脑内单一波长激发双色荧光成像 和高灵敏的生物发光成像。论文发表后 作为Nature Methods研究亮点,受到高 度评价。
光,从而对H2O2进行成像。
Adv. Mater., 2016, DOI: 10.1002/adma.201602939
荧光探针的应用进展
荧光BC与H2O2反应导致的吸收和发射光的变化
(A)相同浓度BC在不同 H2O2浓度时的吸收光谱 (B)PBS溶液中,相同浓度 BC在不同H2O2浓度时的荧光 光谱(激发光波长为410nm (C)472nm和693nm光强比 率与H2O2浓度的线性关系 (D)用不同种类分子处理 BC时472nm和693nm的光强比 率,激发光波长为410nm。
光探针的制备及蛋白识别分析提供了新的研究思路。
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
Simultaneous Near-Infrared and Two-Photon In Vivo Imaging of H2O2 Using a Ratiometric Fluorescent Probe based on the Unique Oxidative Rearrangement of Oxonium 利用比率荧光探针实现在体内对H2O2的近红外和双光子成像
荧光探针技术的应用与进展
学生 学号
前言:
1、荧光探针技术广泛应用于生物检测,对于药物控释、靶向给药、
检测药效方面可以针对性的进行定性或定量的研究和表征。识别作用
可以标记含有特定基团的生物大分子如蛋白质、抗原抗体、核酸、酶
以及聚合物。 2、荧光探针具有特别强的可设计性,本身的结构设计与高分子密切 相关。
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
结论 利用所合成制备的两种不同的Polymer-Py/γ -CD主客体复合物,
影响荧光探针性质的因素:
内因
具有大的共轭π键结构 具有刚性的平面结构 取代基团为给电子取代基
给电子取代基如:-NH2,-NR2,OH,-OR和-CN。 吸电子取代基如:-C = O,COOH,-CHO,-NO2和-
外因
溶液的PH值、温度 激发光源的选择 溶剂的性质如极性、介 电常数
染料分子间相互作用等
荧光探针的应用进展
Ratiometric Fluorescent Pattern for Sensing Proteins Using Aqueous Polymer-Pyrene/γCyclodextrin Inclusion Complexes
中国科学院化学研究所的齐莉等科研人员,创新性地提出了发展一类基于聚合物-芘/γ -环糊精主客 体复合物的比率型荧光探针进行蛋白识别。
Adv. Mater., 2016, DOI: 10.1002/adma.201602939
荧光探针的应用进展
(A)a1-a4为巨吞噬细胞的图片 b1-b4为用BC处理的细胞的图片 c1-c4为用BC+PMA处理的细胞的图
片(PMA能刺激产生H2O2)
绿色a1-c1和红色a2-c2荧光通道为 单光子成像OP模式,a3-c3是明场 细胞图片与绿色和红色通道合并的 图片,a4-c4是双光子成像TP模式。 (B)图A中相对荧光强度的量化; (C)从图B中得到的绿光和红光强 度的比率。
什么是荧光探针技术?
指人们用强荧光的标记试剂或光生 成试剂对待测物进行标记或衍生, 生成具有高荧光强度的共价或非共 价结合的物质,从而实现对待测物 质的定性定量分析。
什么是荧光分析?
利用某些物质被紫外光照射后所产生的能够反映出该 物质特性的荧光进行该物质的定性分析和定量分析的 方法,称为荧光分析。
什么是荧光?
当紫外光照射到某些物质时,这些物质会发射出不同颜色和不同强度的 可见光,当紫外光停止照射时,这种光线也随之消失,这种光线称为荧 光。
荧光探针分子的结构
荧光探针分子通常由三部分组成:
Fluorephore Spacer hv Receptor
识别基团(receptor) 荧光基团(fluorophore) 连接体部分(spacer)
原理:用BC代表文中设计的探针。BC含有特殊的H2O2反应位点,能与H2O2反应
背景:活性氧簇(ROS)是一类对生物分子具有很高反应性的含氧分子, (其它生物分子则几乎不反应),反应后BC472nm处的荧光强度增加,而693nm处 ROS在很多生理和病理学进程中扮演着重要角色。过氧化氢(H2O2)是主 的荧光强度则减弱,这两种荧光的比例与 H2O2的浓度呈线性关系。同时BC与 H2O2 要的一种ROS,它是细胞生长、繁殖和分化的重要信使。但是过量的 H2O2 通常预示着疾病,如癌症、神经衰退和心血管疾病等。因此发展能检测体 反应后可以释放一种双光子荧光染料,染料可以吸收760nm的近红外光而发出绿 内的H2O2的方法至关重要。