新型放射性气溶胶连续监测仪的实验研究

合集下载

放射性工作场所气溶胶浓度与粒径分布

放射性工作场所气溶胶浓度与粒径分布

放射性工作场所气溶胶浓度与粒径分布拓飞;徐翠华;张庆;李文红;周强【摘要】Objective:To explore the general characteristics of the concentration and size distribution of aerosols in several typical radiation work places. Methods:In different types of radiation work places, the number and mass concentration together with the number and mass particle size distribution of aerosols were measured by TSI 3321 APS. Results:The number median diameter distribution were averaged to be 0.7 μm for the whole surveyed places, while the mass median diame ter of particle size distribution were around 1.0 μm, except for temporary storage pools of spent fuel rods at nuclear power plants. Both number and mass concentration in the room of processing unsealed radioactive source of C level were the highest. Conclusions:Concentration of aerosols varied with different work places and human activities significantly. The benchmark data established in this work may be useful when considering the dose contribution from inhaled radioactive particles.%目的:研究部分放射性工作场所内气溶胶的浓度和粒径分布特性。

能力验证样品中总α_和总β_放射性的测定

能力验证样品中总α_和总β_放射性的测定

第43卷第2期(总第254期)辐射防护通讯2023年4月•经验交流•能力验证样品中总α和总β放射性的测定马秀凤,张馨蕊,杜娟,李建杰(北京市核与辐射安全中心,北京,100089)摘㊀要㊀为提高低水平放射性测量水平,以保证监测数据的准确性和可靠性,参加了2021年中国辐射防护研究院组织的能力验证活动㊂厚源法分别以241Am粉末㊁90Sr/90Y粉末为标准源,测定水样㊁气溶胶中总α和总β放射性㊂相对比较法分别以241Am标准溶液㊁90Sr/90Y标准溶液为标准源,测定水样中总α和总β放射性㊂结果表明,厚源法测量结果的相对偏差和Z值分别在4.2%~18.8%㊁-0.42~0.95;相对比较法测量结果的相对偏差和Z值分别在3.7%~14.4%㊁-0.13~0.72㊂评定结果全部为 满意 ㊂关键词:㊀能力验证;总α和总β放射性;厚源法;相对比较法中图分类号:X830.5文献标识码:A文章编号:1004-6356(2023)02-0020-050㊀引言㊀㊀RB/T214 2017‘检验检测机构资质认定能力评价检验检测机构通用要求“要求:检验检测机构应建立和保持监控结果有效性的程序[1]㊂参加能力验证对测试方法不做强制,只对测试结果进行评价,是一种非常有效的外部质量控制手段㊂它不仅可以确定和监控检测实验室的数据质量,也可有效识别实验室存在的质控问题㊂为提高低水平放射性测量水平,保证监测数据的准确性和可靠性,本实验室参加了2021年中国辐射防护研究院组织的总α和总β放射性能力验证㊂环境介质中的总α和总β放射性测量一般来说给出的结果快㊁成本低,对大量放射性监测样品能起到快速筛选的作用,不仅节省时间,也节省大量人力和物力,还可以为辐射环境污染状况评估㊁防护行动决策等提供可靠的信息,所以目前仍是放射性监测手段之一㊂关于样品的总放射性测量,可按待测样品的厚度分为薄样法㊁中层法㊁厚源法和相对比较法㊂薄样法探测限高㊁样品厚度不易控制;中层法需进行自吸收修正,过程繁琐,因而目前使用较多的是厚源法和相对比较法[2-3]㊂本文采用厚源法和相对比较法,对2021年中国辐射防护研究院提供的能力验证样品中总α和总β放射性测量进行了分析探讨㊁经验总结㊂1㊀试验内容1.1㊀样品本实验室共收到4个样品,01㊁02号为加入3%硝酸酸化的掺标水样,分析项目分别为总α㊁总β放射性;03㊁04号为气溶胶滤膜,材质为光泽纸,掺标物质分别为241Am㊁90Sr/90Y标准溶液,分析项目分别为总α㊁总β放射性㊂1.2㊀设备仪器监测仪器采用Berthold公司的LB770低本底α/β测量仪,单位面积本底计数率:αɤ0.0066 min-1㊃cm-2,βɤ0.39min-1㊃cm-2;电镀源探测效率:αȡ70%(241Am),βȡ40%(90Sr/90Y)㊂1.3㊀方法样品前处理,制样测量参照HJ898 2017‘水质总α放射性的测定厚源法“[4]㊁HJ899 2017‘水质总β放射性的测定厚源法“[5]进行㊂1.3.1㊀厚源法制备样品㊀㊀厚源法根据不同直径的测量盘,当铺盘厚度达到放射性射线的有效饱和厚度时,对应的取样02㊀收稿日期:2022-08-25作者简介:马秀凤(1988 ),女,2011年本科毕业于聊城大学分析化学专业,2014年硕士研究生毕业于中国原子能科学研究院分析化学专业,从事辐射环境监测与评价工作,高级工程师㊂E-mail:imaxiufeng@量为铺盘量的 最小取样量 ,如果有效饱和厚度测量有困难,可直接按0.1A mg(A为测量盘的面积,mm2)计算㊂本实验所用测量盘为ϕ60mm,因此铺盘量约为300mg㊂(1)空白试样的制备㊀取适量无水硫酸钙,置于电热恒温干燥箱内,105ħ下烘30min,在干燥器中冷却至室温㊂准确称取(300ʃ10)mg无水硫酸钙,于ϕ60mm的不锈钢盘铺样,制成空白试样㊂(2)标准源的制备㊀取适量241Am标准粉末源(10.4Bq/g),置于电热恒温干燥箱内,105ħ下烘30min,在干燥器中冷却至室温㊂准确称取6份(300ʃ10)mg粉末到ϕ60mm不锈钢样品盘中铺平,制成α标准源㊂取2.5g无水硫酸钙,放入200mL烧杯中㊂加入10mL热硝酸(8.0mol/L),搅拌并加入热水至100mL以溶解固态盐,将此溶液转到已经恒重的200mL蒸发皿中,加入250μL90Sr/90Y标准溶液(83.7Bq/mL),搅拌均匀并置于恒温电热板上加热至溶液蒸干,然后在(350ʃ10)ħ的电阻炉内灼烧1h,取出置于干燥器内冷却后称重㊂用研杵研细残渣,混匀㊂准确称量6份(300ʃ10)mg残渣于ϕ60mm的不锈钢盘中铺平,制成β标准源㊂(3)样品源的制备㊀在100mL蒸发皿中加入10.0mL01号样品,再加入约350mg无水硫酸钙,搅拌均匀并置于恒温电热板上加热至溶液蒸干,然后在(350ʃ10)ħ的电阻炉内灼烧1h,取出置于干燥器内冷却后称重㊂用研杵研细残渣,混匀㊂准确称量(300ʃ10)mg残渣于ϕ60mm的不锈钢盘铺样,制成样品源㊂重复实验2组㊂02号样品按相同步骤制样㊂将03号样品滤膜折叠,放入坩埚中,置于电热板上缓慢加热,炭化㊂将坩埚移入电阻炉中,在(350ʃ10)ħ下灼烧1h㊂取出置于干燥器内冷却后称重,用研杵研细残渣,混匀㊂准确称量(300ʃ10)mg残渣于ϕ60mm的不锈钢盘铺样,制成样品源㊂04号样品按相同步骤制样㊂1.3.2㊀相对比较法制备样品[3]㊀㊀在2个100mL蒸发皿中分别加入30.0mL 01号样品,第2个蒸发皿加入125μL241Am标准溶液(5.21Bq/mL),将溶液充分搅拌均匀,再在每个蒸发皿中加入约350mg无水硫酸钙,搅拌均匀并置于恒温电热板上加热至溶液蒸干,然后在(350ʃ10)ħ的电阻炉内灼烧1h,取出置于干燥器内冷却后称重㊂用研杵研细残渣,混匀㊂准确称量(300ʃ10)mg残渣于ϕ60mm的不锈钢盘铺样,制成样品源㊂在2个100mL蒸发皿中分别加入30.0mL 02号样品,第2个蒸发皿加入400μL90Sr/90Y (0.837Bq/mL)标准溶液,将溶液充分搅拌均匀,再在每个蒸发皿中加入约350mg无水硫酸钙,搅拌均匀并置于恒温电热板上加热至溶液蒸干,然后在(350ʃ10)ħ的电阻炉内灼烧1h㊂取出置于干燥器内冷却后称重㊂用研杵研细残渣,混匀㊂准确称量(300ʃ10)mg残渣于ϕ60mm的不锈钢盘铺样,制成样品源㊂1.3.3㊀分析步骤㊀㊀(1)仪器本底的测定㊀取未使用过㊁无污染的不锈钢样品盘,洗涤后用酒精浸泡1h,取出㊁烘干,置于低本底α/β测量仪上连续测量总α㊁总β本底计数率24h㊂(2)空白试样的测定㊀将空白试样置于低本底α/β测量仪上连续测量总α㊁总β计数率24h㊂(3)仪器探测效率的测定㊀将标准源置于低本底α/β测量仪上连续测量总α㊁总β计数率24h㊂(4)样品源的测定㊀将01~04号样品源置于低本底α/β测量仪上连续测量总α㊁总β计数率24h㊂1.4㊀结果处理1.4.1㊀探测效率㊀㊀探测效率按照式(1)计算:ε=R s-R0a sˑm s(1)式中,ε为探测效率,Bq-1㊃s-1;R s为α或β标准粉末源的总α或总β计数率,s-1;R0为总α或总β本底计数率,s-1;a s为α或β标准粉末源的活度浓度,Bq/g;m s为α或β标准粉末源的质量,g㊂1.4.2㊀总α㊁总β放射性活度浓度㊀㊀厚源法水样中总α㊁总β放射性按照文献[4-5]计算㊂相对比较法水样中总α㊁总β放射性按照式(2)计算:12能力验证样品中总α和总β放射性的测定㊀马秀凤C=R x-R0R sx-R xˑC sˑV s Vˑ1000(2)式中,C为水样的总α或总β放射性活度浓度, Bq/L;R x为样品源的总α或总β计数率,s-1;R sx 为加标样品源的总α或总β计数率,s-1;C s为α或β标准溶液的活度浓度,Bq/mL;V s为α或β标准溶液的体积,mL;V为水样体积,mL;其余符号同前㊂气溶胶中总α㊁总β放射性按照式(3)计算:A=R x-R0R s-R0ˑa sˑM(3)式中,A为气溶胶的总α或总β放射性活度,Bq; M为气溶胶膜灼烧后的总残渣质量,g;其余符号同前㊂1.5㊀不确定度评定样品中总α㊁总β放射性测量标准不确定度μ来源于仪器统计计数μ1㊁标准物质刻度μ2,样品源制备μ3和样品体积μ4,μ3和μ4很小,可忽略不计㊂μ1按照式(4)计算:μ1=R xt x+R0t0R x-R0(4)式中,t x㊁t0分别为样品源和本底的测量时间,s;其余符号同前㊂μ2由标准物质证书查得㊂因此,样品中总α㊁总β放射性测量扩展不确定度U(k为包含因子,k=1)按照式(5)计算:U=kμ=μ21+μ22(5) 1.6㊀质量控制工作人员进行统一培训,测量分析人员持证上岗㊂标准源定期进行校准㊁期间核查㊂分析仪器定期进行检定,并定期做本底㊁效率测量和泊松分布检验㊂1.7㊀评定方法组织机构指定了结果评定方法㊂对于水样中总α㊁总β放射性,气溶胶样品中总α㊁总β放射性,根据式(6)计算相对偏差:E r=|X i-A|Aˑ100%(6)式中,E r为测量结果的相对标准偏差;X i为测试样品的测量值,A为测试样品的指定值㊂最后根据能力统计量Z值对测量结果进行评定:Z=X i-Aσ(7)式中,σ为能力评定标准差,其余符号同前㊂若|Z|ɤ2,结果满意;2<|Z|<3,结果有问题;|Z|ȡ3,结果不满意㊂2㊀结果与讨论2.1㊀仪器参数测定LB770低本底α/β测量仪为流气式正比计数管探测器,可同时测量10个样品,10个通道空盘总α计数率在0.0022s-1~0.0032s-1之间,比空白样品计数率0.00044s-1~0.00061s-1大近一个数量级,总β计数率在0.0682s-1~0.0919s-1之间,与空白样品计数率0.0576s-1~0.0619s-1差别不大,主要原因一方面是由于空白样品无水硫酸钙为优级纯,放射性比托盘衬底更低,另一方面是由于α粒子射程短,样品源对其有一定的屏蔽和吸收作用,而β粒子虽然有一定的自吸收,但其射程较长,普通材料对其发射的影响较小[6-7]㊂本实验以空白样品计数率作为本底计数率㊂10个通道对α放射性(对241Am)探测效率在0.0712~0.0732Bq-1㊃s-1之间,β放射性(对90Sr/90Y)探测效率在0.3914~0.4023Bq-1㊃s-1之间,与文献报道的同类型仪器性能差别不大[8]㊂由于各通道的探测效率有所区别,计算结果应用相应通道的探测效率㊂2.2㊀测量结果比对分析2.2.1㊀厚源法结果分析㊀㊀用厚源法测量,结果见表1和表2㊂由表1可知,厚源法得出气溶胶中总α㊁总β放射性测量结果与指定值的E r分别为5.3%㊁4.2%,Z值分别为-0.42㊁0.18㊂因此,最终评定结果为 满意 ㊂气溶胶中总α㊁总β放射性结果与指定值比较接近,E r<6%㊂水中总α㊁总β放射性测量结果与指定值的相对偏差分别为10.7%㊁18.8%,Z值分别为0.37㊁0.95㊂因此,最终评定结果为 满意 ㊂一般情况下,在样品测量时,应尽量选择与待测样品中可能存在的放射性核素类型㊁能量相近的标准 22辐射防护通讯㊀2023年4月第43卷第2期㊀㊀㊀表1㊀气溶胶总α和总β放射性评定结果样品序号分析项目指定值A(Bq)指定值不确定度U A(%)(k=1)灰样重M(g)铺盘量m(mg)测量值X i(Bq)1组2组1组2组均值测量值不确定度U x(%)(k=1)相对偏差E r(%)Z值03总α252 1.61 1.7818301.0301.9243235239 3.4 5.3-0.42 04总β142 2.73 1.7872301.9301.8149147148 3.4 4.20.18表2㊀水样总α和总β放射性评定结果样品序号分析项目指定值A(Bq/L)指定值不确定度U A(%)(k=1)测量值X i(Bq/L)1组2组均值测量值不确定度U x(%)(k=1)相对偏差E r(%)Z值01总α 5.360.35 5.79 6.07 5.93 6.310.70.37 02总β 5.760.91 6.017.68 6.85 6.918.80.95源㊂水中总β放射性结果的E r>15%,分析其原因,一方面是组织机构使用的掺标放射性核素为40K,本实验室条件下,低本底α/β测量仪对40K探测效率均值为0.47(Bq-1㊃s-1),对90Sr/90Y的探测效率均值为0.40(Bq-1㊃s-1),本次实验使用的放射性核素为90Sr/90Y,由此得出的总β放射性结果偏高㊂另一方面90Sr/90Y标准粉末源为自制,均匀性等存在偏差,粒子的吸收和散射等情况不一样,也会导致相应的偏差较大㊂气溶胶样品信息中告知其掺标放射性核素,因此只要选择同样的放射性核素对仪器进行效率刻度,就可以获得满意的结果㊂2.2.2㊀相对比较法结果分析㊀㊀㊀用相对比较法进行测量,结果见表3㊂表3㊀样品总α和总β放射性评定结果样品序号分析项目测量值X i(Bq/L)测量值不确定度U x(%)(k=1)相对偏差E r(%)Z值01总α 5.16 3.6 3.7-0.13 02总β 6.59 3.214.40.72㊀㊀由表3可知,相对比较法得出水中总α㊁总β放射性测量结果与指定值的相对偏差分别为3.7%㊁14.4%,Z值分别为-0.13㊁0.72㊂因此,最终评定结果为 满意 ㊂水中总α放射性测量结果与指定值极为接近,E r<4%,比厚源法的准确度提高了2倍㊂总β放射性测量结果的准确度比厚源法提高了4.4%,但是与指定值的相对偏差还是接近15%,由此印证了掺标物质不是90Sr/90Y㊂由于气溶胶样品灰化后为固体粉末状,可被硝酸降解,无法加入标准溶液;若加入标准粉末,无法保证混合的均匀性,因此气溶胶样品未使用相对比较法㊂无论是厚源法还是相对比较法,相比于指定值,测量值的不确定度都较大,特别是水中总α㊁总β放射性,测量值不确定度明显高于组织机构所给的指定值不确定度㊂此外,水中测量值不确定度明显比气溶胶样品的高,这主要是由于水中的总α㊁总β放射性水平低,而测量时采用了相同的测量时间,因此,计数误差大,从而造成其不确定度较大㊂3㊀结论㊀㊀本次能力验证涵盖了本实验室总放射性日常工作的大部分内容,取得了较好的结果㊂但是目前还存在一些不足㊂水质总放射性分析方法已经很成熟,但其它介质如气溶胶㊁沉降物㊁生物等都没有相应的标准方法,皆参照水质的前处理执行㊂对于含单一核素的样品,得出的结果差别不大,而对于实际的环境样品来说,核素的种类多且未知,气溶胶㊁沉降物等密度不同,使用单一标准物质基质(硫酸钙或者氯化钾),将影响探测效率的准确性㊂在以后的工作中应购置相应基质的标准物质㊂低本底α/β测量仪无核素鉴别能力,导致总β标准源选取的不同引入较大的误差㊂今后可借助液闪谱仪进行核素识别再选取标准源,或直接用液闪分析㊂对于有γ射线的核素,还可借助γ 32能力验证样品中总α和总β放射性的测定㊀马秀凤谱仪进行分析㊂厚源法分析水样没有加入示踪核素来确定制样回收率,默认100%回收得出测量结果的准确性存在一定风险㊂长流程可能有所损失造成负偏差,或引入杂质造成正偏差㊂在后续的工作中每一批次的样品应随机抽取10%~20%(向上取整)进行加标回收率测定㊂本次能力验证使实验室识别存在的问题并启动改进措施,建立测量方法的有效性和可比性㊂结果表明,本实验室低本底α/β测量仪系统的质量保证和质量控制是完善和有效的,测量分析方法㊁数据处理方法也是可靠的㊂参考文献:[1]中国国家认证认可监督管理委员会.检验检测机构资质认定能力评价检验检测机构通用要求:RB/T 214 2017[S].北京:中国标准出版社,2018. [2]International Organization for Standardization.Waterquality-gross alpha and gross beta activity-test method using thin source deposit:ISO10704:2019[S].ISO: Switzerland,2019.[3]潘自强.电离辐射环境监测与评价[M].北京:原子能出版社,2007:296-306.[4]环境保护部.水质总α放射性的测定厚源法:HJ 898 2017[S].北京:中国环境科学出版社,2018.[5]环境保护部.水质总β放射性的测定厚源法:HJ 899 2017[S].北京:中国环境科学出版社,2018.[6]格日勒满达呼,哈日巴拉,许潇,等.探讨串道现象对饮用水中的总放射性测量结果的影响[J].中华放射医学与防护杂志,2014,34(10):780-782.[7]张耀玲,赵峰,吴梅桂,等.IAEA2008年国际比对水体样品中总α/β放射性分析[J].核化学与放射化学,2011,33(1):42-47.[8]王利华,陆照,沈乐园.厚源法测量水中总α放射性[J].环境监测管理与技术,2019,31(4):43-45+ 56.Determination of Grossαand GrossβRadioactivity in ProficiencyTest SamplesMa Xiufeng,Zhang Xinrui,Du Juan,Li Jianjie(Beijing Nuclear and Radiation Safety Center,Beijing,100089) Abstract㊀To improve the measurement efficiency of low-level radioactivity and to ensure the accuracy and reliability of monitoring data,the authors participated in the proficiency test organized by China Insti-tute for Radiation Protection in2021.Thick source method with241Am powder and90Sr/90Y powder as standard sources was used for determination of grossαand grossβradioactivity in water and aerosol sam-ples.Relative comparison method with241Am solution and90Sr/90Y solution as standard sources was used for the determination of grossαand grossβradioactivity in water samples.Results showed that the rela-tive deviation and Z-score of thick source method were4.2%-18.8%and-0.42to0.95,respectively; while the values of relative comparison method were3.7%-14.4%and-0.13to0.72,respectively. The evaluation result was satisfactory for both methods.The quality assurance and quality control of low-levelα/βradioactivity measurement system in our laboratory are satisfactory and effective.The radio-activity measurement methods and data processing methods are reliable.Key words:㊀Proficiency test;Grossαandβradioactivity;Thick source;Relative comparison(责任编辑:杜晓丽)42辐射防护通讯㊀2023年4月第43卷第2期。

某地下建筑内天然放射性气溶胶粒度分布研究

某地下建筑内天然放射性气溶胶粒度分布研究

射性核 素 的有 效剂量 ; 后在第 6 、1和 7 之 87 2号 出版 物 中 , 一 步 给 出 了利用 该模 型 计 算 职业 进
子体 暴露 所 致 年 有 效 剂 量 约 占 5 。对 其 具 0 体 的剂 量估 算 , 合 国原 子 辐射 效 应科 学 委 员 联 会( UNS E C AR)和 国 际 放 射 防 护 委 员 会
S z s r b to f Na u a d o c i e Ae o o s i e Di t i u i n o t r lRa i a tv r s l
i n Und r r u d Bu l i g na e g o n id n
W ANG l n,W ANG Yu — ig,YANG —a g,W ANG Z e —a ,CHEN e ,L — in Ha—u j exn Yi n f h nto W i IKe xa
第4 卷第 6 6 期
2 1 钲 6q 02 ,







Vo1 4 NO. . 6, 6
At omi e g i n e a c ol g c En r y Sce c nd Te hn o y
Jn 0 2 u .2 1
某地 下建 筑 内天然 放 射 性气 溶 胶粒 度分 布研 究
da a t. K e r : na ur lr d o c i e a r s s;sz s rbu i y wo ds t a a i a tv e o ol ie dit i ton; A M A D
o l fa l
在 天 然辐 射 源所 致 年有 效 剂量 中 ,4 m; MAD主要 分布 在 0 1 . m之 间 , 占全 部 测 量结 果 的 8 。 . 2 平 . 9 A . ~O 3 约 5

核电厂新型放射性气体监测系统构建

核电厂新型放射性气体监测系统构建

第40卷第4期 2020年7月核电子学与探测技术Nuclear Electronics &Detection TechnologyVol. 40 No. 4Jul.2020核电厂新型放射性气体监测系统构建刘巍,陈祥磊,施礼,沈明明,徐卫峰,代传波,刘海峰(武汉第二船舶研究设计所,武汉430064)摘要:为加强核电厂大气环境中放射性气体的监测,构建了一套配置P灵敏闪烁体探测器的新型放射性气体监测系统。

该系统可对核电厂大气环境中的放射性气体活度浓度进行实时在线监测,可及时 发现放射性排出流含量超标的气体。

测试结果表明:该系统的测量结果的变异系数为2. 44%;测量结 果与标称值的偏差不大于5%;探测装置探测效率为7.64%。

关键词:卩灵敏闪烁体探测器;放射性气体;核电厂保护中图分类号:TL75 +1,TL99 文献标志码:A文章编号:0258 —0934(2020)4 —0585 —04核电厂反应堆堆芯的燃料元件在正常运行 或破损时都不可避免有少量放射性裂变产物从 燃料元件的裂缝中渗透到一回路冷却剂中。

当一回路发生泄漏时,这些放射性的裂变产物就会通过各种相关的工艺途径进人大气环境中形 成放射性气态分布,而这种放射性气体会对工作人员造成严重的辐射伤害,具有较大的危害性。

使用探测装置对核电厂内部大气环境中 的放射性气体活度浓度进行实时在线监测,可 及时发现放射性排出流含量超标的气体,以便 采取安全应对措施,对于保护核电厂工作人员及周围居民身体健康,保护核电厂周边环境和保证核电厂安全运行均具有重要意义。

本文阐述了一种基于空气取样的核电厂新 型放射性气体监测技术。

该监测系统采用(3灵 敏闪烁体探测器,其外部采用铅作为屏蔽材料,有效屏蔽了环境辐射的干扰,采用高性能耦合收稿日期:2018 —12—10作者简介:刘巍(1986 —),男,湖北武汉人,高级工程师,主要从事辐射防护及核技术应用研究。

光导和光电倍增管,并通过高精度滤波前置放大电路.能实时精确测量取样空间中的惰性气体活度浓度。

气溶胶实验方案

气溶胶实验方案

微生物是动物舍空气污染的重要方面。

空气中微生物以单独( 单细胞) 悬浮状态、与固体干燥的颗粒( 尘埃) 、液体微粒( 液体小滴) 相连接在空气中悬浮, 它们称谓生物气溶胶.80 %的气悬微生物是以细菌凝集块形式或与载体颗粒相连接, 如此大小的生物气溶胶颗粒的空气动力学直径平均为4 5μm ; 而不与任何载体颗粒相连接的单个细菌平均为1.2μm . 最常见的是液体微滴状态。

近年来,ARGs 的污染问题受到各方面的极大关注,国内外已逐渐开展环境中ARGs 的研究,研究方向集中在ARGs 的来源、分布、传播扩散及生态风险等.目前,已有多种ARGs 在水、土壤、沉积物、空气等环境介质中被检出,然而有关水和土壤中ARGs 的报道较多且较为系统,国内外对于空气中ARGs 的研究相对薄弱.不同于水、土壤环境中ARGs 的高浓度特点,空气中ARGs 的环境风险主要体现于病原菌等携带ARGs 的微生物易被人吸入,可能对人体造成直接的健康危害.我国多数城市细颗粒物污染严重,空气中的细颗粒物尤其是PM2. 5很可能成为ARGs 向人体呼吸系统传播的一个重要暴露途径.近年的文献中已陆续报道了在养殖场、医院、公共场所、城市住宅的空气中检出耐药菌的相关研究.然而,ARGs 与耐药性的传播扩散机制密切相关,因此需在空气中耐药菌的研究基础上加强ARGs 的研究.但由于对空气中ARGs 的污染现状缺乏足够的信息,且采样方法和检测分析方法尚未标准化,该领域研究的开展面临很大挑战.目前空气中ARGs 的相关研究多数采用的是Andersen 采样器,也有个别研究采用AGI-30 采样器.这些研究尚没有对所使用的采样器进行运行参数优化实验,也没有对采样器性能进行评价,因此对其采样分析结果是否能真实地反映空气中ARGs 的实际情况存在很大的不确定性.目前空气中ARGs 的研究仍处于起步阶段,对空气中ARGs 的种类、浓度以及采样过程中可能会受到的影响因素还不清楚,这给制定合适的空气ARGs 样品的采集方法增加了难度.吸入养猪场内的空气可能是耐多重药物细菌性病原体向人体传播的一个暴露途径,养猪场空气中的革兰氏阳性菌可能是抗性基因的储存库.细菌的内毒素是来自于革兰阴性细菌外膜上的脂多糖蛋白复合物,在特定的环境中内毒素能够引起机体产生支气管炎症、发热及肺功能的下降。

铀自燃对放射性气溶胶的影响研究

铀自燃对放射性气溶胶的影响研究

铀自燃对放射性气溶胶的影响研究彭贤勋;陈志理【摘要】以国内某金属铀真空蒸镀实验室的金属铀物料加工工艺为对象,采用放射性气溶胶连续监测,向心式气溶胶粒度分级采样,垂直高度分级采样等方法,研究了金属铀自燃对实验室空气中放射性气溶胶浓度、粒径分布、空间竖直分布的影响.结果表明,金属铀自燃明显提高了实验室空气中放射性气溶胶的浓度;所产生的气溶胶活度中位直径为9.89 μm,粒径分布中大粒径气溶胶粒子占优;燃烧产生的放射性气溶胶在物料高度处浓度的增大水平高于工作人员呼吸带的增大水平.【期刊名称】《核安全》【年(卷),期】2014(013)001【总页数】5页(P78-82)【关键词】铀自燃;气溶胶;浓度变化;粒径分布【作者】彭贤勋;陈志理【作者单位】核工业理化工程研究院,天津300180;核工业理化工程研究院,天津300180【正文语种】中文【中图分类】TL7在金属铀的加工过程中,一些金属铀薄膜和碎屑极易发生自燃。

金属铀块的着火温度在500 ℃左右,但金属铀粉末的着火温度却很低,在常温下就能自燃[1-4]。

据美国汉福德中心的研究报道,不同湿度、氧气氛围条件下,不同粒度的金属铀粉末的燃点在10~100 ℃之间[5],当金属铀粉末的粒度为270目时,着火温度为20 ℃[6,7]。

在国内某金属铀的真空蒸镀操作中发现,飘浮在空气中的金属铀薄膜或碎屑,在室温下就可因摩擦或碰撞发生自燃。

根据“热点”学说,氧化反应初期只是比表面积较大、着火温度较低的热点区域发生反应并生成UO2,标准状况下每生成1摩尔UO2会伴随能量释放1 224.24 kJ,放出的能量和冲击波一起作用再形成更多的热点,直至引发全部物料反应,形成剧烈燃烧效应[8]。

因此,当将物理形态的金属铀混合时,由于有局部比表面积较大、着火温度较低的物料存在,极有可能自燃并形成热点,从而引起整体物料的燃烧。

在国内某金属铀真空蒸镀实验室即发现此类自燃过程。

所有铀的同位素都是放射性的,具有相同的化学性质和不同的放射学特性[9]。

提高大气气溶胶放射性分析灵敏度的研究

提高大气气溶胶放射性分析灵敏度的研究
p o r t a bl e a i r s a mp l e r d u r i n g o f n uc l e a r 。 r e l a t e d e v e nt s . Me t ho d s :P o r t a b l e a i r s a mpl e r p a r a l l e l s a mp l i n g c o mb i n e d wi t h g a m ma s p e c t r o s c o p y me t ho d s a n d l a b or a t o r y s o ur c e l e s s c a l i br a t i o n 作者简介 s o f t wa r e we r e us e d f o r t h e me a s u r i n g a n a l y s i s i n t h e s t u d y . Res ul t s :Af t e r t h e p a r a l l e l l e d 男, ( 1 9 7 4 - ) , i n u ni t t i me ,s a mp l e v o l u me wa s d o u bl e d, t h e mi ni m um d e t e c t a b l e a c t i v i t y c on c e n t r a t i o n 周 强, 硕士 ,副主任技师。中 o f r a d i O nu c l i d e s d e c r e a s e d g r e a t l y .Co ncl us i o n:Th e mo ni t o r i n g s e n s i t i v i t y o f s u s p e c t e d n uc l e a r e v e nt s c o u l d be s i g n i ic f a n t l y i mp r o v e d b y us i n g p o r t a b l e a i r s a mp l e r p a r a l l e l s a mpl i n g , 国疾病预 防控制中心辐 me a s u r e me n t a n d a n a l y s i s . 射 防护 与核 安 全医 学

GB T 71651

GB T 71651
包 括 一 个或几个辐射探测器及其相关功能单元。
3.3
控 制和 测 f部件 controla ndm easurementa ssembly 包 括用 于 测量与电离辐射有关量(活度 、体积活度等等)的装置和功能单元 。当待测量超过预先确 定值时,装置给出可感知的警告信号。
3.4
(f 的 )约 定真值 conventionallyt ruev alue( ofq uantity) 量 的 最 佳估计值 。
3.1
气态 排 出 流监测仪 gaseouse ffluentm onitor 用 于连 续 监测气体排放系统中气态排出流放射性活度的设备。监测仪可方便地分成两个部件 ,根
据监测和运行的要求 ,这两个部件可 以组合或分开。 (G B /T 4960.6 一 1996,5.5 2)
3.2
探测 部 件 detectionas sembly
气 态 排 出 流 (放 射 性 ) 活 度 连 续 监测设备 第 1 部 分 :一 般 要 求
1 范围
GB /T 7165的本部分规定了这类监测设备 的验收形式 ;对可预计 的这类监测设备,就其可能的测 量范围和能力 ,提供了通用指南 ;并指出在何时和何地适合使用这类监测设备 。
3.1 0
探测 限 detectionl imit 测 量 方 法可探测的待测量的最小真值。
注 :探 测 限值是待测量 的最小真值 ,根据下列特性 ,该值与统 计试验和假设 (见判 断量)有关 :如果 实际上 真值等于 或 超 过 探 测 限值 ,非错误排除假设 的概率(第二类错误)应至多等于给定值 a,本部分 a等于 5% 0
.盔 ‘ . . 日 ‘ .
NUJ 青
本部 分 是 GB/T 7165《气态排出流(放射性)活度连续监测设备》标准的第 1部分。该标准共包括下 列五个部分 ,它们是 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档