完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法
完整的变压器差动保护调试和验证方法

变压器保护校验方法

RCS-978系列变压器保护测试 一、RCS-978型超高压线路成套保护 RCS-978配置: 主保护:稳态比率差动,工频变化量比率差动,零序比率差动, 谐波制动, 后备保护:复合电压闭锁(启动)方向过流 零序方向过流保护 间隙零序过流过压保护 零序过压 稳态比率差动 一、保护原理 基尔霍夫电流定律,流入=流出 (1)差动元件的动作特性 在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图: 在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流; I res.min 为最小制动电流,又称为拐点电流; K=tan α为制动特性斜率,也称为比率制动系数。 微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为: 拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+-> 式中 I op ——差动电流的幅值 I res ——制动电流的幅值 也有某些变压器差动保护采用三折线的制动曲线。 (2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取 差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例, op h l I I I =+ 在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式: ① /2res h l I I I =- ② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =-- ⑤ res l I I = 二、测试要点:标么值的概念 另:注意,978可以自动辅助计算当前的差流, 但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前 X 相制动电流下的动作电流边界!!! 三、试验举例: 保护定值:动作门槛:0.3 差动速断电流:4 I 侧(Y 接线)二次侧额定电流:3.935; II 侧(Y 接线)二次侧额定电流:3.765; III 侧(D 接线)二次侧额定电流:3.955 由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。 1.选择“差动菜单”——“扩展差动” 2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

浅论变压器电量保护(微机保护继电器)调试及计算方法

浅论变压器电量保护(微机保护继电器)调试及计算方法 【摘要】随着变压器保护装置种类的不断增多,保护功能的不断强大,微机继电保护装置正日趋完善,变压器的电量保护作为大容量变压器的主要保护类型,其调试和计算则成为整个继电保护调试中的重要环节。电量保护主要分为差动保护、复合电压闭锁过电流保护、速断保护、过负荷保护等,这些保护对变压器的稳定运行起着至关重要的作用,是电力系统正常运行的重要保障。因此,如何对变压器电量保护进行正确调试和计算,使继电保护装置正常运行,则成为我们所探讨的重要技术论题。本文将重点论述变压器差动、复合电压闭锁过电流、过负荷等变压器电量保护的调试和计算方法,以在交接和预防性试验中保证继电保护装置的正确调试。 【关键词】差动保护比率制动复合电压闭锁过流调试计算差动继电器后备保护 随着电网系统运行方式的不断更新,电气设备及各种用电负荷的继电保护类型也逐渐增多,其中变压器保护在各种继电保护中显得格外重要,变压器保护的项目、类型及计算方法决定了被保护的设备或电网系统是否能正常运行。下面将就各种变压器保护项目、调试和计算方法进行详细说明。 1 变压器差动保护的原理及特点 双绕组变压器的纵联差动保护单相原理接线如图1所示,它是按比较被保护变压器两侧电流的大小和相位的原理来实现的。变压器两侧各装设一组电流互感器1TA、2TA,其二次侧按环流法接线,即若变压器两端的电流互感器一次侧的正极性的线圈并联接入,构成纵联差动保护。其保护范围为两侧电流互感器1TA、2TA的全部区域,包括变压器的高、低压绕组、引出线及套管等。 从图1中可见,正常运行和外部短路时,因变压器两侧绕组接线不同而产生电流流过电流继电器(差动保护继电器)。流过差动继电器的电流,在理想情况下,其值等于零。但实际上由于两侧电流互感器特性不可能完全一致等原因,仍有差动电流流过差动回路,即为不平衡电流,此时流过差动继电器的电流为=(此公式表示相量之差),要求不平衡电流应尽可能小,保证保护装置不会误动作。当变压器内部发生相间短路时,在差动回路中由于改变了方向或等于零(无电源侧),这时流过差动继电器的电流为与之和,即=+(此公式表示相量之和) 由于Yd11接线变压器两侧线电流之间有30°的相位差,如果两侧的电流互感器采用相同的接线方式,将会在差动回路中产生很大的不平衡电流。 该电流为短路点的短路电流,使差动继电器KD可靠动作,并作用于变压器两侧断路器跳闸。 补偿方法为:将变压器星形侧的电流互感器接成三角形,而将变压器三角形

发变组差动保护测试的方法和步骤

发变组差动保护测试的方法和步骤 摘要:本文介绍了组发电机差动保护的基本配置方案。通过对差动速断保护和 比例差动保护的制动面积进行分析,测试了比率制动差动保护原理并对发电机差 动保护的简易型测试方法和步骤进行了讨论。 关键词:发变组;差动保护;发电机 引言随着我国电力工业的迅猛发展 ,发电机也时刻受到外界负荷的影响。为了保证供电 的可靠性和连续性,必须对电力发电机继电保护装置的性能和动作可靠性做出相应的严格设置。 1.发电机差动保护的原理与配置 发电机纵差动保护是发电机的主保护,它采集发电机定子绕组两端的电流。如图1所示:发电机中性点侧和发电机出口断路器的各安装了一组电流互感器,它的二次侧输出直接 连接到发电机的主保护装置。根据两侧的电流相量差和差动保护整定值来决定是否动作。在 正常情况下,中性侧电流和出口侧的电流是大小相等,方向相同,两侧的差动电流是零。当 相间短路故障发生时,两侧的电流互感器的短路电流均流向短路点。此时,两侧电流的方向 相反,所以差动电流将不再为零。 事实上,由于类型、特性等存在不同,两侧的电流互感器存在一些差异。在正常情况下,两侧的每相绕组一次侧电流是相同的,但二次侧电流也可能存在不平衡电流。因此,对差动 保护动作电流的整定值不能太小,以躲开不平衡电流。根据上面的整定方法,可能导致差动保 护不能动作,需要等待故障进一步发展后,保护才能动作。但到那个时候,发电机可能已经 造成了巨大的伤害。 第三部分的动作区域包含比率制动差动保护和差动速断保护,只要任一条件满足,保护将会 动作。 2.发电机微机保护的测试方法 测试分为比率制动差动保护和差动速断保护两部分分别测试,其完整的测试连接如图3 所示。整定定值为, 根据测试结果表1的连接,正确设置系统保护装置的参数,可以使比率制动差动保护和 差动速断保护正确动作。 3.简易型比率制动差动保护的测试方法和流程 对于中小机组来说,由于测试设备较为简单,可以使用固定制动电流,改变差动电流, 寻找差动保护动作的关键点来判断保护是否正确动作,即为简易型保护测试方法。 (1)保护测试接线如图3所示,IA和IB是保护测试仪连接保护装置的差动保护电流输入,并根据正确的极性分别设定IA和IB的相角。 (2)向保护测试仪输入IA=1.5A,IB=0.5A,IA和IB的相角根据极性来设定。在保护测试 仪中设置IA、IB的电流步长为0.01A。在测试过程中使用手动功能增加/减少电流,使制动电 流不变,可以实现锁定制动电流Ir为2.0A如图4所示。然后逐渐增加差动电流Id,找到并 验证差动保护制动特性的当前值。 图4 比率制动差动保护的动作特性 采用手动调整电流的测试方法,首先用手动逐步减小测试电流,使IA=1.3A,IB=0.7A,然后将测试电流加入保护装置。此时Ir=2.0A,Id=0.6A,而且Id>Id0,但根据比率制动特性,保 护装置应可靠的不动作。当采用手动调整逐渐增加电流IA,沿垂线找到相应的差动保护电流。观察交流采样结果和差动保护电流、制动电流的计算值,记录当前保护的动作值。根据灵敏 度要求,当差动电流为整定值的95%时,保护装置应可靠的没有不动作。 根据上述方法进行实际测试,采用博电PW30保护测试仪对差动保护测试,试验结果如 表2所示。

实验五变压器差动保护实验指导书(完,11.12)

实验五 变压器差动保护实验 (一)实验目的 1 .熟悉变压器纵差保护的组成原理及整定值的调整方法。 2 .了解 Y ∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电 流的影响。 3 .了解差动保护制动特性的特点。 (二)变压器纵联差动保护的基本原理 1 .变压器保护的配置 变压器是十分重要和贵重的电力设备, 电力部门中使用相当普遍。 变压器如 发生故障将给供电的可靠性带来严重的后果, 因此在变压器上应装设灵敏、快 速、可靠和选择性好的保护装置。 变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护; 另一种称后备保护,如过电流保护、低电压起动的过流保护等。 本试验台的主保护采用二次谐波制动原理的比率制动差动保护 2.变压器纵联差动保护基本原理 如图 7-1 所示为双绕组纵联差动保 护的单 相原理说明图,元件两侧的电流 互感 器的接线应使在正常和外部故障时 流 入继电器的电流为两侧电流之差,其 值接近于零,继电器不动作;内部故障 时流入继电器的电流为两侧电流之和, 其值为短路电流,继电器动作。但是, 由于变压器高压侧和低压侧的额定电流 不同,为了保证正常和外部故障时, 变压器两侧的两个电流相等, 从而使流入继 电器的电流为零。即: 式中: K TAY 、 K TA △——分别为变压器 Y 侧和△侧电流互感器变比; KT ——变压器变比。 显然要使正常和外部故障时流入继电器的电流为零, 就必须适当选择两侧互感器 的变比, 使其比值等于变压器变比。 但是, 实际上正常或外部故障时流入继电器 的电流不会为零,即有不平衡电流出现。原因是: (1)各侧电流互感器的磁化特性不可能一致。 (2)为满足( 7-1 )式要求,计算出的电流互感器的变比,与选用的标准化变 比不可能相同; (3)当采用带负荷调压的变压器时,由于运行的需要为维持电压水平,常常 变化变比 KT ,从而使( 7-1 )式不能得到满足。

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

DMP300型微机变压器差动保护测控装置说明书

一、简介 1.概述 DMP300型微机变压器差动保护测控装置,适用于110KV及以下电压等级的三圈变或两圈变,具有开入采集、脉冲电度量采集、遥控输出、通讯功能。其中DMP321适用于三圈变,DMP322适用于两圈变。 保护功能:a)差电流速断保护 b)二次谐波制动的比率差动保护 c)CT断线识别和闭锁功能 d)过负荷告警 e)过载启动风冷 f)过载闭锁有载调压 遥信量采集:a)本体轻、重瓦斯信号 有载轻、重瓦斯信号 压力释放信号 变压器超温告警 b)主变一侧开关的弹簧未储能、压力异常闭锁、报警 c)从主变一侧开关操作箱中采集开关跳、合位,手跳、手合开关量脉冲电量:一路有功脉冲电度、一路无功脉冲电度 遥控:遥控主变一侧开关 2.特点: 1)差动保护中各侧电流平衡补偿由软件完成,中低压侧电流不平衡系数均以高压侧为基准。变压器各侧CT二次电流相位也由软件自动校正,即变压器各侧CT二次回路可接成丫型(也可选择常规接线),这样简化了CT二次接线,增加了可靠性。 1)变压器保护的差动保护与后备保护完全独立,各侧后备也完全独立,独立的工作电 源、CPU实现真正意义上的主、后备保护,极大地提高了主变保护的可靠性。 2)通过菜单可直接查看主变各侧电流值的大小、相位关系,差电流大小,方便用户调 试与主变投运。 3)选用高性能、高可靠性的80C196单片机,高度集成的PSD可编程外围芯片;宽温军 用、工业级芯片;高精度阻容元件;进口密封继电器。 4)抗干扰、抗震动的结构设计

全封闭金属单元机箱,箱内插板间加装隔离金属屏蔽板;高可靠性的进口接插件,加装固定挡条。 5)独到的多重抗干扰设计 单元装置采取了隔离、软硬件滤波、看门狗电路、智能诊断各种开放闭锁控制,ALL IN ONE的主板电路设计原则,新型结构设计等多种抗干扰措施,取得了良好的效果。 6)体积小、模块化,既可安装于开关柜,构成分散式系统,又可集中组屏。 7)大屏幕液晶汉字显示运行参数、菜单,具有极好的人机界面,操作简单、直观、易 学、易用。 8)所有保护功能均可根据需要直接投退,操作简单。 9)软件实现交流通道的模拟量精度调整,取消了传统的采保通道的误差补偿电位器, 不但简化了硬件,更方便了现场调试、校验,还提高了精度。 10)独到的远动试验菜单功能。装置中设有“远动试验”菜单,通过菜单按钮进行远动信息 传输试验,如“差动速断动作”、“高压侧CT断线告警”等,无需试验接点真正闭合,可在线试验,方便了远动调试。 11)多层次的PASSWORD:运行人员口令、保护人员口令、远动人员口令。 12)事件记录分类记录32条故障信息,32条预告信息,8条自检信息,并具掉电保持功 能。

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

差动保护调试方法

微机变压器差动保护 一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器 常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。必需消除这种不平衡电流。 (中华人民共和国行业标准DL —400—91《继电保护和安全自 动装置技术规程》2.3.32条:对6.3MVA及以上厂用工作变压器和并联运行变压器。10MVA 及上厂用变压器和备用变压器和单独运行的变压器。以及2MVA及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。) (一)用电流互感器二次接线进行相位补偿 其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器 接成星形,如图1所示 图1变压器为Y o/ △ -11连接和TA/Y连接的差动保护原理接线

采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流 I A2、丨B2、I C2 , 刚好与三角形侧的电流互感器二次回路中的电流 I a 2、I b2、I c2同相位,如图2所示。 (二) 用保护内部算法进行相位补偿 当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从 而简化了 TA 二次接线,增加了电流回路的可靠性。但是如图 3当变压器为Y 。/ △ -11连接 时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量 图2向量图 b

图3变压器为Y △ -11连接和TA 为Y/Y 连接的差动保护原理接线 为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整 1、常规差动保护中电流互感器二次电流的相位校正 大部分保护装置采用 Y -△变化调整差流平衡,如四方的 CST31南自厂的PST-12O0 WBZ-500H 南瑞的LFP-972、RCS-985等,其校正方法如下: Y 0侧: I A2 = ( I A2 — I B2 ) / 3 I B2= ( I B2 — I C2 ) / 3 I C 2 = ( I C2 — I A2 ) / 3 △侧: I a2=I a2 I b2 = I b2 I c2=I c2 式中: I A2、I B 2、I C2为Y 0侧TA 二次电流,*、?、I C 2为侧校正后的各相电流;、 I b2、I c2为△侧TA 二次电流,I a2、I b2、丨c2为△侧校正后的各相电流 经过软件校正后,差动回路两侧电流之间的相位一致,见图 4 (b )所示。同理,对于 三绕组变压器,若采用Y o / Y 。/ △ -11接线方式,Y o 侧的相位校正方法都是相同的。 2、RCS- 978中电流互感器二次电流的相位校正 RCS-978中电流互感器二次电流的相位校正方法与其它微机变压器保护有所不同,此

差动保护带负荷测试

差动保护带负荷测试 1引言 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。怎样才知道差动保护的运行情况呢?怎样才知道差动保护的整定、接线正确呢?唯有用负荷电流检验。但检验时要测哪些量?测得的数据又怎样分析、判断呢?下面就针对这些问题做些讨论。 2变压器差动保护的简要原理 差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。 3变压器差动保护带负荷测试的重要性 变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。比如许继公司的微机变压器差动保护计算Y-△接线变压器Y

型侧额定二次电流时不乘以,而南瑞公司的保护要乘以。这些细小的差别,设计、安装、整定人员很容易疏忽、混淆,从而造成保护误动、拒动。为了防范于未然,就必需在变压器差动保护投运时进行带负荷测试。 4变压器差动保护带负荷测试内容 要排除设计、安装、整定过程中的疏漏(如线接错、极性弄反、平衡系数算错等等),就要收集充足、完备的测试数据。 1.差流(或差压)。变压器差动保护是靠各侧CT二次电流和——差流——工作的,所以,差流(或差压)是差动保护带负荷测试的重要内容。电流平衡补偿的差动继电器(如LCD-4、LFP-972、CST-31A型差动继电器),用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器(如BCH-1、BCH-2、DCD-5型差动继电器),用0.5级交流电压表依次测出A相、B相、C相差压,并记录。 2.各侧电流的幅值和相位。只凭借差流判断差动保护正确性是不充分的,因为一些接线或变比的小错误,往往不会产生明显的差流,且差流随负荷电流变化,负荷小,差流跟着变小,所以,除测试差流外,还要用钳形相位表在保护屏端子排依次测出变压器各侧A相、B相、C相电流的幅值和相位(相位以一相PT二次电压做参考),并记录。此处不

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

深圳南瑞PRSD差动保护调试说明

深圳南瑞PRS-D差动保护调试说明

————————————————————————————————作者:————————————————————————————————日期:

PRS-753D调试说明 说明:以下调试说明可能会和现场保护装置有少许出入,请以现场所配说明书为准。PRS-753D操作说明 1)装置正常运行时应将操作界面退出到最外面的菜单,否则装置显示器背光会一直点亮,缩短显示器使用寿命; 2)装置退出到最外层界面时,按“F2”键可复归已返回的动作时间,而上、下键可调节显示对比度。 3)进行保护调试前或投运前必须确定保护在投入状态,因为在调试状态装置会退出保护。 4)对于“光纤通信中断”、“本侧机与对侧机识别码不对应”动作信号装置判为装置异常,其动作返回后必须在“预设”菜单下——〉“保护功能”——〉“复归事件”— —〉“复归装置异常”下手动复归。 5)光纤差动保护联调时,本侧识别码与对侧识别码设置需相反,即本侧机的本侧识别码为“1”,对侧识别码设为“2”时,对侧机的本侧识别码需设为“2”,对侧识别 码设为’1”。 6)光纤插件背板上标识的“TX”口为光纤发信口,“RX”口为光纤收信口,在通道调好后若插上光纤后光纤插件背板上的红灯仍亮,侧将“TX”口与“RX”口的光纤 交换一下,若还不行则可用一根尾纤将两个光纤口环节,若其熄灭则可排除装置光 纤口故障。 7)光纤通道正常和识别码设置后,可以开始两侧联调,在对侧将电流、电压后,本侧可看交流量是否正确,在“查看”——〉“交流采样”中可以看到nIa、nIb、nIc即 为对侧电流,nUa、nUb、nUc对侧三相电压。两侧进行差动保护联调时,若在一 侧加电流,要两侧保护动作则需将另一侧的投退型定值中“弱电源侧”投入,这 样两侧就能同时动作。 其他操作详见说明书。 PRS-753D保护逻辑调试大纲 以下定值以5A系统为例。1A系统相应的电流定值需除以5。 数值型定值中线路全长设为100km,线路正序阻抗二次值=10Ω、线路正序阻抗角度=80°、线路零序阻抗二次值=30Ω、线路零序阻抗角度定值)=70°;启动元件中电流突变量启动定=1A、零序阻抗补偿系数=0.67、电流突变量启动定值=1A、零序电流启动定值=1A。对侧TA

发电机、主变压器保护调试要求措施

方案报审表 工程名称:生物热电综合利用项目编号:SDYN-SEPC-DPT-003 填报说明:本表一式五份,由调试单位填报,建设单位、生产单位、项目监理机构、调试单位、施工单位各一份。特殊施工技术方案由承包单位总工程师批准,并附验算结果。

生物热电综合利用项目发电机、主变保护调试措施 编制: 审核: 批准:

电力建设第一工程公司 2017年10月 目录 1.工程概况 (1) 2编制依据 (2) 3.调试围及目的 (2) 4.受电前应具备的条件 (2) 5.受电工作容及程序 (5) 6.调试质量验评标准 (8) 7.组织分工 (9) 8.安全控制措施及要求 (10) 9.环境、职业健康、安全控制措施 (12) 10.调试所用仪器设备 (12) 11.附录 (14)

1.工程概况 生物热电综合利用项目一期工程建设规模为两台75t/h 高温中高压循环流化床生物质锅炉加一台25MW汽轮发电机,配置30MW的发电机,发电机出口电压为10.5kV,升压至110kV 后并网。 110KV采用GIS配电装置,设单母线,由110KV天永线架空引接作为并网线,同时预留一路110KV出线间隔,设备采用特锐德生产的预装箱式GIS配电站。正常启动及事故情况下,并网线路受电作为全厂的启动/备用电源,不设专用启/备线路。 发电机出口设断路器,作为机组并网开关。发电机出口为单母线接线,分别经电抗器向两段10KV厂用母线供电。厂用10KV系统采用单母线分段制,按炉分为厂用10KVⅠ段和Ⅱ段,母线间设分段开关,两段母线分别接带#1厂用工作变、化水循环变和#2厂用工作变、#0厂用备用变、脱硫变为全厂低压辅机供电,400V系统设厂用工作Ⅰ段、厂用工作Ⅱ段、化水循环段和脱硫段共四段工作母线为全厂低压辅机供电,同时设400V备用段为四段工作母线提供备用电源。 主设备参数如下: 主变: 发电机:

ING-6021变压器差动保护装置技术及使用说明书

ING-6021 变压器差动保护装置技术及使用说明书

1. 概述 ING-6021 变压器差动保护装置(以下简称装置),主要适应于6KV-110KV变压器的差动保护 主要功能 保护功能: a) 差动速断保护 b) 比率差动保护 c) CT断线 遥测功能: 高压侧电流、低压侧电流 遥控功能: 装置信号复归,保护软压板投退 遥信功能: 8路遥信开入量 其它: 网络对时和手动对时功能 全隔离RS-485通讯接口,国际标准ModBUS-RTU通讯协议 2.技术数据 AC输入电流

额定5A:15A连续;短时250A 1秒 极限动态范围:625A持续1周波(正弦波) 功耗:5A 时0.16V A,15A时1.15V A 额定1A:3A连续;短时100A 1秒 极限动态范围:250A 持续1周波(正弦波) 功耗:1A 时0.06V A,3A时1.18V A 输出接点 符合IEC 255-0-20:1974,采用简单评估法 5A持续 30A接通符合IEEC C37.90:1989 100A持续1秒 启动/返回时间:<5ms 分断能力(L/R = 40ms): 24V 0.75A 10,000次 48V 0.50A 10,000次 125V 0.30A 10,000次 250V 0.20A 10,000次 循环能力(L/R = 40ms): 24V 0.75A 每秒2.5次 48V 0.50A 每秒2.5次 125V 0.30A 每秒2.5次 250V 0.20A 每秒2.5次

光隔输入 在额定控制电压下,每个光隔输入的电流为5mA。 额定电源 110伏:88 - 132Vdc或88 – 121Vac 220伏: 176 - 264Vdc或176 - 242Vac 额定5.5瓦, 最大8.5瓦 例行绝缘 试验电流输入端:500Vac 60秒不小于10M 电源、光隔输入及输出接点:500Vac 60秒不小于10M 带CE标志的装置进行下列IEC255-5:1977绝缘测试; 模拟输入:500Vac 60秒不小于10M 电源、光隔输入及输出接点:500Vac 60秒不小于10M 工作温度-10℃~+55℃(+14°F~+131°F)。 老化从室温到+75℃(+167℉)每次48小时以上。一共二十(20)次温度循环。 装置重量 2.5kg(5磅8盎司)。 型式试验及标准 IEEE C37.90.1:1989 IEEE保护继电器及继电器系统抗冲击性能(SWC)试验标准。 IEEE C37.90.2:1987 继电器系统抗电磁辐射干扰试验试用标准 IEC 68-2-30:1985 基本环境试验程序Part 2:试验,试验Db和导则:湿度,周期(12+12小时循环)。湿度95% ,温度25-55℃之间

母线差动保护调试方法

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值0.5,大差比例低值0.3,小差比例高值0.6,小差比例低值0.5,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,在差流比率制动动作满足条件下,分别验证保护Ⅰ母的电压闭锁中相电压(40.4V),负序电压(4V),零序电压定值(6V),正常电压,相应母线差动不出口,复合电压闭锁任一条件开放,差动出口。对于Ⅱ母故障,Ⅱ母单元加入故障电流,正常电压,逐项验证Ⅱ母复压开放。 3、CT断线闭锁差动,默认投入,闭锁三相,在Ⅰ母(或Ⅱ母)上任一单元A相加电流至CT断线闭锁定值,延时5S发“CT断线闭锁”事件,CT断线信号灯亮及信号接点闭合,此时另选一单元,A相加故障电流至差动动作值,此时差动不出口,B相故障电流满足差动条件,差动不出口,C相加故障电流满足差动

变压器差动保护试验方法

变压器差动保护试验方法. ,该保护原理成熟,的电气主保护为纵向电流差动保护变压器我们知道,、发电机动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原只是实现此保护的硬件平台随着电子技术的发展在不断升级,理都没有多大改变,的是通过差

动CT使我们的日常操作维护更方便、更容易。传统继电器差动保护接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来护装置的CT内部故障时,差变压器进行电流大小补偿,从而实现在正常运行时差流为零,而,低压侧)个电流(高、变压器流很大,保护动作。由于正常运行和故障时至少有6个电流,因此要模拟主变实际故障3而我们所用的微机保护测试仪一般只能产生原理理解清楚,然后时的电流情况来进行差动试验,就要求我们对微机差动保护正确接线,方可做出试验结果,从而验证保护动作的正确性。差动保护系列的发变组ND300下面我们以国电南京自动化设备总厂电网公司的系列ND300为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择定值差动保护型号作为试验对象。该型号的数字式变压器保护装置中的NDT3021: (已设定)见表保护装置保护定值单1NDT302表变压器

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT

变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1 而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。ND300系列变压器差动保护软件移相均是移Y型侧,对于?侧电流的接线,TA二次电流相位不调整。电流平衡以移相后的Y型侧电流为基准,△侧电流乘以平衡系数来平衡电流大小。若?侧为△-11接线,软件移相的向量图如图2:

变压器安装及系统调试流程

变压器安装及系统调试 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

变压器安装及系统调试 施工工序:外观检查→基础安装→本体就位→器身检查→附件安装→变压器试验→系统模拟试验→空载试验 k、模拟实验: 依据设计图检查控制设备及二次回路。 检查安装及效验记录。 做短路、过流、重瓦斯、信号、合分闸二次回路传动试验并做记录,动作结果要正确。 l、对绝缘有怀疑时,进行局部放电实验。 m、冲击合闸试验: 要在盘柜试验和模拟试验完全合格的基础上才能进行。 做冲击合闸实验前要对变压器的所有资料进行检查并保证变压器清洁。 加额定电压,合闸5次,每次间隔5分钟无异常后方可送电运行。 101变压器系统调试该如何套用定额? 电力变压器系统调试,包括三相和单相电力变压器系统调试两个分项工程,都是按变压器容量区分规格,分别以“系统”为单位计算。 三相及单相电力变压器系统调试工作内容包括变压器、断路器、互感器、隔离开关、风冷及油循环装置等一、二次回路的调试及空载投入试验。 10kV以下送配电调试: 1. 送配电调试子目适用于10千伏以下送配电回路的系统调试,如从配电装置至分配电箱的供电回路。但从配电箱至电动机的供电回路已包括在电动机的系统调试子目之内。

2. 供电系统调试包括系统内的电缆试验、绝缘子耐压、线路绝缘测试及其一回或二回线路中所有断路器、继电保护、测量仪表的试验等全套调试工作。 3. 一般仪表(如电压表、电流表)、保护互感器的试验均包括在相应的送配电设备系统调试内;计量用仪表、互感器的校验由供电部门统一进行,费用计取按相应规定。 2变压器送电调试运行实验内容 (1)测量线圈连同套管一起的直流电阻。 (2)检查所有分接头的变压比。 (3)检查三相变压器的联结组标号和单相变压器引出线极性。 (4)测 量线圈同套管一起的绝缘电阻。 (5)线圈连同套管一起做交流耐压试验。 (6)油箱中绝 缘油的试验。变压器送电调试运行前的检查 (1)检查各种交接试验单据是否齐全、真实合格,变压器一、二次引线相位、相色正确,接地线等压接触良好。 (2)变压器应清理擦拭干净,顶盖上无遗留杂物,本体及附体无缺损,且不渗油。 (3)通风设施安装完毕,工作正常,事故排油设施完好,消防设施齐全。 (4)油浸变压器的油系统油门应拉开,油门指示正确,油位正常。 (5)油浸变压器的电压切换位置处于正常电压档位。 (6)保护装置整定值符 合规定要求,操作及联动试验正常。变压器送电调试运行 (1)变压器空载投入冲击试验。即变压器不带负荷投入,所有负荷侧开关应全部拉开。必须进行全电压三次冲击实验,以考核变压器的绝缘和保护装置,第一次投入时由高压侧投入,受电后持续时间不少于10 min,经检查无异常情况后,再每隔5 min进行冲击一次,励磁涌流不应引起保护装置动作。最后一次进行空载运行24 h。 (2)变压器空载运行检查方法主要是听声音。正常时发出嗡嗡声,而异常时有以下几种情况发生:声音比较大而均匀时,可能是外加电压比较高;声音比较大而嘈杂时,可能是芯部有松动;有吱吱放电声音,可能是芯部和套管表面有闪络;有爆裂声响,可能是芯部击穿现象。 (3)在冲击试验中操作人员应注意观察冲击电流、空载电流、—、二次测电压、变压器油温度等,做好记录。变压器半负荷调试运行 (1)经过空载冲击试验后,可在空载运行24 h~28 h,如确认无异常便可带半负荷进行运行。 (2)将变

相关文档
最新文档