维激光扫描仪分类及原理

维激光扫描仪分类及原理
维激光扫描仪分类及原理

三维激光扫描仪分类及原理

地面三维激光扫描技术的出现是以三维激光扫描仪的诞生为代表,有人称“三维激光扫描系统”是继GPS (Global Position System)技术以来测绘领域的又一次技术革命。三维激光扫描技术是一种先进的全自动高精度立体扫描技术,又称为“实景复制技术”,是继GPS空间定位技术后的又一项测绘技术革新,将使测绘数据的获取方法、服务能力与水平、数据处理方法等进入新的发展阶段。传统的大地测量方法,如三角测量方法,GPS测量都是基于点的测量,而三维激光扫描是基于面的数据采集方式。三维激光扫描获得的原始数据为点云数据。点云数据是大量扫描离散点的结合。三维激光扫描的主要特点是实时性、主动性、适应性好。三维激光扫描数据经过简单的处理就可以直接使用,无需复杂的费时费力的数据后处理;且无需和被测物体接触,可以在很多复杂环境下应用;并且可以和GPS等集合起来实现更强、更多的应用。三维激光扫描技术作为目前发展迅猛的新技术,必定会在诸多领域得到更深入和广泛的应用。

对空间信息进行可视化表达,即进行三维建模,通常有两类方法:基于图像的方法和基于几何的方法。基于图像的方法是通过照片或图片来建立模型,其数据来源是数码相机。而基于几何的方法是利用三维激光扫描仪获取深度数据来建立三维模型,这种方法含有被测场景比较精确的几何信息。

三维激光扫描仪的分类:

三维激光扫描仪按照扫描平台的不同可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。

三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同的类型。通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为0. 6~1. 2 m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精度较高,可以多达三十万个点精度至±0.018 mm。例如:美能达公司出品的VIVID 910高精度三维激光扫描仪,手持式三维数据扫描仪FastScan等等,都属于这类扫描仪。

(2)中距离激光扫描仪:最长扫描距离小于30 m的三维激光扫描仪属于中距离三维激光扫描仪,其多用于大型模具或室内空间的测量。

(3)长距离激光扫描仪:扫描距离大于30m的三维激光扫描仪属于长距离三维激光扫描仪,其主要应用于建筑物、矿山、大坝、大型土木工程等的测量。例如:奥地利Riegl公司出品的LMS Z420i三维激光扫描仪和加拿大Cyra技术有限责任公司出品的Cyrax 2500激光扫描仪等,属于这类扫描仪。

(4)航空激光扫描仪:最长扫描距离通常大于1公里,并且需要配备精确的导航定位系统,其可用于大范围地形的扫描测量。

之所以这样进行分类,是因为激光测量的有效距离是三维激光扫描仪应用范围的重要条件,特别是针对大型地物或场景的观测,或是无法接近的地物等等,这些都必须考虑到扫描仪的实际测量距离。此外,被测物距离越远,地物观测的精度就相对较差。因此,要保证扫描数据的精度,就必须在相应类型扫描仪所规定的标准范围内使用。

三维激光扫描仪工作原理:

无论扫描仪的类型如何,三维激光扫描仪的构造原理都是相似的。三维激光扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以均匀角速度扫描的反射棱镜。激光测距仪主动发射激光,同时接受由自然物表面反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。如果测站的空间坐标是已知的,那么则可以求得每一个扫描点的三维坐标。以Riegl LMS -Z420i三维激光扫描仪为例,该扫描仪是以反射镜进行垂直方向扫描,水平方向则以伺服马达转动仪器来完成水平360度扫描,从而获取三维点云数据。

地面型三维激光扫描系统工作原理:三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X 轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。

图1 扫描点坐标计算原理

cos cos P X S βα=

cos sin P Y S βα=

(1) cos P Z S β=

图2 地面激光扫描仪测量的基本原理

整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。

图3 地面激光扫描仪系统组成与坐标系

目前阶段,需要通过两种类型的软件才能使三维激光扫描仪发挥其功能:一类是扫描仪的控制软件;另一类是数据处理软件。前者通常是扫描仪随机附带的操作软件,既可以用于获取数据,也可以对数据进行相应处理,如Riegi扫描仪附带的软件RiSCAN Pro;而后者多为第三方厂商提供,主要用于数据处理。Optech 三维激光扫描仪所用数据处理软件为Polyworks 。

三维建模的步骤:

三维激光扫描系统采集的数据为点云数据,点云数据处理一般包含下面几个步骤:噪声去除、多视对齐、数据精简、曲面重构。

噪声去除指除去点云数据中扫描对象之外的数据。在扫描过程中,由于某些

环境因素的影响,比如移动的车辆、行人及树木等,也会被扫描仪采集。这些数据在后处理就要删除。

多视对齐其指由于被测件过大或形状复杂,扫描时往往不能一次测出所有数据,而需要从不同位置、多视角进行多次扫描,这些点云就需要对齐、拼接称为多视对齐。点云对齐、拼接可以通过在物体表面布设同名控制点来实现。多视对齐的实质是计算满足如下目标函数的旋转和平移变换矩阵R ,T :

2

(,)min []i i

f R T R p T q =?+-∑ (2) 其中,p i ,q i 为需对齐的点云,上式是一个高度非线性问题。点云对齐的研

究主要集中于寻求该问题的快速有效的求解方法。其中最着名的是Basl 和Mokay 于1992年提出的ICP 算法。

点云的数据精简指的是由于点云数据是海量数据,在不影响曲面重构和保持一定精度的情况下需要对数据进行精简。常用的精简方法可采用下列方式:平均精简——原点云中每n 个点保留1个;按距离精简——删除一些点后使保留的点云中点与点间的距离均大于某值。

为了真实地还原扫描日标的本来面日,需要将扫描数据用准确的曲面表示出来,这个过程叫曲面重构。曲面常见表示种类有:三角形网格,细分曲面,明确的函数表示,暗含的函数表示,参数曲面,张量积B 样条曲面,NURBS 曲面,曲化的面片等。

经过曲面重构后,就可以进行三维建模,还原扫描日标的本来面日。点云数据处理步骤基本完成,可以应用点云数据来解决问题。

三维激光扫描技术应用领域:

最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。

(1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧

道地下工程结构、测量矿山及体积计算。

(2)结构测量方面:桥梁改扩建工程、桥梁结构测量、结构检测、监测、几何尺寸测量、空间位置冲突测量、空间面积、体积测量、三维高保真建模、海上平台、测量造船厂、电厂、化工厂等大型工业企业内部设备的测量;管道、线路测量、各类机械制造安装。

(3)建筑、古迹测量方面:建筑物内部及外观的测量保真、古迹(古建筑、雕像等)的保护测量、文物修复,古建筑测量、资料保存等古迹保护,遗址测绘,赝品成像,现场虚拟模型,现场保护性影像记录。

(4)紧急服务业:反恐怖主义,陆地侦察和攻击测绘,监视,移动侦察,灾害估计,交通事故正射图,犯罪现场正射图,森林火灾监控,滑坡泥石流预警,灾害预警和现场监测,核泄露监测。

(5)娱乐业:用于电影产品的设计,为电影演员和场景进行的设计,3D游戏的开发,虚拟博物馆,虚拟旅游指导,人工成像,场景虚拟,现场虚拟。2.三维激光扫描技术用于坝体变形监测可行性和优越性

传统对大坝体的变形监测都是在堤坝的特征部位埋设变形监测点,在变形影响范围之外埋设测量基准点,定期观测监测标志相对于基准点的变形量。传统基于点的测量方式,包括GPS测量,特征点的选取直接关系到监测方案是否有效、可靠。特征点的选取存在很大的人为性,如果特征点选取不当,监测点并不能最大程度地反映变形体的最大变形,甚至可能存在变形方案失效。同时,监测点的布设数量多少是传统基于点的测量方法中的一个重大瓶颈。一方面,我们想尽可能多的布设监测点,另一方面,我们又不得不考虑到成本的问题。三维激光扫描就可以解决传统基于点的测量方式中存在的诸多问题。一方面,我们对变形体进行全方位的扫描,可以不用人为寻找变形体的特征部位,同时扫描的云数据可以最大的满足我们对监测点数量的需求。但三维激光扫描仪并不是万能的,不是所有的测量任务都可以用扫描仪来完成。在新技术的使用过程中,可能还会遇到很多问题,这都需要经过以后的实践予以解决。

伟迪捷喷码机工作原理

伟迪捷喷码机工作原理 2011-08-18 09:53:34 喷码机原理说起来简单,实际运行繁杂 学习喷码机原理,让我们更好的发挥喷码标识设备的长处,使其更好的为我们的生产产品服务,把完美标识奉献给客户朋友,上海潜利电子科技有限公司经营进口喷码机多年,对于伟迪捷喷码机等各种进口机型的销售和售后服务都有着丰富的从业经验,对于伟迪捷喷码机维修、保养、耗材的使用和安装都有着丰富的实战经验,在这里上海潜利告诉用户一些伟迪捷喷码机工作原理,便于使用和操作。 一、伟迪捷喷码机的粘度检测原理:只要机器运行在喷墨状态,机器就会进行粘度检测,打开V3阀墨水经管路流入粘度腔,当粘度腔的高位被墨水覆盖,V3阀关闭停止供墨,这时粘度腔内高于高位的墨水会从溢流孔溢出,同时只要粘度腔内有墨水就会一直向混合缸滴墨水。当粘度腔墨水低于高位,CPU开始计时,粘度腔墨水低于地位,CPU计时结束,这是时间就是墨水的粘度值。 二、喷码机的喷嘴清洗原理:执行喷嘴清洗命令时,文丘里产生的负压加到喷嘴的一条管路上,在喷嘴口产生回吸,通过在喷嘴口处滴清洗剂达到清洗喷嘴的目的。喷嘴清洗自动执行时间是2分钟,但是可通过按功能键执行放弃清洗来终止。在墨线运行和停止时都能执行喷嘴清洗命令,当墨线运行时,执行喷嘴清洗,将首先关闭墨水供应阀,关闭喷嘴的墨线。 三、喷码机的墨水添加原理:当混合缸墨水低于OK位时,墨水添加阀动作,墨水从墨水缸通过管路循环流向混合缸,当墨水达到OK位时,墨水添加阀关闭。 四、喷码机的溶剂添加原理:墨水粘度值和软件的参考时间相对应,此参考值通过计时到空运算法则算出并存在CPU内存里,它考虑到墨水的型号和墨水的温度,如果实际值大于参考值,说明粘度过高,在每两个周期内溶剂添加阀会动作5秒添加溶剂直到粘度正确。 普及喷码机原理知识,让您更懂喷码机 喷码机原理对于所有使用者来说都具有指导性的重要意义。墨路图原理和电路控制部分功能,都是需要我们去研究和学习的。通过更多的喷码机工作知识、喷码机工作状态分析和介绍,让更多使用者了解和知道喷码机工作原理和日常操作维护流程方法,在购买和选择时可以有更多空间,更多选择的余地,并且选择到最为适合自己工厂产品和材质的设备。在2014年里,上海潜利将以更好的产品面对广大用户,以最诚挚的心来对待每一单生意。 普及喷码机知识利于客户了解行业变化。上海潜利电子科技有限公司对于每一个用户都持着真挚热忱的心,努力为每一个用户做到全方位的快捷有保证的服务,让每一个用户感受到高质量的喷码机快捷售后服务和喷码机整体解决方案的优势。上海潜利一直努力做的更好,为喷码事业献出自己最大的一份力!让用户的产品喷

压力机分类

压力机分类 压力机是最主要的压装设备之一。但是从大的方向上来分类的话,可以分为两类。使用液体传动压力的被称为“液压压力机”,使用机械传动压力的被称为“机械压力机”。 在详述压力机之前,首先了解一下机械压力机做哪些工作是很有必要的。因此,让我们简单地介绍一下金属压力加工。 将材料加工成所需形状或给予材料某种特性的加工方法有如下6种:铸造、塑性加工、切削、压接、表面处理、热处理。 在上述加工方法中属于压力加工的是塑性加工。所谓塑性加工,原则上是不产生切屑的加工,与其它加工方法比较,是最适于大量生产的一种加工方法。 塑性加工中虽然有如图那样的各种加工方法,但主要以压力机进行的加工为压力加工。 压力加工如图所示,有剪切加工、弯曲加工、深冲加工、压缩加工和特殊加工。而且每种加工方法又根据加工前是否将材料加热分成热加工和冷加工两种方法。另外,还有在热加工和冷加工中间温度状态下进行的加工。据此,还有温热加工的分类方法。 液压压力机,行程较长,压力可调节,加工速度稳定,不会产生超负荷等等,这些都是它的特征。因此,由不同的加工内容来看,更能显示出液压压力机比机械压力机有更多的优点。但是,机械压力机比液压压力机效率高,维修容易,所以现在的板料加工大都使用机械压力机。液压压力机和机械压力机相比,不仅结构不同,而且很多技术问题也不相同。因此,在此不打算论及液压压力机,而仅就机械压力机加以论述。 压机的基本型号由一个汉语拼音字母和几个阿拉伯数字组成,汉语拼音字母代表锻压机械的大类成为类别。同一锻压机械中分为若干列,称为列别。由第一压力加工 搓丝加工 挤压加工 拉伸加工 压延加工 锻造加工 热处理 表面处理 压接 切削 塑性加工 铸造 加工方法

喷码机原理

喷码机原理: 文字的点阵被分隔成若干画素,电压按照各画素的位置分配不同比例的墨水粒子带电。然后,通过静电场偏向后,墨水粒子到达喷印物的表面,形成文字。 以下预防性的措施需要定期和不定期的进行,才能使您的喷码机处于良好的工作状态。 ?检查墨水和溶剂的液位,低位时必须按程序及时添加。 ?清洁并干燥喷头系统,注意开关机时的自动清洗程序。 ?定期清洁风扇过滤网 ?定期清洁电眼的安装和固定装置 ?定期检查喷印头和电眼的安装和固定装置 ?定期检查电源及地线的连接 日常维护与常见故障的排除 喷码机具有自动故障诊断功能,可通过菜单显示屏幕中的图标,工作状态提示栏或“系统”菜单中的“状态”提示中获得故障信息(反白表示有故障)来解决常见的问题。喷码机在运行过程中,可通过“效验”菜单或直接按 i 键进“诊断屏幕”,观察机器运行的动态参数,从而更能准确的判断机器的运行情况。 故障图标 喷码机出现故障时,应该采用相应的诊断分析方法解决,若一时解决不了,请仔细记录故障图例的显示和“诊断屏幕”显示的动态参数,及时向伟迪捷公司的工程师询问和报修 各图标的含义如下

1. 高压故障 2. 充电故障 3. 回收故障 4. 风扇故障 5. 机箱温度过高 6. 速度太快 7. 混合缸满 8. 粘度故障 9. 溶济液位低10. 服务时间到11. 墨水液位低 耗材系列 Ink Source 选用正确的墨水对成功解决客户产品喷码的需求是至关重要的。不管什么时候,我们的客户都期望我们 -Videojet 能够提供专业,灵活的符合市场应变的解决方案来满足他们不断发展的标识需求。伟迪捷 Ink Source 墨水溶剂系列可以满足各个行业对产品喷码的应用要求。 伟迪捷 Ink Source 墨水溶剂系列, 300 种以上完整的品种系列,无论时塑胶材质还是金属材质或是其它任何材质,无论您技术要求是复杂还是简单的,伟迪捷多种功能的墨水系列可以满足您对产品喷码附着力和清晰度。 ?直接喷印在食品或药品上的安全食用墨水 ?配合高速生产线的快干墨水 ?颜料型彩色墨水,黄、绿、蓝、白等 ?紫外线可视防伪墨水,用于防伪标识 ?用于啤酒、饮料行业湿瓶喷码的墨水 ?环保墨水,专利配方,气味微小,适用于洁净标准较高的生产环境 ?高温原色墨水,适用于在高温蒸汽处理后仍需要保持原色标识的包装上 ?低温墨水,适用于低温条件下的小包装食品和冰淇淋食品 ?变色墨水,当墨水经过高压蒸汽加热后颜色会产生变化,可用于罐头等行业。 A100 基于两行以内,中、低速打印的基本喷码需求而特别设计的多米诺 A100 型喷码机是一个完整的、可信赖的喷码系统。 精巧的不锈钢外壳 节省空间的 304 #不锈钢箱体可简便地安装在任何生产线上。对于一般工作环境中的日常操作提供了便捷的方法。 打印质量显著提高 多米诺的专利打印头技术提供了更为精确的墨滴位置,可高质量地打印两行以内的信息。特殊开发的先进墨水确保了整个系统在较大的温度范围内及更多的打印需求中可靠可靠的启动方式 A 系列产品拥有多米诺独一无二的全自动开关机性能是目前市场上唯一真正具备打印头自动清洗功能的设备。实践证明它不象一般喷码机需要人工清洗打印头从而更适合各类生产线的启动。 快洁的墨水添加

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生 器输出的正弦电压信号接到发射超声 换能器上,超声发射换能器通过电声 转换,将电压信号变为超声波,以超 声波形式发射出去。接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。

移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:λf v =就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。 2.相位比较法 实验接线如下图所示。波是振动状态的传播,也可以说是位相的传播。在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。声波波源和接收点存在着位相差,而这位相差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的位相关系中得出,并可利用示波器的李萨如图形来观察。 位相差?和角频率ω、传 播时间t 之间有如下关系: t ?=ω? 同时有,t πω2=, v l t =,v T =λ(式中T 为周期) 代入上式得:λπ?l 2= 当 2λn l = (n=1,2,3,...)时,可得π?n =。 由上式可知:当接收点和波源的距离变化等于一个波长时,则接收点和波源的位相差也正好变化一个周期(即Ф=2π)。 实验时,通过改变发射器与接收器之间的距离,观察到相位的变化。当相位差改变π时,相应距离l 的改变量即为半个波长。根据波长和频率即可求出波速。 3.超声波的发射与接收——压电陶瓷换能器

三维激光扫描仪分类及原理

三维激光扫描仪分类及原 理 Prepared on 24 November 2020

三维激光扫描仪分类及原理 地面三维激光扫描技术的出现是以三维激光扫描仪的诞生为代表,有人称“三维激光扫描系统”是继GPS (Global Position System)技术以来测绘领域的又一次技术革命。三维激光扫描技术是一种先进的全自动高精度立体扫描技术,又称为“实景复制技术”,是继GPS空间定位技术后的又一项测绘技术革新,将使测绘数据的获取方法、服务能力与水平、数据处理方法等进入新的发展阶段。传统的大地测量方法,如三角测量方法,GPS测量都是基于点的测量,而三维激光扫描是基于面的数据采集方式。三维激光扫描获得的原始数据为点云数据。点云数据是大量扫描离散点的结合。三维激光扫描的主要特点是实时性、主动性、适应性好。三维激光扫描数据经过简单的处理就可以直接使用,无需复杂的费时费力的数据后处理;且无需和被测物体接触,可以在很多复杂环境下应用;并且可以和GPS等集合起来实现更强、更多的应用。三维激光扫描技术作为目前发展迅猛的新技术,必定会在诸多领域得到更深入和广泛的应用。 对空间信息进行可视化表达,即进行三维建模,通常有两类方法:基于图像的方法和基于几何的方法。基于图像的方法是通过照片或图片来建立模型,其数据来源是数码相机。而基于几何的方法是利用三维激光扫描仪获取深度数据来建立三维模型,这种方法含有被测场景比较精确的几何信息。 三维激光扫描仪的分类: 三维激光扫描仪按照扫描平台的不同可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。

三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同的类型。通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为0. 6~1. 2 m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精度较高,可以多达三十万个点精度至±0.018 mm。例如:美能达公司出品的VIVID 910高精度三维激光扫描仪,手持式三维数据扫描仪FastScan等等,都属于这类扫描仪。 (2)中距离激光扫描仪:最长扫描距离小于30 m的三维激光扫描仪属于中距离三维激光扫描仪,其多用于大型模具或室内空间的测量。 (3)长距离激光扫描仪:扫描距离大于30m的三维激光扫描仪属于长距离三维激光扫描仪,其主要应用于建筑物、矿山、大坝、大型土木工程等的测量。例如:奥地利Riegl公司出品的LMS Z420i三维激光扫描仪和加拿大Cyra 技术有限责任公司出品的Cyrax 2500激光扫描仪等,属于这类扫描仪。 (4)航空激光扫描仪:最长扫描距离通常大于1公里,并且需要配备精确的导航定位系统,其可用于大范围地形的扫描测量。 之所以这样进行分类,是因为激光测量的有效距离是三维激光扫描仪应用范围的重要条件,特别是针对大型地物或场景的观测,或是无法接近的地物等等,这些都必须考虑到扫描仪的实际测量距离。此外,被测物距离越远,地物观测的精度就相对较差。因此,要保证扫描数据的精度,就必须在相应类型扫描仪所规定的标准范围内使用。 三维激光扫描仪工作原理:

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

三维激光扫描仪的原理与其应用

三维激光扫描仪 2.1三维激光扫描仪研究背景 自上个世纪60年代激光技术已经开始出现,激光技术以其单一性和高聚积度在20世纪获得巨大发展。实现了从一维到二维直至今天广泛应用的三维测量的发展,实现了无合作目标的快速高精度测量。而且数字地球,数字城市等一系列概念的提出,我们可以看到:信息表达从二维到三维方向的转化,从静态到动态的过渡将是推动我国信息化建设和社会经资源环境可持续发展的重要武器。目前,各种各样的三维数据获取工具和手段不断地涌现,推动着三维空间数据获取向着实时化、集成化、数字化、动态化和智能化的方向不断地发展,三维建模和曲面重构的应用也越来越广泛[1]。传统的测绘技术主要是单点精确测量,难以满足建模中所需要的精度、数量以及速度的要求。而三维激光扫描技术采用的是现代高精度传感技术,它可以采用无接触方式,能够深入到复杂的现场环境及空间中进行扫描操作。可以直接获取各种实体或实景的三维数据,得到被测物体表面的采样点集合“点云”,具有快速、简便、准确的特点。基于点云模型的数据和距离影像数据可以快速重构出目标的三维模型,并能获得三维空间的线、面、体等各种实验数据,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。 其中,地面三维激光扫描技术的研究,已经成为测绘领域中的一个新的研究热点。它采用非接触式高速激光测量的方式,能够获取复杂物体的几何图形数据和影像数据,最终由后处理数据的软件对采集的点云数据和影像数据进行处理,并转换成绝对坐标系中的空间位置坐标或模型,能以多种不同的格式输出,满足空间信息数据库的数据源和不同项目的需要。目前这项技术已经广泛应用到文物的保护、建筑物的变形监测、三维数字地球和城市的场景重建、堆积物的测定等多个方面。 2.2 三维激光扫描技术研究现状 2.2.1 主要的三维激光扫描仪介绍 随着三维激光扫描技术研究领域的不断扩大,生产扫描仪的商家也越来越多。主要的有瑞士Leica公司,美国的FARO公司和3D DIGITAL公司、奥地利的RIGEL公司、加拿大的OpTech公司、法国MENSI公司、中国的北京荣创兴业科技发展公司等。这些扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同[2]。主要的分类见图1-1和表1-1。

曲柄压力机的工作原理

编订:__________________ 审核:__________________ 单位:__________________ 曲柄压力机的工作原理 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7650-86 曲柄压力机的工作原理 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 以J31-315型开式压力机为例,其工作原理见下图。电动机1带动皮带传动系统2,3,将动力传到小齿轮6,通过6和7,8和9两级齿轮减速传到曲柄连杆机构,大齿轮7同时又起飞轮作用。最本级齿轮9制成偏心齿轮结构,它的偏心轮部分就是曲柄,曲柄可以在芯轴10上旋转。连杆12一端连到曲轴偏心轮;另一端与滑块铰接,当偏心齿轮9在与小齿轮8啮合转动时,连杆摆动,将曲轴的旋转运动转变为滑块的往复直线运动。上模装在滑块上,下模固定在垫板上,滑块带动上模相对下模运动,对放在上、下模之间的材料实现冲压。 1-电动机 2-小皮带轮 3-大皮带轮 4-制动器 5-离合器 6-小齿轮

7-大齿轮 8-小齿轮 9-偏心齿轮 10-芯轴 11-机身 12-连杆 13-滑块14-上模15-下模16-垫板17-工作台18-液压气垫 在电动机不切断电源情况下,滑块的动与停是通过操纵脚踏开关控制离合器5和制动器4实现的。踩下脚踏开关,制动器松闸,离合器结合,将传动系统与曲柄连杆机构连通,动力输入,滑块运动;当需要滑块停止运动时,松开脚踏开关,离合器分离,将传动系统与曲柄连杆机构脱开,同时运动惯性被制动器有效地制动,使滑块运动及时停止。 请在这里输入公司或组织的名字 Enter The Name Of The Company Or Organization Here

手持喷码机工作原理和技术参数

手持喷码机工作原理和技术参数 手持喷码机的工作原理属于DOD(按需供墨)式喷墨打印,一般使用英国赛尔公司生产的喷头,特点是喷印内容解析度高。 欧朗斯手持喷码机,其喷头跟办公室使用的打印机是属于同一种的方式,都属于DOD 式,在喷嘴上密布式排列了很多的小孔径喷孔,这一特点决定了该类手持喷码机一般采用油性墨,而油性墨只有喷在吸附性材料,如不覆膜的纸张、不覆膜的木板等,墨水才会干的快。若喷在塑料或者金属等非吸附性材料上,墨水干燥时间会延长。欧朗斯手持喷码机在实际应用中一定要注意技术参数,看是否适合所需要喷印的产品,如需了解更多手持喷码机解决方案,沈阳欧朗斯包装设备有限公司为您提供完美喷码解决方案。 参数说明 喷印高度:1.5-17mm 喷印速度:每秒1米 喷印精度:200*200-400dpi 字体种类:中(英)文上百种 墨水指标:红、蓝、绿、黑油性墨、快干墨 相对湿度:10%-90%无凝结 电源参数:175-250V 50-60HZ 设备净重:1.1KG 单条信息储存量:中英文字200个或者256*128图片50幅 产品特点 防灰尘,只能手持,水平喷印,欧朗斯手持喷码机适合装袋前喷印或者是较大物体的喷印,例如包装纸箱、较大铁桶、塑料桶、板材、建材等 1、重量轻、体积小,移动灵活方便, 2、所编辑信息可在喷码机中显示。 3、可喷印各种字体、图案、条形码、二维码,可存储一千条信息; 4、耗材省,100毫升专用油墨可喷印12×12mm的字符200万个; 5、软件采用中文界面,操作简单易学;整机采用进口配件,性能稳定、坚固耐用; 6、在各种材质表面均可喷印,有多种颜色可选; 7、本机加墨简单,不用清洗液,喷头免维护,油墨环保; 欧朗斯手持喷码机是在原有手持喷码机的优良特性的基础上进一步的改进,更加轻便,无需外加电源,直接用充电电池进行工作,充电一次可连续工作15小时,可在无电源厂地工作。

压力机工作原理

首页-网上教程-曲柄压力机的工作原理演示 曲柄压力机的工作原理演示 通过曲柄滑块机构将电动机的旋转运动转换为滑块的直线往复运动,对坯料进行成形加工的锻压机械。机械压力机动作平稳,工作可靠,广泛用于冲压、挤压、模锻和粉末冶金等工艺。机械压力机在数量上约占各类锻压机械总数的一半以上。机械压力机的规格用公称工作力(千牛)表示,它是以滑块运动到距行程的下止点约10~15毫米处(或从下止点算起曲柄转角α约为15°~30°时)为计算基点设计的最大工作力。

(图1[曲柄滑块机构运动简图] 工作原理 机械压力机工作时(图2[机械压力机工作原理图],由电动机通过三角皮带驱动大皮带轮(通常兼作飞轮),经过齿轮副和离合器带动曲柄滑块机构,使滑块和凸模直线下行。锻压工作完成后滑块回程上行,离合器自动脱开,同时曲柄轴上的自动器接通,使滑块停止在上止点附近。

每个曲柄滑块机构称为一个“点”。最简单的机械压力机采用单点式,即只有一个曲柄滑块机构。有的大工作面机械压力机,为使滑块底面受力均匀和运动平稳而采用双点或四点的。 机械压力机的载荷是冲击性的,即在一个工作周期内锻压工作的时间很短。短时的最大功率比平均功率大十几倍以上,因此在传动系统中都设置有飞轮。按平均功率选用的电动机启动后,飞轮运转至额定转速,积蓄动能。凸模接触坯料开始锻压工作后,电动机的驱动功率小于载荷,转速降低,飞轮释放出积蓄的动能进行补偿。锻压工作完成后,飞轮再次加速积蓄动能,以备下次使用。 机械压力机上的离合器与制动器之间设有机械或电气连锁,以保证离合器接合前制动器一定松开,制动器制动前离合器一定脱开。机械压力机的操作分为连续、单次行程和寸动(微动),大多数是通过控制离合器和制动器来实现的。滑块的行程长度不变,但其底面与工作台面之间的距离(称为封密高度),可以通过螺杆调节。

声速的测定

实验3 声速测定 【实验目的】 1.了解超声波的产生、发射和接收方法。 2.用驻波法、行波法和时差法测量声速。 【实验仪器】 声速测试仪,示波器,声速测试仪信号源等。 【预习要求】 1. 确定实验步骤。 2. 列出数据记录表格。 【实验依据】 声波的传播速度与其频率和波长的关系为 =λ (1) v? f 由(1)式可知,测得声波的频率和波长,就可得到声速.同样,传播速度亦可用 = (2) v/ t L 表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速. 高于20kHz称为超声波。由于超声波具有波长短,易于定向发射、易被反射等优点.在超声波段进行声速测量可以在短距离较精确地测出声速。声速实验所采用的声波频率一般都在20~60kHz之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。这种压电陶瓷是利用压电效应和磁致伸缩效应实现电磁振动与机械振动的相互转换。压电陶瓷制成的换能器(探头)如图8-1所示。 图 8-1 纵向换能器的结构简图 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向(振动)换能器。 【实验内容与方法】 1.共振干涉法(驻波法)测声速

实验装置如图8-2 所示。 (a) 驻波法、相位法连线图 图中S 1和S 2为压电晶体换能器,S 1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出一近似的平面声波;S 2 为超声波接收器,声波传至它的接收面上时,再被反射。当S 1 和S 2的表面互相平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 ,2,1,0,2==n n L λ (3) 时,来回声波的波峰与波峰、波谷与波谷正好重叠,形成驻波。 因为接收器S 2 的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹.本实验测量的是声压,所以当形成驻波时,接收器的输出会出现明显增大,从示波器上观察到的电压信号幅值也是极大值(如图8-3)。

喷码机触摸屏的工作原理与应用

喷码机触摸屏的工作原理与应用 一、触摸屏的工作原理为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU 发来的命令并加以执行。二、触摸屏的主要类型从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。其中矢量压力传感技术触摸屏已退出历史舞台。触摸屏红外屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容屏设计理论好,但其图象失真问题很难得到根本解决;电阻屏的定位准确,但其价格颇高,且怕刮易损。表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰抗暴,适于各种场合,缺憾是屏表面的水滴、尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式,下面笔者就对上述的各种类型的触摸屏进行简要介绍: 1、电阻式触摸屏电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(OTI,氧化铟),上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层OTI,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指接触屏幕,两层OTI 导电层出现一个接触点,因其中一面导电层接通Y轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D 转换,并将得到的电压值与5V 相比,即可得触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是电阻技术触摸屏共同的最基本原理。电阻屏根据引出线数多少,分为四线、五线等多线电阻触摸屏。五线电阻触摸屏的A面是导电玻璃而不是导电涂覆层,导电玻璃的工艺使其的寿命得到极大的提高,并且可以提高透光率。 电阻式触摸屏的OTI 涂层比较薄且容易脆断,涂得太厚又会降低透光且形成内反射降低清晰度,OTI 外虽多加了一层薄塑料保护层,但依然容易被锐利物件所破坏;且由于经常被触动,表层OTI 使用一定时间后会出现细小裂纹,甚至变型,如其中一点的外层OTI 受破坏而断裂,便失去作为导电体的作用,触摸屏的寿命并不长久。但电阻式触摸屏不受尘埃、水、污物影响。这种触摸屏利用压力感应进行控制。它用两层高透明的导电层组成触摸屏,两层之间距离仅为2.5 微米。当手指按在触摸屏上时,该处两层导电层接触,电阻发生变化,在X 和Y 两个方向上产生信号,然后送触摸屏控制器。这种触摸屏能在恶劣环境下工作,但手感和透光性较差,适合配带手套和不能用手直接触控的场合。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:A、ITO,氧化铟,弱导电体,特性是当厚度降到1800 个(埃=10-10 米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300 埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO 涂层。B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 2、电容式触摸屏电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。电容式触摸屏在

声 速 的 测 量(超声波法)

声速的测量(超声波法) 声波是一种在弹性媒质中传播的机械波。声波在媒质中传播时,声速,声强等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以测知媒质的特性及状态变化。例如,通过测量声速可求出固体的弹性模量:气体、液体的比重、成分等参量。 在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。超声波在医学诊断,无损检测,测距等方面都有广泛应用。 声速的测量方法可分为两类;第一类方法是直接根据关系式v=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”。第二类方法是利用波长频率关系式v=fλ,测量出频率f和波长λ来计算出声速。 【实验目的】 1.了解超声换能器的工作原理和功能 2.学习不同方法测定声速的原理的技术 3.熟悉测量仪和示波器的调节使用 4.测定声波在空气及水中的传播速度 【实验仪器】 QSSV-2型声速测定实验仪、示波器 【实验原理】 一、声速在空气中的传播速度 在理想气体中声波的传播速度为 v=(1)式中γ =Cp/Cv称为比热比,即气体定压比热容与定容比热容的比值,μ是气体的摩尔质量,T是绝对温度,R=8.31441J/moL?K为普适气体常数。由(1)式可见,声速与温度有关,又

与摩尔质量μ及比热比γ有关,后两个因素与气体成分有关因此,测定声速可以推算出气体的一些参量。利用(1)式的函数关系还可制成声速温度计。 在正常情况下,干燥空气成分按重量比为氮:氧:氩:二氧化碳=78.084:20.946:0.934:0.033。它的平均摩尔质量为0μ=28.94×10-3 kg/moL 在标准状态下,干燥空气中的声速为0 v =331.5m/S 。在温室t ℃下,干燥空气中的声速为 0v v = (2) 式中T0=273.15K 。由于空气实际上并不是干燥的,总含有一些水蒸气,经过对空气平均摩尔质量a μ和比热比γ的修正,在温度为t 、相对温度为t 0的空气中,声速为 (3) 式中s p 为t ℃时空气的饱的和蒸气压,可从饱和蒸气压、蒸气压和温度的关系表中查出;P为大气压,取P =1.013×105Pa 即可;相对温度r 可从干湿温度计上读出。由这些气体参量可以计算出声速,故(3)式可作为空气中声速的理化计算公式。 二、测量声速的实验方法 声速的传播速度v 与声波频率f 和波长λ的关系为 v = f λ (4) 测出声波的频率和波长,就可以求出声速。其中声波频率可通过测量声源的振动频率得出,剩下的任务就是测声波波长,也就是本实验的主要任务。 波长可用下面两种方法测出: 1.相位法:波是振动状态的传播,也可以说相位传播。沿传播方向上的任何两点、如果其振动状态相同(同相)或者说其相位差为2π的整数倍,这时两点间的距离应等于波长λ的整数倍,即 L=n λ (n 为-正整数) (5) v =

激光扫描共聚焦显微镜的原理和应用-17954讲解

激光扫描共聚焦显微镜的原理和应用 Tina(2007-10-23 09:40:17 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图

二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 一)细胞的三维重建

普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM 能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM 的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。 二)静态结构检测:原位鉴定细胞或组织内生物大分子、观察细胞及亚细胞形态结构 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡

压力机工作原理[1]

曲柄压力机的工作原理演示 通过曲柄滑块机构将电动机的旋转运动转换为滑块的直线往复运动,对坯料进行成形加工的锻压机械。机械压力机动作平稳,工作可靠,广泛用于冲压、挤压、模锻和粉末冶金等工艺。机械压力机在数量上约占各类锻压机械总数的一半以上。机械压力机的规格用公称工作力(千牛)表示,它是以滑块运动到距行程的下止点约10~15毫米处(或从下止点算起曲柄转角α约为15°~30°时)为计算基点设计的最大工作力。 (图1[曲柄滑块机构运动简图] 工作原理 机械压力机工作时(图2[机械压力机工作原理图],由电动机通过三角皮带驱动大皮带轮(通常兼作飞轮),经过齿轮副和离合器带动曲柄滑块机构,使滑块和凸模直线下行。锻压工作完成后滑块回程上行,离合器自动脱开,同时曲柄轴上的自动器接通,使滑块停止在上止点附近。 每个曲柄滑块机构称为一个“点”。最简单的机械压力机采用单点式,即只有一个曲柄滑块机构。有的大工作面机械压力机,为使滑块底面受力均匀和运动平稳而采用双点或四点的。 机械压力机的载荷是冲击性的,即在一个工作周期内锻压工作的时间很短。短时的最大功率比平均功率大十几倍以上,因此在传动系统中都设置有飞轮。按平均功率选用的电动机启动后,飞轮运转至额定转速,积蓄动能。凸模接触坯料开始锻压工作后,电动机的驱动功率小于载荷,转速降低,飞轮释放出积蓄的动能进行补偿。锻压工作完成后,飞轮再次加速积蓄动能,以备下次使用。 机械压力机上的离合器与制动器之间设有机械或电气连锁,以保证离合器接合前制动器一定松开,制动器制动前离合器一定脱开。机械压力机的操作分为连续、单次行程和寸动(微动),大多数是通过控制离

合器和制动器来实现的。滑块的行程长度不变,但其底面与工作台面之间的距离(称为封密高度),可以通过螺杆调节。 生产中,有可能发生超过压力机公称工作力的现象。为保证设备安全,常在压力机上装设过载保护装置。为了保证操作者人身安全,压力机上面装有光电式或双手操作式人身保护装置。 结构类型 机械压力机一般按机身结构型式和应用特点来区分。按机身结构型式分:有开式和闭式两类。 ①开式压力机:也称冲床,应用最为广泛。开式压力机多为立式(图3[开式压力机(冲床)]。机身呈C形,前、左、右三面敞开,结构简单、操作方便、机身可倾斜某一角度,以便冲好的工件滑下落入料斗,易于实现自动化。但开式机身刚性较差,影响制件精度和模具寿命,仅适用于40~4000千牛的中小型压力机。 ②闭式压力机:机身呈框架形(图4 [闭式压力机],机身前后敞开,刚性好,精度高,工作台面的尺寸较大,适用于压制大型零件,公称工作力多为1600~60000千牛。冷挤压、热模锻和双动拉深等重型压力机都使用闭式机身。 按应用特点分:有双动拉深压力机、多工位自动压力机、回转头压力机、热模锻压力机和冷挤压机。 ①双动拉深压力机:它有内、外两个滑块,用于杯形件的拉深成形。拉深前外滑块首先压紧板料外缘,然后内滑块带动凸模拉深杯体,以防板坯外缘起皱。拉深完成后内滑块先回程,外滑块后松开。内外滑块公称工作力之比为(~1):1。 ②多工位自动压力机:在一台压力机上设有多个工位,装置多道成形模具,坯料依次自动向下一工位移动。在压力机的一次行程中,各工位同时进行各道成形工序,制成一个工件。 ③回转头压力机:在滑块与工作台之间设有可装置数十组模具的回转头,可按需要选用模具。坯料放在模具上而不再移动。每次行程完毕,回转头转动一个位置,完成一道工序。这种压力机定位精度高,便

激光喷码机工作原理及应用讲解

激光喷码机工作原理及应用 喷码机采用先进的密闭的二氧化碳激光技术。使用激光刻蚀机可以在物品材质的表层通过刻蚀的方式形成无法拭除的永久标识。 激光喷码机分为划线式和点阵式激光机技术用于标注文本,图形和可变数据在各种不同的材质表面,如塑料、玻璃、纸张和纸板箱等。因激光机无需墨水和其他的耗材,因此激光的喷印方式较经济,对环境也无影响。划线式激光喷码机,例如S系列和DSL1就是运用了镜片偏转连续激光束的原理,该镜片由高速旋转的微电机控制。高速旋转电机技术使得在移动或者静止的产品表面进行高速标刻成为可能。超凡的印刷体字符打印效果高可靠性:无需消耗品以及经久考验的二氧化碳激光管技术无论对静止物品还是高速生产线上,喷码效果一样出色信息打印方向无限制可打印出各种类型的图形最少量的维护工作以及对环境无碍点阵式激光喷码机工作原理点阵式激光喷码机使用自有的7根激光管技术。运用RF 能量激励DDC3激光头中的激光。由激光产生垂直方向的7个独立的圆点能量依次在产品表面汇聚烧灼。该系统依赖于产品的移动来达成点阵式字符的标刻.主要优势能适应非常高速的生产线并能打印出近似印刷字体的文本高可靠性:无需消耗品激光管的波长保证了包装的完整性,并实现从标签到PET等多种材质的标刻.不同类型的打印机不仅它们的物理结构、应用领域不相同,而且打印原理也有本质的区别,至于打印技术就更是完全不同了。下面就当今打印机领域应用最为广泛的针式打印机、喷墨打印机、激光打印机和热转换打印机等的工作原理作一描述。 在描述打印机工作原理以前,首先介绍一下打印机是如何打印汉字的。打印机通常有两种打印方式,即文本方式和图形方式。西文均采用文本方式打印,而汉字可采用文本和图形两种打印方式处理;对于打印机来说分为带汉字库的和不带汉字库的两种,对于自带汉字库的打印机可以用文本方式接收计算机传送的汉字内码后直接打印,这种打印机通常称为汉字打印机;而不带汉字库的打印机通常由汉字操作系统提供字库,但打印速度较慢,效率低。针式打印机的特点是:结构简单、技术成熟、性能价格比好、消耗费用低。针式打印机虽然噪声较高、分辨率较低、打印针易损坏,但近年来由于技术的发展,较大地提高了针式打印机的打印速度、降低了打印噪声、改善了打印品质,并使针式打印机向着专用化、专业化方向发展,使其在银行存折打印、财务发票打印、记录科学数据连续打印、条形码打印、快速跳行打印和多份拷贝制作等应用领域具有其他类型打印机不可取代的功能。目前,市场上主要有9针和24针两种针式打印机。 激光技术的应用与发展非常迅猛在工业标识领域引起了革命性变革,很快在食品、饮料、医药、烟草等多个行业得到了广泛的应用,并在产业化上有了飞速发展,为科学技术、国民经济和国防建设做出了积极贡献。激光喷码技术是目前激光加工领域应用最广泛、最成熟的一项技术,激光喷码机比其他激光加工机的机型品种和年产、销量都要大,深受各界企业用户的欢迎。激光喷码技术先进,优点很多,也是其应用广泛的重要原因。激光喷码对所承受物体没有热影响,不会引起变形,与机械冲击打标机相比,激光喷码对零件没有作用力、无机械接触。在计算机控制下可打出各种图形、文字和符号,更换序列号或改变日期都十分方便,包括自动打出当前的年、月、日、时、分、秒,在连续不断生产过程中,实时跟踪改变这些数据。在很多异形物体上激光喷码机也能从容应对,而且打标加工速度飞快,可以说瞬间即得,适合于在大量生产的产品上打标。打标精度非常,

相关文档
最新文档