基本不等式及应用教案

基本不等式及应用教案
基本不等式及应用教案

第3讲 基本不等式及其应用

最新考纲 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.

知 识 梳 理

1.基本不等式:ab ≤a +b 2

(1)基本不等式成立的条件:a >0,b >0.

(2)等号成立的条件:当且仅当a =b 时取等号.

(3)其中a +b 2称为正数a ,b 的算术平均数, ab 称为正数a ,b 的几何平均数.

2.几个重要的不等式

(1)重要不等式:a 2+b 2≥2ab (a ,b ∈R ).当且仅当a =b 时取等号.

(2)ab ≤? ????a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥? ????a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b ≥2(a ,b 同号),当且仅当a =b 时取等号.

3.利用基本不等式求最值

已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2

4(简记:和定积最大).

考点一 利用基本不等式证明简单不等式

【例1】 已知x >0,y >0,z >0.

求证:? ????y x +z x ? ????x y +z y ? ??

??x z +y z ≥8. 规律方法 利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.

【训练1】 已知a >0,b >0,c >0,且a +b +c =1.

求证:1a +1b +1c ≥9.

考点二 利用基本不等式求最值

【例2】 解下列问题:

(1)已知a >0,b >0,且4a +b =1,求ab 的最大值;

(2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值;

(3)已知x <54,求f (x )=4x -2+14x -5

的最大值; 规律方法 (1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.

(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.

【训练2】 (1)设0<x <52,则函数y =4x (5-2x )的最大值为________.

(2)已知a >0,b >0,a +b =2,则y =1a +4b

的最小值是( ) A.72 B .4 C.92

D .5

课堂小结

利用基本不等式证明或求最值要注意基本不等式成立的条件和等号成立的条件 和为定值时,积有最大值,积为定值时,和有最小值

基本不等式(导学案)

基本不等式(导学案) ab,3.4 ab,2 1、学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等 号“?”取等号的条件是:当且仅当这两个数相等 a,b2、理解利用基本不等式ab 证明不等式的方法 ,2 ab,3、进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决ab,2 一些简单的实际问题 ab,应用数形结合的思想理解不等式并从不同角度探索不等式的证明过程;ab,2 理解“当且仅当a=b时取等号”的数学内涵 1、回顾:二元一次不等式(组)与简单的线形规划问题。 2、如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案 中找出一些相等关系或不等关系吗? 1、重要不等式: 22如果a,b,R,那么a,b,2ab(当且仅当a,b时取","号) 1

a,b2、基本不等式:如果a,b是正数,那么 ,ab(当且仅当a,b时取","号).2 a,b3、我们称ab为a,b的算术平均数,称的几何平均数为a,b2 a,b224、a,b,2ab和,ab成立的条件是不同的:前者只要求a,b都是实数,2 而后者要求a,b都是正数。 1、已知x、y都是正数,求证: 223333yx(1)?2; (2)(+)(+)(+)?8. xyxyxyxy,xy 92、求(x>5)的最小值. fxx()4,,x,5 283、若x>0,y>0,且,求xy的最小值. ,,1xy 11,4、设a、b?R且a+b=1,求+的最小值 1,a1,b 1、两正数a、b的算术平均数与几何平均数成立的条件。?理解“当且仅当a=b 时取等 号”的数学内涵。 2、当两个正数之积为定值时,其和有最小值 当两个正数之和为定值时,其积有最大值 3、利用基本不等式求最值时必须满足三个条件:一正二定三相等. 4、用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 2

一元一次不等式的应用教案

华东师大版七年级下册第八章 “8.2.3一元一次不等式的应用”第一课时 教学感想: 实际问题与一元一次不等式是初中学数学中的一个难点,那么如何能突破这个难点,顺利完成这节课的教学任务呢?老师们在一起探讨后,都认为不好教学。于是今天把我的教学课堂实例和大家一起来分享探讨。 教学目标: (1)知识与技能: 列一元一次不等式解决具有不等关系的实际问题。 (2)过程与方法: 经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程。 (3)情感态度与价值观: 通过运用一元一次不等式解决实际问题,进一步强化运用数学的意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。 教学重点: 由实际问题中的不等关系列出不等式. 教学难点: 列一元一次不等式描述实际问题中的不等关系。 教学方法: 以探究式教学为主,以活动教学、启发式教学等教学方法为辅。 教学过程 (一)创设情境,激发情意 1、简阳市中小学生篮球比赛将于5月28号在简阳市举行,下面老师带来了一组云龙学区篮球运动选拔赛的图片。 2、涌泉初中女子篮球队代表云龙学区租车去参赛,从涌泉初中到简阳市路程是50千米,他们打算2小时到达,请你他们算一算,司机的车速至少是多少? (设计理念:兴趣是最好的老师。情境的创设针对学生的年龄特点,利用篮球运动会这一具特定情境的设置,不仅充分激起了学生的关注和兴趣,还顺其自然引出了蕴含的数学信息,真正起到了“敲门砖”的作用) (二)师生互动,探究新知

1、大胆尝试,上面问题中不超过2小时,则速度应满足什么? 50/x≤2 50/2≤x 2x≥50 及时分析三种方法,并表扬学生 (设计理念:复习不等式的几种情况,为下面学习新知打下基础) 2、学生参赛完后要回来时,老师想给家人买点礼物。比赛场地有甲、乙两家超市正在搞活动,请帮老师选择。 甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费; 乙商场的优惠措施是:累计购买50元商品后,再买的商品按原价的95%收费. 问题1:从这个活动中,你能发现什么信息? 问题2:如果老师打算购买40元的一件礼物,去哪家超市好呢?80元呢?大于100元呢?(设计理念:通过购物这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学.) (这里学生有可能得出两种结果,那就让学生探究到底哪家商店便宜;如果学生们只有一种答案,那么教师可举例说120元呢?180元呢?让学生知道两种结果都有,那么怎么界定这两种结果呢?进入探究) ①分组活动. 先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由. ②在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案: (1)什么情况下,到甲商场购买更优惠? (2)什么情况下,到乙商场购买更优惠? (3)什么情况下,两个商场收费相同? (设计理念:鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模.) ③我们先来考虑方案: 设累计购物x(x>100)元时,如果到甲商场购买更优惠. 问题1:如何列不等式? 问题2:如何解这个不等式? 在学生充分讨论的基础上,小组派代表板书,并解释这样列不等式的根据是什么?其他同学帮忙补充,最后老师进行点评。 (设计理念:完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯) ④让学生自己完成方案(2)与方案(3),并汇报完成情况. (设计理念:这是上面问题的重现,让学生独立完成,不仅可以培养学生自己解决问题的能力,还可以巩固上面所学的内容,可以说一举两得) ⑤最后师生共同总结分析: (1)如果累计购物不超过50元,则在两家商场购物花费是一样的; (2)如果累计购物超过50元但不超过100元,则在乙商场购物花费小. (3)如果累计购物超过100元,又有三种情况: A、什么情况下,在甲商场购物花费小? B、什么情况下,在乙商场购物花费小? C、什么情况下,在两家商场购物花费相同? (设计理念:过程的重现就是解题过程的重现,可以帮助学生更好的理清思路,培养学生开放型思维的能力) 3、总结一元一次不等式的解法和解决实际问题的步骤 去分母---去括号---移项---合并同类项---系数化为1

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

高中数学基本不等式及其应用教案设计

实用标准 文档大全基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0} .. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 实用标准 文档大全二、推导公式 1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥∴a2+b2≥2ab .. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).

不等式的实际应用教案

不等式的实际应用教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

3.4 不等式的实际应用 1.解有关不等式的应用题,首先要选用合适的字母表示题中的未知数,再由题中给出的不等量关系,列出关于未知数的不等式(组),然后解列出的不等式(组),最后结合问题的实际意义写出答案. 2.在实际应用问题中,若应用均值不等式求最值同样必须确保“一正、二定、三相等”的原则.“一正”即必须满足“各项为正数”;“二定”即求和的最小值必须拼凑成其积为“定值”,求积的最大值必须使其和为“定值”;“三相等 ”就是必须验证等号是否成立. 3.对于形如y =x +k x (k >0)的函数,如果利用均值不等式求最值,等号条件不存在,那么这时就可以考虑利用函数的单调性进行求解. (1)当x >0时,f (x )=x +k x ≥2k (k >0),当x =k 时取“=”.另外, 我们还可以证明f (x )在区间(0,k ]上为减函数,在区间[k ,+∞)上为增函数,据此单调性来求函数的值域. (2)当x <0时,∵f (x )=x +k x (k >0)(x ≠0)为奇函数. ∴f (x )在(-∞,-k ]上为增函数,在[-k ,0)上为减函数. 一、构建一元二次不等式模型解决 实际问题 方法链接:二次函数、一元二次不等式在实际生活中有着广泛的应用,构建一元二次不等式模型时应注意自变量的实际含义. 例1 一个车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:y =-2x 2+220x .若这家工厂希望在一个星期内利用这条流水线创收 6 000元以上,那么它在一个星期内大约应该生产多少辆摩托车

【新教材】 新人教A版必修一 基本不等式 教案

基本不等式 1.了解基本不等式的证明过程,理解基本不等式及等号成立的条件. 2.会用基本不等式证明简单的不等式及解决简单的最大(小)值问题. 知识梳理 1.基本不等式错误!≥错误! (1)基本不等式成立的条件:a〉0,b〉0 . (2)等号成立的条件:当且仅当a=b时不等式取等号. 2.几个重要不等式 (1)a2+b2≥2ab(a,b∈R); (2)错误!+错误!≥ 2 (a,b同号); (3)ab≤(错误!)2(a,b∈R); (4)错误!≥(错误!)2。 3.基本不等式求最值 (1)两个正数的和为定值,当且仅当它们相等时,其积最大. (2)两个正数的积为定值,当且仅当它们相等时,其和最小. 利用这两个结论可以求某些函数的最值,求最值时,要注意“一正、二定、三相等”的条件. 热身练习 1.若a,b∈R,且ab〉0,则下列不等式中,恒成立的是(D) A.a2+b2>2ab B.a+b≥2错误! C。错误!+错误!〉错误! D。错误!+错误!≥2 A、C中,a=b时不成立,B中,当a与b均为负数时不成立,而对于D,利用基本不等式x+y≥2错误!(x>0,y〉0)成立,故选D. 2.已知a,b为正数,则下列不等式中不成立的是(D) A.ab≤错误! B.ab≤(错误!)2 C。错误!≥错误! D。错误!≥错误! 易知A,B成立,

对于C ,因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以错误!≥(错误!)2,所以错误!≥错误!,故C 成立. 对于D,取a =4,b =1,代入可知,不等式不成立,故D 不成立. 由以上分析可知,应选D. 3.周长为60的矩形面积的最大值为(A) A .225 B .450 C .500 D .900 设矩形的长为x ,宽为y , 则2(x +y )=60,所以x +y =30, 所以S =xy ≤(x +y 2)2 =225,即S max =225. 当且仅当x =y =15时取“=",故选A 。 4.设函数f (x )=2x +错误!-1(x <0),则f (x )(A) A .有最大值 B .有最小值 C .是增函数 D .是减函数 f (x )=-[(-2x )+(-错误!)]-1≤-2错误!-1, 当且仅当x =-错误!时,等号成立, 所以函数f (x )有最大值,所以选A 。 5.(2017·山东卷)若直线x a +错误!=1(a >0,b 〉0)过点(1,2),则2a +b 的最小值为 8 。 因为直线错误!+错误!=1(a >0,b 〉0)过点(1,2), 所以1a +错误!=1, 所以2a +b =(2a +b )(错误!+错误!)=4+错误!+错误!≥4+2错误!=8, 当且仅当b a =4a b ,即a =2,b =4时,等号成立. 故2a +b 的最小值为8. 利用基本不等式判断大小关系 下列不等式一定成立的是

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

初中数学教学案例-一元一次不等式的应用

初中数学教学案例 一元一次不等式的应用 【案例主题:】学生积极参与教学,集中体现了现代教学理念:活动、民主、自由 【背景:】我在进行数学七年级上册一元一次不等式的应用教学时,在拓展思维环节举出了下面这样一个例题,随着教学过程的深入,很有感想: 例题:在一个双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格如下表所示:船型每只船载人数租金大船5 3元小船3 2元请你帮助设计一下:怎样的租船才能使所付租金最少?(严禁超载) 师:谁能公布一下自己的设计方案?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。) 生:我认为可以租大船,可以租小船,也可以大船和小船合租!(这时,教室里哄堂大笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。) 师:很好!你为他们设计了三种方案。那你能不能再具体为他们计算出租金呢?生(一下子来劲了):如果租大船,则需要船只数为48/5=9.6只,因为不能超载,所以租大船需10只,则所付租金要3×10=30元。如果租小船,则需要船只数为48/3=16只,则所付租金要16×2=32元。如果既租大船又租小船……(说到这里,该生卡了壳)(我边认真听,边将他的方案结论板书在黑板上,看见卡了壳,便赶紧答上话) 师:刚才×××同学真的不错,不但一下子设计了三种方案,还差不多完成了全部租金的计算,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同把剩下的一种方案的租金来完成吧。(在师生的共同研讨中得出):设租用X只大船,Y只小船,所付租金为A元。则:5X + 3Y = 48 A = 3X + 2Y 得到:A = 1/3X + 32 因为:0 <5X <48 且X为正整数所以:X = 9时,A最小值= 29 即租用9只大船和1只小船时,所付租金最少,最少租金为29元。此时有45人(5×9)坐大船,有3人坐小船。 师:今天的课程内容还有一项,那就是请×××同学(示意刚才的同学)谈谈这堂课的感想。生:……以前我不敢发言,我怕说的不对会被同学们笑话,而今天的游船题目恰好是我前几天才去坐过的,所以一下子……我今天才发现不是这样……我今后还会努力发言的……理念反思: 从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、民主、自由。 1、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与就不是主动性参与,而是被动的、消极的参与。在课程进行中,教师应形成一种有利于学生主动参与的人际关系氛围。尊重是进行一切活动的前提,只有尊重学生,才能理解学生,才能做到平等,学生才会感到安全,才不会出现有的学生被冷落,被讽刺,甚至被耻笑的现象。 2、在提问时,应设计开放性的问题,如:“请你帮助设计一下,怎样租用,才能使所付租金最少?”这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

新人教版高中数学《基本不等式》导学案

基本不等式 1.掌握基本不等式,能借助几何图形说明基本不等式的意义. 2.能够利用基本不等式求最大(小)值. 3.利用基本不等式求最值时要注意“一正二定三相等”. 下图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.在正方形ABCD中有4个全等的直角三角形,设直角三角形的两条直角边 长分别为a,b,那么正方形的边长为. 问题1:上述情境中,正方形的面积为,4个直角三角形的面积的和,由于4个直角三角形的面积之和不大于正方形的面积,于是就可以得到一个不等式:,我们称之为重要不等式,即对于任意实数a,b,都有,当且仅当时,等号成立. 我们也可以通过作差法来证明:- =(a-b)2≥0, 所以,当且仅当a=b时取等号. 问题2:基本不等式 若a,b∈(0,+∞),则,当且仅当时,等号成立. 问题3:对于基本不等式,请尝试从其他角度予以解释. (1)基本不等式的几何解释: 在直角三角形中,直角三角形斜边上的斜边上的.在圆中,半径不小于半弦长. (2)如果把看作正数a、b的,看作正数a、b 的,那么该定理可以叙述为:两个正数的不小于它们的. (3)在数学中,我们称为a、b的,称为a、b 的.因此,两个正数的不小于它们的.

问题4:由基本不等式我们可以得出求最值的结论: (1)已知x,y∈(0,+∞),若积x·y=p(定值),则和x+y有最 值,当且仅当x=y时,取“=”. (2)已知x,y∈(0,+∞),若和x+y=s(定值),则积x·y有最 值,当且仅当x=y时,取“=”. 即“积为常数,;和为常数,”. 概括为:一正二定三相等四最值. 利用基本不等式求最值 的最小值. (1)已知x>,求函数y=4x-2+ - (2)已知正数a,b满足ab=a+b+3,求ab的取值范围. 利用基本不等式证明不等式 已知x、y都是正数,求证:(x+y)(x2+y2)(x3+y3)≥8x3y3. 单调性与基本不等式 设函数f(x)=x+,x∈[0,+∞). (1)当a=2时,求函数f(x)的最小值; (2)当02)在x=a处取最小值,则实数a的值为(). -

初一下册一元一次不等式应用题()讲课教案

一元一次不等式(组) 一、知识导航图 一元一次不等式(组)的应用 一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念 不等式的性质 一元一次不等式和一元一次不等式组 二、课标要求 三、知识梳理 1.判断不等式是否成立 判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向. 2.解一元一次不等式(组) 解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a?? >? 的解集是x>b,即“大大取大”. (3) 00a b >??<的解集是a

(4)00a b ? 的解集是空集,即“大大小小取不了”. 一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。 3.求不等式(组)的特殊解 不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想. 4.列不等式(组)解应用题 注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题. 四、题型例析 1.判断不等式是否成立例1 2.在数轴上表示不等式的解集例2 3.求字母的取值范围例3 4.解不等式组例4 5.列不等式(组)解应用题例5 一元一次不等式(组) 【课前热身】 【知识点链接】 1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质: (1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或 c a c b ); (3)若a >b ,c <0则ac bc (或c a c b ). 3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1. 4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组. 一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <) x a x b ??>? 的解集是x b >,即“大大取大”; x a x b >??

29基本不等式学案

3.4.1基本不等式:2 b a a b +≤ 学案作者:张春燕 一、教学目标 1. 使学生了解基本不等式的代数、几何背景及基本不等式的证明. 2. 感知与基本不等式相近的一些不等式的证明和几何背景. 3. 初步了解用分析法证明不等式,培养学生分析问题能力和逻辑思维能力. 二、教学重点,难点 重点:理解掌握基本不等式,并能借助几何图形说明基本不等式的意义. 难点:利用基本不等式推导一些与其相似的不等式,关键是对基本不等式的理解与掌握. 三、问题导学 问题1:我们把“风车”造型抽象成图3.4-2,在正方形ABCD 中有四个全等的直角三角形,设直角三角形边长为a ,b ,则正方形的边长为_____________面积为_____________. 问题2:那四个直角三角形的面积和为_____________. 问题3:根据四个三角形的面积和正方形的面积,可得到一个不等式:2 2 b a +_____ab 2, 什么时候这两部分面积相等呢? 问题4:证明不等式:2 2b a +≥ab 2. 问题5:特别地,如果a>0, b>0, 则b a +≥ab 2 , 2b a ab +≤,其中2 b a +叫正数a, b 的算术平均数,ab 叫正数a, b 的几何平均数. 问题6:课本98P 探究给出基本不等式的几何解释. 四、探究交流(基本不等式的应用) 已知x, y 都是正数,求证: ① 如果积xy 是定值P ,那么当x=y 时,和x+y 有最小值P 2. ② 如果和x+y 是定值S ,那么当x=y 时,积xy 有最大值24 1S . 证明: 总结:“和定积最大,积定和最小”. 注:应用基本不等式须注意三点: ① 各项或各因式为正. ② 和或积为定值.

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

不等式组的实际应用

七年级数学导学稿 一、课题一元一次不等式组的应用姓名:所属小组: 二、本课学习目标与任务:1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题; 2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力; 3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。 三、复习旧知,铺垫新知1、写出下列不等式组的解集。 ?? ? ? ? > > 2 1 2 x x ?? ? ? ? > - < 3 1 2 x x ? ? ? - < - < 3 1 x x ? ? ? < > 5 2 x x 记忆口诀: 四、自学任务与方法指导:探究1: 3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品? 回答问题: (1)“不能完成任务”是什么意思? 按原先的生产速度,10天的产品数量_ 500 (2)“提前完成任务”是什么意思? 提高生产速度后,10天的产品数量____500 (3)根据以上不等关系,设未知数列不等式组并解不等式组: (4)根据实际意义确定问题的解,并回答问题: 2、解一元一次不等式组的应用题的步骤: (1)审题;(2)设未知数;(3)列不等式组;(4)解不等式组; (5)检验,确定实际问题的答案;(6)答 解一元一次不等式组的应用题的关键是找不等关系。(关键词有“不大于,至少,不超过”等)

3、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗? 步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表 设列解(结果)答 一元一次不等式组 个 未知数 找关系一个范围 根据题意写 出答案 二元一次不等式组 个未 知数 找关系一组数 五、小组合作探究问题与拓展:1、有若干男学生参加夏令营活动,晚上在一宾馆住宿时,如果每间住4人,那么还有20人住不下;相同的房间,如果每间住8人,那么还有一间住不满也不空,请问:这群男学生有多少人?有多少间房供他们住? 2、奖游戏规则:两小组比赛,各小组的小组长先确定一个糖果数量的数字(100以内)和小组的人数(10以内),然后与本小组成员讨论出一个要用到一元一次不等式组来解决的数学问题题目,并做出标准的解答,然后题目交给pk小组来解答,最快解答出对方小组的题目的小组就为胜方,胜方小组的每位成员就能从对方的糖果包中多得1颗的糖果奖励。 题目模板:把一些糖果分给某小组的成员,如果每人分()颗,那么余()颗;如果前面的每个人分()颗,那么最后1人能分到糖但分不到()颗糖果,问这些糖果有多少颗?这个小组有多少人? 当堂检测题 某校七年级(1)班计划把全班同学分成若干组开展数学探究活动。如果每个组3个人,则还剩10,如果每个组5人,则有一个组的学生数最多只有1个人,求该班在数学探究活动中计划分的组数和该班的学生数。

基本不等式的应用教学设计说明

教学设计与反思 课题:3.4.3 基本不等式 2b a a b + ≤的应用(二) 科目:数学教学对象:高二(290)学生课时:1课时提供者:和安单位:安一中 一、教学容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络.数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实. 根据本节课的教学容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助. 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题; (二)能力目标:让学生探究用基本不等式解决实际问题 (三)情感、态度和价值观目标: 通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯; 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应

1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学; 2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用; 3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣. 教学重点:1.构建基本不等式解决函数的值域、最值问题. 2.让学生探究用基本不等式解决实际问题; 教学难点:1.让学生探究用基本不等式解决实际问题; 2.基本不等式应用时等号成立条件的考查;

基本不等式公开课教案

基本不等式 2 a b + 授课人:祁玉瑞授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2a b +≤ 的证明过程。 难点:2a b +≤ 等号成立条件。 三、教学过程

1.课题导入 2a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和 是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就 得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.得到结论:一般的,如果 ) ""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为222)(2b a ab b a -=-+

高中数学《基本不等式》优质课教学设计

《基本不等式》教学设计 一、教学内容解析: 1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点; 2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材; 3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处; 4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点. 二、学情分析: 1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助; 2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少; 3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。 三、教学目标: 1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题; 2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养; 3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过

数学:不等式的实际应用教案新人教B版必修

3.4不等式的实际应用教案 一、教材分析: 前面学生已经学习了一元二次不等式的解法,本节主要是一元二次不等式的实际应用。通过本节课的实例教学,让学生体验不等式在解决实际问题的作用,数学与日常及其他学科的联系。并通过解题过程,抽象出不等式模型,总结出解应用题的思路与步骤。本节课的内容对于解决线性规划问题提供了很好的解题思路。同时,应用题中不等式模型也是高考经常经常涉及的问题,其地位也就不言而喻了。 二、三维目标: 1、通过实际问题的情景,让学生掌握不等式的实际应用,掌握解决这类问题的一般步骤, 2、让学生经历从实际情景中抽象出不等式模型的过程。 3、通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,增强学生的应用意识,提高他们的实践能力。 三、教学重点和难点: 重点:不等式的实际应用 难点:数学建模 四、教学方法:通过启发、引导、归纳、总结与探究相结合的方法,组织教学活动,按照由特殊到一般的认知规律,引导学生分析归纳如何抽象不等式模型及解不等式应用题的一般步骤。 五、教具:多媒体 六、教学过程: (一)温故知新:

1、比较两实数大小的常用方法 2、联系一元二次不等式与相应的方程以及函数之间的关系,填写下表 △>0△=0△<0△=b2— 4ac Y=ax2 +bx+c (a>0)的 图象 ax2 +bx+c=0 (a>0)的 根 ax2 +bx+>0 (a>0)的 解集 ax2 +bx+c<0 (a>0)的 解集

(二)情景引入 b 克糖水中含有a 克糖(b>a>0),若在这些糖水中再添加m (m>0)克糖,则糖水就变甜了,根据此事实提炼一个关系式 ,师:引例就是不等式在我们的生活中的实际应用,今天,我们一起来学习不等式的实际应用。(引出课题) (三)、典例分析: 例1、 甲、乙两人同时同地沿同一路线去同一地点,甲有一半的时间以速度m 行走,另一半时间以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走,如果m ≠n,问甲、乙两人谁先到达指定地点? 分析:设总路程为s,甲、乙所用时间分别为t 甲、t 乙, 若要解决此问题,只需比较t 甲,t 乙的大小即可 解:设总路程为s,甲、乙所用时间分别为t 甲、t 乙,由题意得 s n t m t =+ 2 2 甲甲, 乙t n s m s =+22 所以 t 甲= n m s + , t 乙=mn n m s 2) (+ 所以t 甲— t 乙=n m s +—mn n m s 2)(+=()[] ()mn n m n m mn s ++-242 =()() n m mn n m s +--22 其中s,m,n 都是正数,且m ≠n,于是t 甲— t 乙<0 ,即t 甲<t 乙 答:甲比乙先到达指定地点。 方法二:做商比较。 回归情景:对糖水问题你能给出证明吗? 例2、有纯农药一桶,倒出8升后用水补满,然后倒出4升再用水补满,此时桶中的农药不超过容积的28%.问桶的容积最大为多少?

相关文档
最新文档