3-可靠性设计--容差分析

合集下载

可靠性设计分析试题B

可靠性设计分析试题B

1.判断题(共20分,每题2分)(1)()系统优化权衡的核心是效能、寿命周期费用两个概念之间的权衡。

(2)()产品的故障密度函数反映了产品的故障强度。

(3)()对于含有桥联的可靠性框图,在划分虚单元后得到的可靠性框图应是一个简洁的串、并联组合模型。

(4)()提高机械零件安全系数,就可相应提高其静强度可靠度。

(5)()相似产品可靠性预计法要求新产品的预计结果必须好于相似的老产品。

(6)()并非所有的故障都经历潜在故障再到功能故障这一变化过程。

(7)()故障树也是一种可靠性模型。

(8)()事件树中的后续事件是在初因事件发生后,可能相继发生的非正常事件。

(9)()电子元器件是能够完成预定功能且不能再分割的电路基本单元。

(10)()与电子产品相比,机械产品的失效主要是耗损型失效。

2.填空题(共20分,每空1分)(1)系统效能是系统、及的综合反映。

(2)产品可靠性定义的要素为、和。

(3)可靠性定量要求的制定,即对定量描述产品可靠性的及其。

(4)应力分析法用于阶段的故障率预计。

(5)在进行FMEA之前,应首先规定FMEA从哪个产品层次开始到哪个产品层次结束,这种规定的FMEA层次称为,一般将最顶层的约定层次称为。

(6)故障树构图的元素是和。

(7)事件的风险定义为与的乘积。

(8)PPL的含义是。

(9)田口方法将产品的设计分为三次:、和。

3.简答题(20分)(1)(10分)画出典型产品的故障率曲线,并标明:1)故障阶段;2)使用寿命;3)计划维修后的故障率变化情况。

(2)(10分)什么是基本可靠性模型?什么是任务可靠性模型?举例说明。

4.(10分)题图4(a)、(b)两部分是等价的吗?请说明理由。

当表决器可靠度为1,组成单元的故障率均为常值 时,请推导出三中取二系统的可靠度和MTBCF表达式。

(a)(b)题图45.(10分)四个寿命分布为指数分布的独立单元构成一个串联系统,每个单元的MTBF分别为:300、500、250和150小时。

可靠性设计要求

可靠性设计要求

可靠性设计要求(总6页) -本页仅作为预览文档封面,使用时请删除本页-可靠性设计要求1适用范围本标准规定了可靠性设计的一般要求和详细要求。

本标准适用于公司所有产品的可靠性设计工作。

2引用标准IEC60300-2-1992 可靠性管理第2部分可靠性程序元素和任务GB6993-86 系统和设备研制生产中的可靠性程序GJB 450-88 装备研制与生产的可靠性通用大纲GJB 451-90 可靠性维修性术语GJB 437-- 88 军用软件开发规范GB 4943-1995 信息技术设备(包括电气事务设备)的安全3名词术语3.1可靠性 reliability产品在规定的条件下和规定的时间内,完成规定功能的能力。

3.2可信性 dependability产品在任一时刻完成规定功能的能力。

它是一个集合性术语,用来表示可用性及其影响因素:可靠性、维修性、保障性。

在不引起混淆和不需要区别的条件下,与可靠性等同使用。

3.3测试性 testability产品能及时并准确地确定其状态(可工作、不可工作或性能下降),并隔离其内部的一种设计特性。

3.4维修性 maintainability产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。

3.5可靠性要求(目标)产品可靠性的高低是由一系列指标来描述的,包括MTBF值、环境应力范围、EMC应力范围等等。

这一系列指标就是对产品的可靠性要求或产品的可靠性目标。

3.6可靠性(设计)方案为实现产品可靠性目标而制定的技术路径和方法。

3.7可靠性(设计)报告为实现产品可靠性目标而实施的技术路径和方法。

3.8可靠性设计从制定可靠性目标到提供可靠性(设计)报告的全过程。

3.9工作项目组成可靠性设计的相对独立的工作内容和过程。

3.10可靠性设计评审由不直接参加设计的专家对可靠性设计进行论证和确认的过程。

4一般要求可靠性设计是产品设计的一部分,应与产品设计同时进行。

可靠性总结2

可靠性总结2

1.可靠性工程的重要性主要表现在三个方面:高科技的需要,经济效益的需要,政治声誉的需要2.产品在规定的条件下和规定的时间内,完成规定功能的能力。

从设计的角度,可靠性可分为基本可靠性和任务可靠性;从应用的角度,可靠性可分为固有可靠性和使用可靠性。

基本可靠性是指产品在规定的条件下无故障的持续时间或概率。

它反映了产品对维修人力的要求。

任务可靠性是指产品在规定的任务剖面中完成规定功能的能力。

它反映了产品对任务成功性的要求.3.可靠性指标(1)可靠度R(t) 0≤R(t)<1 不可靠度(2)故障密度函数f(t)(3)λ(t)也称为产品的瞬时失效率.(4)平均寿命对于不维修产品表示为:失效前平均时间MTTF对于可维修产品表示为:平均故障间隔时间MTBF(5)有效度维修度M(t)——产品在规定条件下进行修理时, 在规定时间内完成修复的概率.平均修复时间MTTR有效度A(t):表示产品在规定条件下保持规定功能的能力。

(固有有效度)(使用有效度))MTBF——反映了可靠性的含义。

MTTR——反映维修活动的一种能力。

4.常用寿命分布函数(1)指数分布主要特点:故障率表现为一个常数,便于计算。

适合对器件处于偶然失效阶段的描述重要性质:无记忆性(2)正态分布主要特点:能同时反映出构成电子元器件产品失效分布的各种微小的独立的随机失效因素的总结果,也即能反映出产品失效模式的多样性和失效机理的复杂性.(3)威布尔分布用三个参数来描述,这三个参数分别是尺度参数α,形状参数β、位置参数γ,5.失效率曲线早期失效期的特点是失效发生在产品使用的初期,失效率较高,随工作时间的延长而迅速下降。

造成早期失效的原因大多属生产型缺陷,由产品本身存在的缺陷所致.通过可靠性设计、加强生产过程的质量控制可减少这一时期的失效。

偶然失效期的特点是失效率很低且很稳定,近似为常数,器件失效往往带有偶然性。

这一时期是使用的最佳阶段。

耗损失效期的特点是失效率明显上升,多由于老化、磨损、疲劳等原因并不是任何一批器件均明显地表现出以上三个失效阶段。

容差区间 jmp

容差区间 jmp

容差区间 jmp
容差区间(tolerance interval)是一种统计学中用来表示一个总体中一定比例的个体会落在该区间内的范围。

JMP是一种统计分析软件,可以用来进行数据分析、制作图表、建立预测模型等。

JMP软件中提供了丰富的工具和函数来计算容差区间。

在JMP中,计算容差区间可以通过以下步骤完成:
1. 打开JMP软件,并导入需要进行分析的数据集。

2. 在数据集中选择需要计算容差区间的变量。

3. 在JMP的菜单栏中选择Analyze(分析)-> Distribution(分布)-> Tolerance Interval(容差区间)。

4. 在弹出的对话框中,选择要计算容差区间的置信水平和容差比例。

5. 点击确定按钮,JMP会自动计算出相应的容差区间,并在结果窗口中显示。

容差区间的计算可以帮助我们对数据的分布进行更准确的描述和预测,用于质量控制、可靠性分析、产品设计等方面。

JMP 软件提供了简单易用的功能来计算容差区间,帮助用户更好地理解和应用统计学方法。

注册可靠性工程师考试必备复习

注册可靠性工程师考试必备复习

一、可靠性概论1.1可靠性工程的发展及其重要性1、可靠性工程起源与第二次世界大战(日本,齐藤善三郎)。

20世纪60年代是可靠性全面发展的阶段,20世纪70年代是可靠性发展步入成熟的阶段,20世界80年代是可靠性工程向更深更广的方向发展。

e9rNA2S。

2、1950年12月,美国成立了“电子设备可靠性专门委员会”,1952年8月,组成“电子设备可靠性咨询组(AGREE),1957年6月发表《军用电子设备可靠性》,标志着可靠性已经成为一门独立的学科,是可靠性发展的重要里程碑。

dB4Sjtt。

3、可靠性工作的重要性和紧迫性:①武器装备的可靠性是发挥作战效能的关键,民用产品的可靠性是用户满意的关键②成为参与国际竞争的关键因素③是影响企业盈利的关键④是影响企业创建品牌的关键⑤是实现由制造大国向制造强国转变的必由之路。

KlO64sm。

4、可靠性关键产品是指一旦发生故障会严重影响安全性、可用性、任务成功及寿命周期费用的产品、价格昂贵的产品。

Sq28tSq。

1.2可靠性定义及分类1、产品可靠性指产品在规定的条件下和规定的时间内,完成规定功能的能力。

概率度量成为可靠度。

2、寿命剖面是指产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述,包含一个或几个任务剖面。

任务剖面是指产品在完成规定任务这段时间内所经历的事件和环境的时序描述。

ZS8D2f8。

3、产品可靠性可分为固有和使用可靠性,固有可靠性水平肯定比使用可靠性水平高。

产品可靠性也可分为基本可靠性和任务可靠性。

基本可靠性是产品在规定条件下和规定时间内无故障工作的能力,它反映产品对维修资源的要求。

任务可靠性是产品在规定的任务剖面内完成规定功能的能力。

同一产品的基本可靠性水平肯定比任务可靠性水平要低。

R4xQokv。

1.3故障及其分类1、故障模式是指故障的表现形式,如短路、开路、断裂等。

故障机理是指引起故障的物理、化学或生物的过程。

故障原因是指引起故障的设计、制造、使用和维修等有关的原因。

可靠性设计原则1000条(完整版,建议收藏)

可靠性设计原则1000条(完整版,建议收藏)

可靠性设计原则1000条(完整版,建议收藏)A1 在确定设备整体方案时,除了考虑技术性、经济性、体积、重量、耗电等外,可靠性是首先要考虑的重要因素。

在满足体积、重量及耗电即是数条件下,必须确立以可靠性、技术先进性及经济性为准则的最佳构成整体方案。

A2 在方案论证时,一定要进行可靠性论证。

A3 在确定产品技术指标的同时,应根据需要和实现可能确定可靠性指标与维修性指标。

A4 对己投进使用的相同(或相似)的产品,考察其现场可靠性指标,维修性指标及对这两种备标的影响因素,以确定进步当前研制产可靠性的有效措施。

A5 应对可靠性指标和维修性指标进行公道分配,明确分系统(或分机)、不见、以至元器件的的可靠性指标。

A6 根据设备的设计文件,建立可靠性框图和数学模型,进行可靠性预计。

随着研制工作深进地进行,预计于分配应反复进行多次,以保持其有效性。

A7 提出整机的元器件限用要求及选用准则,拟订元器件优选手册(或清单)A8 在满足技术性要求的情况下,尽量简化方案及电路设计和结构设计,减少整机元器件数目及机械结构零件。

A9 在确定方案前,应对设备将投进使用的环境进行具体的现场调查,并对其进行分析,确定影响设备可靠性最重要的环境及应力,以作为采取防护设计和环境隔离设计的依据。

A10 尽量实施系列化设计。

在原有的成熟产品上逐步扩展,抅成系列,在一个型号上不能采用过多的新技术。

采用新技术要考虑继续性。

A11 尽量实施同一化设计。

凡有可能均应用通用零件,保证全部相同的可移动模块、组件和零件都能互换。

A12 尽量实施集成化设计。

在设计中,尽量采用固体组件,使分立元器件减少到最小程度。

其优选序列为:大规模集成电路-中规模集成电路-小规模集成电路-分立元器件A13 尽量不用不成熟的新技术。

如必须使用时应对其可行性及可靠性进行充分论证,并进行各种严格试验。

A14 尽量减少元器件规格品种,增加元器件的复用率,使元器件品种规格与数目比减少到最小程度。

煤矿坑道钻机液压系统可靠性设计分析

煤矿坑道钻机液压系统可靠性设计分析

尚未发 生故障的件 数是 成正 比的,因此他 的 寿命 和维修 时
间都服从 指数分布 ,即:
M T BF : _ 1
; T :一 MT R 1
() 2
l 可 靠性 及 其特 征值
式中 A — 故 障率 ; —
— —

1 1 广 义可 靠性 .
机器 、零部 件等一 般是 随着 使用 时 间的增 长会 产生 损 坏或是故 障 ,对 于发 生故 障 一般 有两种 处置 方式 ,即废 弃
2 1 方 案 设 计 .
方案设计是 提高 系统 固有 可靠性 的关 键 阶段 ,因为 系
统在满足功能要 求 的前提 下 。方 案拟 定 阶段最便 于设 计者
义可靠性 的衡量 尺度 。又有 瞬 时有效 度 、平 均有 效度 和 稳态有效度 之分 ,对 于煤 矿坑 道钻 机来 说 ,最关 心 的是 钻 机长时间使用 的有 效度 ,故最 常用 的是 稳态 有效 度 ,其 表
广 义 可 靠 性 是 指 产 品 在 这 个 寿 命 期 内完 成 特 定 功 能 的
由此可 以看 出 ,提高 液压 系统 有效度 的途 径有 二 :一 是提高无故 障时 间 ,降低 故 障率 ;二 是降低 维修 时 间 ,提
高维修率 。
能力 ,它将 可靠性和维修性均 包括在 内,三者关 系为 : 广 义可靠性 =狭义可靠性 +维修性
收 稿 日期 :2 1 0 0 0 0— 8— 8
充分发挥主 观能 动作 用 ,使 系统 组成 最简单 ,其冗 余 、安
作者简介 :李
栋 ( 90一) 18 ,男 ,陕西延安人 ,工程师 ,国家注册安 全工程 师 ,硕 士 ,现在 中国煤炭科 工集 团西 安研

半导体集成电路的可靠性设计

半导体集成电路的可靠性设计

6.2半导体集成电路的可靠性设计军用半导体集成电路的可靠性设计是在产品研制的全过程中,以预防为主、增强系统治理的思想为指导,从线路设计、幅员设计、工艺设计、封装结构设计、评价试验设计、原材料选用、软件设计等方面,采取各种有效举措,力争消除或限制半导体集成电路在规定的条件下和规定时间内可能出现的各种失效模式,从而在性能、费用、时间〔研制、生产周期〕因素综合平衡的基础上,实现半导体集成电路产品规定的可靠性指标.根据内建可靠性的指导思想,为保证产品的可靠性,应以预防为主,针对产品在研制、生产制造、成品出厂、运输、贮存与使用全过程中可能出现的各种失效模式及其失效机理,采取有效举措加以消除限制.因此,半导体集成电路的可靠性设计必须把要限制的失效模式转化成明确的、定量化的指标.在综合平衡可靠性、性能、费用和时间等因素的根底上,通过采取相应有效的可靠性设计技术使产品在全寿命周期内到达规定的可靠性要求.6.2.1概述1.可靠性设计应遵循的根本原那么〔1〕必须将产品的可靠性要求转化成明确的、定量化的可靠性指标.〔2〕必须将可靠性设计贯穿于产品设计的各个方面和全过程.〔3〕从国情出发尽可能地采用当今国内外成熟的新技术、新结构、新工艺.〔4〕设计所选用的线路、幅员、封装结构,应在满足预定可靠性指标的情况下尽量简化, 预防复杂结构带来的可靠性问题.〔5〕可靠性设计实施过程必须与可靠性治理紧密结合.2.可靠性设计的根本依据〔1〕合同书、研制任务书或技术协议书.〔2〕产品考核所遵从的技术标准.〔3〕产品在全寿命周期内将遇到的应力条件〔环境应力和工作应力〕.〔4〕产品的失效模式分布,其中主要的和关键的失效模式及其机理分析.〔5〕定量化的可靠性设计指标.〔6〕生产〔研制〕线的生产条件、工艺水平、质量保证水平.3.设计前的准备工作〔1〕将用户对产品的可靠性要求,在综合平衡可靠性、性能、费用和研制〔生产〕周期等因素的根底上,转化为明确的、定量化的可靠性设计指标.〔2〕对国内外相似的产品进行调研,了解其生产研制水平、可靠性水平〔包括产品的主要失效模式、失效机理、已采取的技术举措、已到达的质量等级和失效率等〕以及该产品的技术发展方向.〔3〕对现有生产〔研制〕线的生产水平、工艺水平、质量保证水平进行调研,可通过通用和特定的评价电路,所遵从的认证标准或统计工艺限制〔SPC〕技术,获得在线的定量化数据.精品文档4.可靠性设计程序〔1〕分析、确定可靠性设计指标,并对该指标的必要性和科学性等进行论证.〔2〕制定可靠性设计方案.设计方案应包括对国内外同类产品〔相似产品〕的可靠性分析、可靠性目标与要求、根底材料选择、关键部件与关键技术分析、应限制的主要失效模式以及应采取的可靠性设计举措、可靠性设计结果的预计和可靠性评价试验设计等.〔3〕可靠性设计方案论证〔可与产品总体方案论证同时进行〕.〔4〕设计方案的实施与评估,主要包括线路、幅员、工艺、封装结构、评价电路等的可靠性设计以及对设计结果的评估.〔5〕样品试制及可靠性评价试验.〔6〕样品制造阶段的可靠性设计评审.〔7〕通过试验与失效分析来改良设计,并进行“设计一试验一分析一改良〞循环,实现产品的可靠性增长,直到到达预期的可靠性指标.〔8〕最终可靠性设计评审.〔9〕设计定型.设计定型时,不仅产品性能应满足合同要求,可靠性指标是否满足合同要求也应作为设计定型的必要条件.6.2.2集成电路的可靠性设计指标1.稳定性设计指标半导体集成电路经过贮存、使用一段时间后,在各种环境因素和工作应力的作用下,某些电性能参数将逐渐发生变化.如果这些参数值经过一定的时间超过了所规定的极限值即判为失效,这类失效通常称为参数漂移失效,如温漂、时漂等.因此,在确定稳定性设计指标时,必须明确规定半导体集成电路在规定的条件下和规定的时间内,其参数的漂移变化率应不超过其规定值. 如某CMOS集成电路的两项主要性能参数功耗电流I OD和输出电流I OL、10H变化量规定值为:在125℃环境下工作24小时,△ I0D小于500mA;在125℃环境下工作24小时,I0L、I0H变化范围为±20%.2.极限性设计指标半导体集成电路承受各种工作应力、环境应力的极限水平是保证半导体集成电路可靠性的主要条件.半导体集成电路的电性能参数和热性能参数都有极限值的要求,如双极器件的最高击穿电压、最大输出电流、最高工作频率、最高结温等.极限性设计指标确实定应根据用户提出的工作环境要求.除了遵循标准中必须考核的工程之外,对影响产品可靠性性能的关键极限参量也应制定出明确的量值,以便在设计中采取举措加以保证.3.可靠性定量指标表征产品的可靠性有产品寿命、失效率或质量等级.假设半导体集成电路产品的失效规律符合指数分布时,寿命与失效率互为倒数关系.通常半导体集成电路的可靠性指标也可根据所遵循技术标准的质量等级分为S级、B级、B1 级.4. 应限制的主要失效模式精品文档半导体集成电路新品的研制应根据电路的具体要求和相似产品的生产、使用数据,通过可靠性水平分析,找到可能出现的主要失效模式,在可靠性设计中有针对性地采取相应的纠正举措, 以到达限制或消除这些失效模式的目的.一般半导体集成电路产品应限制的主要失效模式有短路、开路、参数漂移、漏气等,其主要失效机理为电迁移、金属腐蚀、静电放电、过电损伤、热载流子效应、闩锁效应、介质击穿、a辐射软误差效应、管壳及引出端锈蚀等.6.2.3集成电路可靠性设计的根本内容1.线路可靠性设计线路可靠性设计是在完成功能设计的同时,着重考虑所设计的集成电路对环境的适应性和功能的稳定性.半导体集成电路的线路可靠性设计是根据电路可能存在的主要失效模式,尽可能在线路设计阶段对原功能设计的集成电路网络进行修改、补充、完善,以提升其可靠性.如半导体芯片本身对温度有一定的敏感性,而晶体管在线路到达不同位置所受的应力也各不相同,对应力的敏感程度也有所不同.因此,在进行可靠性设计时,必须对线路中的元器件进行应力强度分析和灵敏度分析〔一般可通过SPICE和有关模拟软件来完成〕,有针对性地调整其中央值,并对其性能参数值的容差范围进行优化设计,以保证在规定的工作环境条件下,半导体集成电路整体的输出功能参数稳定在规定的数值范围,处于正常的工作状态.线路可靠性设计的一般原那么是:〔1〕线路设计应在满足性能要求的前提下尽量简化;〔2〕尽量运用标准元器件,选用元器件的种类尽可能减少,使用的元器件应留有一定的余量, 预防满负荷工作;〔3〕在同样的参数指标下,尽量降低电流密度和功耗,减少电热效应的影响;〔4〕对于可能出现的瞬态过电应力,应采取必要的保护举措.如在有关端口采用箝位二极管进行瞬态电压保护,采用串联限流电阻限制瞬态脉冲过电流值.2.幅员可靠性设计幅员可靠性设计是根据设计好的幅员结构由平面图转化成全部芯片工艺完成后的三维图像, 根据工艺流程根据不同结构的晶体管〔双极型或MOS型等〕可能出现的主要失效模式来审查版图结构的合理性.如电迁移失效与各部位的电流密度有关,一般规定有极限值,应根据幅员考察金属连线的总长度,要经过多少爬坡,预计工艺的误差范围,计算出金属涂层最薄位置的电流密度值以及出现电迁移的概率.此外,根据工作频率在超高频情况下平行线之间的影响以及对性能参数的保证程度,考虑有无出现纵向或横向寄生晶体管构成潜在通路的可能性.对于功率集成电路中发热量较大的晶体管和单元,应尽量分散安排,并尽可能远离对温度敏感的电路单元.3.工艺可靠性设计为了使幅员能准确无误地转移到半导体芯片上并实现其规定的功能,工艺设计非常关键.一般可通过工艺模拟软件〔如SUPREM等〕来预测出工艺流程完成后实现功能的情况,在工艺生产过程中的可靠性设计主要应考虑:〔1〕原工艺设计对工艺误差、工艺限制水平是否给予足够的考虑〔裕度设计〕,有无监测、监控举措〔利用PCM测试图形〕;精品文档〔2〕各类原材料纯度的保证程度;〔3〕工艺环境洁净度的保证程度;〔4〕特定的保证工艺,如钝化工艺、钝化层的保证,从材料、工艺到介质层质量〔结构致密度、外表介面性质、与衬底的介面应力等〕的保证.4.封装结构可靠性设计封装质量直接影响到半导体集成电路的可靠性.封装结构可靠性设计应着重考虑:〔1〕键合的可靠性,包括键合连接线、键合焊点的牢固程度,特别是经过高温老化后性能变脆对键合拉力的影响;〔2〕芯片在管壳底座上的粘合强度,特别是工作温度升高后,对芯片的剪切力有无影响.此外,还应注意粘合剂的润湿性,以限制粘合后的孔隙率;〔3〕管壳密封后气密性的保证;〔4〕封装气体质量与管壳内水汽含量,有无有害气体存在腔内;〔5〕功率半导体集成电路管壳的散热情况;〔6〕管壳外管脚的锈蚀及易焊性问题.5.可靠性评价电路设计为了验证可靠性设计的效果或能尽快提取对工艺生产线、工艺水平有效的工艺参数,必须通过相应的微电子测试结构和测试技术来采集.所以,评价电路的设计也应是半导体集成电路可靠性设计的主要内容.一般有以下三种评价电路:〔1〕工艺评价用电路设计主要针对工艺过程中误差范围的测定,一般采用方块电阻、接触电阻构成的微电子测试结构来测试线宽、膜厚、工艺误差等.〔2〕可靠性参数提取用评估电路设计针对双极性和CMOS电路的主要失效模式与机理,借助一些单管、电阻、电容,尽可能全面地研究出一些能评价其主要失效机理的评估电路.〔3〕宏单元评估电路设计针对双极型和CMOS型电路主要失效模式与机理的特点,设计一些能代表复杂电路中根本宏单元和关键单元电路的微电子测试结构,以便通过工艺流程研究其失效的规律性.6.2.4可靠性设计技术可靠性设计技术分类方法很多,这里以半导体集成电路所受应力不同造成的失效模式与机理为线索来分类,将半导体集成电路可靠性设计技术分为:〔1〕耐电应力设计技术:包括抗电迁移设计、抗闩锁效应设计、防静电放电设计和防热载流子效应设计;〔2〕.耐环境应力设计技术:包括耐热应力、耐机械应力、耐化学应力和生物应力、耐辐射应力设计;〔3〕稳定性设计技术:包括线路、幅员和工艺方面的稳定性设计.在下面几节将对这些技术进行详细阐述.精品文档6.2.5耐电应力设计技术半导体集成电路所承受过高电应力的来源是多方面的,有来自于整机电源系统的瞬时浪涌电流、外界的静电和干扰的电噪声,也有来自于自身电场的增强.此外,雷击或人为使用不当(如系统接地不良,在接通、切断电源的瞬间会引起输入端和电源端的电压逆转)也会产生过电应力. 过电流应力的冲击会造成半导体集成电路的电迁移失效、CMOS器件的闩锁效应失效、功率集成电路中功率晶体管的二次击穿失效和电热效应失效等;过电压应力那么造成绝缘介质击穿和热载流子效应等.1.抗电迁移设计电迁移失效是在一定温度下,当半导体器件的金属互连线上流过足够大的电流密度时,被激发的金属离子受电场的作用形成离子流朝向阴极方向移动,同时在电场作用下的电子通过对金属离子的碰撞给离子的动量形成朝着金属模阳极方向运动的离子流.在良好的导体中,动量交换力比静电力占优势,造成了金属离子向阳极端的净移动,最终在金属膜中留下金属离子的局部堆积(引起短路)和空隙(引起开路).MOS和双极器件对这一失效模式都很敏感,但由于MOS器件属于高阻抗器件,电流密度不大,相对而言,电迁移失效对MOS器件的影响比双极器件小. 在各种电迁移失效模型中引用较多的为下式MTF=AW P L qJ^n exp ((6.1) 式中,MTF是平均失效时间,A、p、q均为常数,W是金属条线宽,L是金属条厚度,J是电流密度,n 一般为2, E a为激活能,k是玻尔兹曼常数,T是金属条的绝对温度.为预防电迁移失效,一般采取以下设计举措:(1)在铝材料中参加少量铜(一般含2〜4%重量比),或参加少量硅(含0.3%重量比),或在铝条上覆盖Al-Cu合金.含铜的铝膜电迁移寿命是纯铝膜的40倍,但在高温下铜原子在电场作用下会迁移到PN结附近引起PN结劣化.(2)在铝膜上覆盖完整的钝化膜.(3)降低互连线中的电流密度.对于互连线厚度大于0.8 u m、宽度大于6u m的电流密度设计容限一般规定如下:有钝化层的纯铝合金条,电流密度J W5X105A/cm2;无钝化层的纯铝或铝合金条,JW2X105A/cm2;金膜,JW6X105A/cm2;其它各种导电材料膜条,JW2X105A/cm2. 对于VLSI中金属互连线的电流密度设计容限的要求应更加严格,应取JW2X105A/cm2.实际上, 这一设计容限值是导体电流、温度和温度梯度的函数.(4)增强工艺限制精度,减少铝互连线的工艺缺陷.(5)金(Au)互连线系统有很好的抗电迁移水平.为了预防形成Au-Si低熔点共晶体,需在金一硅之间引入衬垫金属,如Pt-Ti-Pt-Au结构.(6)可考虑用钼、钨、氮化钛氮化钨等高熔点金属替代铝作电极材料.2.抗闩锁设计CMOS集成电路含有n沟MOS和p沟MOS晶体管,不可预防地存在npnp寄生可控硅结构,在一定条件下,该结构一旦触发,电源到地之间便会流过较大的电流,并在npnp寄生可控硅结构中精品文档同时形成正反应过程,此时寄生可控硅结构处于导通状态.只要电源不切断,即使触发信号已经消失,业已形成的导通电流也不会随之消失,此现象即为闩锁效应,简称闩锁(Latch-up).(1)CMOS半导体集成电路产生闩锁的三项根本条件是:•外加干扰噪声进入寄生可控硅,使某个寄生晶体管触发导通.•满足寄生可控硅导通条件:上 + — 2 1(6.2)R J匚4+勺其中:a n和a p分别为npn管和pnp管的共基极电流增益;,和,分别为npn管和pnp管发射极串联电阻;R W和R S分别为npn管pnp管EB结的并联电阻.除了&「a「与外加噪声引起的初始导通电流有关外,所有以上各参数均由CMOS半导体集成电路的幅员和工艺条件决定.•导通状态的维持.当外加噪声消失后,只有当电源供应的电流大于寄生可控硅的维持电流或电路的工作电压大于维持电压时,导通状态才能维持,否那么电路退出导通状态.(2)抗闩锁的设计原那么抗闩锁可靠性设计总的原那么是:根据寄生可控硅导通条件,设法降低纵、横向寄生晶体管的电流放大系数,减少阱和衬底的寄生电阻,以提升造成闩锁的触发电流阈值,破坏形成正反应的条件.(3)幅员抗闩锁设计•尽可能增加寄生晶体管的基区宽度,以降低其8.对于横向寄生晶体管,应增加沟道MOS 管与P沟道MOS管的间距;对纵向寄生晶体管,应增加阱深,尽可能缩短寄生晶体管基极与发射极的n+区与p+区的距离,以降低寄生电阻.尽可能多开设电源孔和接地孔,以便增长周界;电源孔尽量设置在P沟道MOS管与P阱之间,接地孔开设在靠近P沟道MOS管的P阱内,尽量减少P 阱面积,以减少寄生电流.•采用阻断环结构,如图6.1所示.•采用保护环结构,如图6.2所示.•采用伪集电极结构,如图6.3所示.图6.1 CMOS电路防闩锁的阻断环结构精品文档P MQS的保沪讣nMQS的保炉图6.2 CMOS电路防闩锁的保护结构PMOS r图6.3体硅CMOS电路伪集电极结构及等效电路(4)工艺抗闩锁设计•采用掺金、本征吸杂、中子或电子辐照等方法,以降低寄生晶体管的电流放大系数;•在低阻的n+衬底上生长n-外延层,再作p阱和n+、p+源接触,形成低阻衬底来降低衬底寄生电阻;•用肖特基势垒代替扩散结制作MOS管的源区和漏区.由于肖特基势垒结发射效率比pn结低得多,可大大削弱闩锁效应;•采用在绝缘衬底上生长硅外延层的CMOS/SOI工艺技术.3.防静电放电设计静电放电(ESD)失效可以是热效应,也可以是电效应,这取决于半导体集成电路承受外界过电应力的瞬间以及器件对地的绝缘程度.假设器件的某一引出端对地短路,那么放电瞬间产生电流脉冲形成焦耳热,使器件局部金属互连线熔化或芯片出现热斑,以致诱发二次击穿,这就属于热效应. 假设器件与地不接触,没有直接电流通路,那么静电源不是通过器件到地直接放电,而是将存贮电荷传到器件,放电瞬间表现为产生过电压导致介质击穿或外表击穿,这就属于静电效应.预防半导体集成电路静电放电失效的设计举措主要有:(1)MOS器件防静电放电效应设计.图6.4为场效应管静电保护电路,图6.5为二极管防静电保护电路.精品文档〔2〕双极型器件防静电放电失效设计.图6.6为双极型器件防静电保护电路.〔3〕 CMOS器件防静电放电失效设计.图6.7是CMOS器件防静电保护电路.以上防静电保护电路中选用的元件一般要求具有高耐压、大功耗和小动态电阻,使之具有较强的抗静电水平.同时,还要求具有较快的导通速度和小的等效电容,以减少保护电路对电路性能的影响.图6.5 MOS器件二极管防静电保护电路〔a〕保护电路;〔b〕结构剖面图;〔c〕等效电路精品文档图6.6双极型器件静电保护电路〔a〕限流电阻;〔b〕钳位二极管“IL吐\L多X电阻叫书^i।不・1 ' .一■I保护电路〔a〕图6.7 CMOS器件防静电保护电路〔a〕采用多晶硅电阻;〔b〕采用扩散电阻4.防热载流子效应设计防热载流子效应设计主要是采取减弱MOS场效应晶体管漏极附近电场强度的结构,一般通过工艺来形成轻掺杂漏极〔LDD〕结构.首先对产品硅栅极进行掩膜形成n+区,再用化学气相淀积〔CVD〕技术把氧化膜淀积在整个芯片上,再利用各向异性刻蚀在多晶硅栅极侧面形成CVD氧化膜侧壁.对这个侧壁进行掩膜,便形成高浓度区n+.由于在LDD结构中n-、n+区是分别形成的,便于各区选取最正确浓度.这种工艺易于形成,重复性也好,是行之有效的方法.图6.8为LDD结构和普通结构电场强度的比拟.图6.9和图6.10分别为改良的LDD结构,即埋层LDD结构〔BLDD〕和双注入100结构〔DI-LDD〕.精品文档图6.8 LDD 结构和普通结构电场强度的比拟6.2.6耐环境应力设计技术1 .耐热应力设计(1)热应力引起半导体集成电路的失效热应力引起的失效可以分为两种情况:•由于高温而引起的失效.高温可能来自四周环境温度升高,也可能来自电流密度提升造 成的电热效应.温度的升高不仅可以使器件的电参数发生漂移变化,如双极器件的反向漏电流 和电流增益上升,MOS 器件的跨导下降,甚至可以使器件内部的物理化学变化加速劣化,缩短器件 寿命或使器件烧毁,如加速铝的电迁移、引起开路或短路失效等.•温度剧烈变化引起的失效.温度变化可以在具有不同的热膨胀系数的材料内形成不匹配应 力,造成芯片与管脚间的键合失效、管壳密封性失效和器件某些材料的热疲劳劣化.半导体集成电路集成度、功率密度的不断提升和封装管壳的不断减少,使热应力引起的可靠 性问题变得更加突出.(2)反映半导体集成电路热性能的主要参数反映半导体集成电路热性能的主要参数有两个,即器件的最高允许结温T m 和热阻R T .它们 精品文档■ 一圮重打辕tH J a r离界口一£/封蚂也留S2帏a 10 图6.9埋层LDD 结构图6.10双注入LDD 结构用来表征半导体集成电路的耐热极限和散热水平.半导体集成电路工作所消耗的功率会转换成热量,使电路的结温上升.当结温高于环境温度7;时,热量靠温差形成的扩散电流由芯片通过管壳向外散发,散发出的热量随温差的增大而增加,当结温上升到耗散功率能全部变成散发热量时, 结温不再上升,这时电路处于动态热平衡状态.平衡时结温的大小取决于耗散功率和电路的散热水平,耗散功率越大或电路的散热水平越差,结温就高;热阻越大那么表示散热水平越差.(3)耐热应力设计的方法半导体集成电路的热设计就是尽力预防器件出现过热或温度交变诱生失效,主要包括:•管芯热设计.主要通过幅员的合理布局使芯片外表温度尽可能均匀分布,预防出现局部的过热点.•封装键合热设计.主要通过合理选择封装、键合和烧结材料,尽可能降低材料之间的热不匹配性,预防出现过大的热应力.半导体集成电路常用材料的典型热特性值见表6.1.•管壳热设计.应着重考虑功率器件应具有足够大的散热水平.对于耗散功率较大的集成电路,为了改善芯片与底座接触良好,多采用芯片反面金属化和选用绝缘性与导热性好的氧化镀陶瓷,以增加散热水平.采用不同标准外壳封装的半导体集成电路热阻的典型值见表6.2.•为了使半导体集成电路能正常地、长期可靠地工作,必须规定一个最高允许结温T.m.综合各种因素,微电子器件的最大允许结温为:塑料封装硅器件一般为125〜150℃,金属封装硅器件一般为150〜175℃,锗器件一般为70〜90℃.112.耐机械应力设计半导体集成电路在运输和使用现场中将受到各种形式机械环境因素的作用,其中最常见、影 响最大的是振动和冲击.此外,离心、碰撞、跌落、失重、声振等机械作用也会对半导体集成电 路施加不同程度的机械应力.(1)振动和冲击对半导体集成电路性能的影响•振动的影响.振动是周期性的施加大小交替的力.根据力的作用频率不同,振动可分为固 定频率、周期变频和随机性振动等三种情况.通常遇到的振动是在一定范围内的随机振动,随机 振动实际可能到达0〜10000Hz ,电子产品受振动影响的频率范围通常为20〜2000Hz .一般认为, 低于20Hz 或高于2000Hz 频率是平安的.半导体集成电路在机械振动的反复作用下,机械构件会 产生疲劳损伤,使其结构松动,特别容易发生引线断裂、开焊、局部气密封接处出现裂缝等,轻 那么引起参数变化,重那么造成失效.特别是,当半导体集成电路本身的固有频率在设备的振动频率 谱范围内时,会出现共振现象.共振将使半导体集成电路的引线疲劳,使参数发生不可逆的变化而失效.此外,过大的振幅可能使脆性材料断裂,热性材料变形,造成产品结构严重损坏.•冲击的影响.冲击是对产品施加突发性的力,其加速度很大,致使半导体集成电路在瞬间 受到强烈的机械冲击,可造成电路的机械结构损坏,也可造成内引线的键合点脱开或内引线折断 而引起开路失效.此外,还会使芯片产生裂纹或与管座脱离.在各种环境条件下的冲击加速度如 表6.3所示.精品文档12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--容差分析
内容提要
1。

概述
参数、强度和应力离散性概念
案例:参数设计不当导致故障
6σ设计概念
2。

容差设计途径与措施
工作状态设计
容差补偿设计
容差灵敏度分析
1概述
电子元器件的参数有一定的离散性,会随着环境条件以及电源电压的变化发生漂移,还会随着储存和使用时间发生不可逆
的分散与退化。

1概述参数分布随着储存
和使用时间推移
发生不可逆的
分散与漂移。

即便应力分布
不发生变化,
强度与应力势必
发生更多交叠。

意味着。

1
概述
辅助供电电压随着主路输出电流下降而降低,低到跟芯片的正常工作导致芯片工作异常。

还有温漂啊。

42台产品之XXXX供电与门槛电压数据
12.2
12.412.612.81313.213.413.613.8141
3
5
7
911131517192123252729313335373941
V1(V)
V1
V1门槛
1
概述
随着储存和使用时间推移发生不可逆的
分散与退化。

即便应力分布不发生变化,
发生交叠。

意味着。

XXXX芯片不同温度下门槛电压V1随时间变化
12.612.6512.712.7512.812.85
12.9
12.951313.0513.10天
3天
6天
9天
11天12天15天17天20天23天25天
常温23度零下10度零下15度零下20度正50度
1
概述
12
12.5
1313.5
0123
4
f x ()
g x ()
x
12
12.5
1313.5
01
2
3
4
f x ()g1x ()
x
室温下,芯片门槛电压分布与电源辅助供电电压分布存在部分交叠,发生部分不良。

低温下,门槛电压中心值右移,门槛电压分布与与辅助电压分布交叠部分变大,不良率增加。

6σ设计的概念
80年代末,Motorola公司在微电路产品开发、设计中,首先提出了6σ设计要求。

即要求参数规范范围为±6σ,其中σ为相应参数实际分布的标准偏差。

设计要求:6σ设计要求综合表征了设计水平和工艺水平。

要达到这一目标,一方面要从优化设计入手,使允许的参数规范范围尽量宽。

另一方面要采用先进设备和新技术,改进工艺质量,减小参数分散性,使σ尽量小。

通过两方面努力,使参数规范范围能对应±6σ,实现6σ设计的要求。

工序能力的定量表征
(1) 工序能力
通常工艺参数服从正态分布N(μ,σ2)。

正态分布标准偏差σ的大小反映了参数的分散程度。

绝大部分参数值集中在μ±3σ范围内,其比例为99.73%。

通常将6σ
称为工序能力。

6σ范围越小,表示该工序的固有能力越强,
也就是生产出成品率高、可靠性好的产品的能力越强。

工序能力的定量表征
(2)潜在工序能力指数C P
为了综合表示工艺水平满足工艺参数规范要求的程度,工业生产中广泛采用下式定义的工序能力指数:
C P=(T U-T L)/ 6σ=T/ 6σ
可得工序能力指数与成品率之间的关系:
工艺成品率不合格品率
规范范围C
P
±3σ199.73% 2700PPM
±4σ 2 99.9937% 63PPM
±6σ 2 99.9999998% 0.002PPM 结论:工序能力指数越高,成品率也越高。

工序能力的定量表征
工序能力的定量表征
(4)单侧规范值情况的工序能力指数C PL和C PU:
如果要求参数大于某一下限值T L,无上限要求,工序能力指数应按下式计算:
C PL=(μ-T L)/3σ
若μ<T L,则取C PL为零,说明该工序完全没有工序能力。

如果参数规范只规定了上限值T U,无下限要求,则工序能力指数应按下式计算:
C PU=(T U-μ)/3σ
若μ>T U,则取C PU为零,说明该工序完全没有
工序能力。

案例:某机型输出限流点过程能力评定
NO 测定 D A T A
1 3.30 3.4
2 3.51 3.30 3.482 3.45 3.44 3.54 3.27 3.44
3 3.40 3.5
4 3.41 3.54 3.444 3.53 3.50 3.53 3.4
5 3.565 3.47 3.4
6 3.43 3.56 3.286 3.45 3.51 3.41 3.41 3.467
3.54 3.55 3.36 3.38 3.68
12345678910
样品数(n)35下限规格 (SL) 1.80最大(Max) 3.683上限规格(SU) 4.40最小(Min) 3.272规格中心(μ)
3.10平均(X-bar) 3.457Cp
4.83标准偏差(σ)0.090Cpk 3.50
上限不良PPM 0.0Tonypeng
下限不良PPM
0.0
0PPM
2 容差设计途径与措施
2.1.工作状态设计
在进行工作状态设计时,应进行环境应力与电应力分析及元器件和机械结构件在这两种应力作用下的变化对电路和设备可靠性影响的灵敏度分析,以下是一些要考虑的因素:
1)环境应力极限条件下及容差情况;
2)最大电源电压变化及电源瞬变(如通断);
3)最大最小信号变化;
4)最大元器件参数变化;
2 容差设计途径与措施
2.1.工作状态设计
5)最高技术性能要求;
6)无冗余措施;
7)丧失安全措施;
8)无环境防护措施;
9)电磁干扰等。

在作上述分析后,将工作点选在可靠的工作区内。

2 容差设计途径与措施
BZX84C2V4LT1系列稳压管,离散性加上温度漂移,稳压值变化范围可达名义值的20%。

名义值越大变化范围越大。

2 容差设计途径与措施
2.2.容差补偿设计
温度变化对电子元器件特性参数影响最为严重。

电子元器件所采用的材料特点和结构方式不同,温度变化对其性能影响也不同,有的呈正温度系数,有的呈负温度系数。

如电感线圈用的磁介材料,羰基铁及钼铍莫合金为正温度系数,而铝硅铁为负温度系数。

电解电容器低温使用时电容量会明显减少。

电感器可以采用铝硅铁一类的负温度系数的磁芯来补偿线圈的正温度系数。

2 容差设计途径与措施
2.2.容差补偿设计
具有正温对于半导体稳压二极管,在5V以上的雪崩击穿区,v
z
(硅管为0.7V左右)具有负温度系数。

度系数,而二极管的正向压降v
r
将两个稳压器一正一反串联可得到高稳定度的电压。

双向限幅稳压二极管
2 容差设计途径与措施
2.2.
容差补偿设计
由电感器和电容器所组成的振荡回路,为了减少温度变化对频率的影响,可以选取负温度系数的电容器来抵消正温度系数电感器随温度的变化量。

由电阻器和电容器所组成R-C 电路,选取相反的温度系数以保持时间常数(τ=RC)不随温度变化而变化。

有些高精度电路要求可以选取两个温度两个系数相反的电容器并联(C=C 1+C 2)来保证总容量的稳定。

如选取聚苯乙稀(具有负温度数)与云母电容器(具有正温度系数)并联。

)
2/(1(LC f f π=
2 容差设计途径与措施
2.3
容差灵敏度分析
试对一个电感器(50mH ±10%)和一个电容器(30pF ±5%)组成的简单调诣电路进行敏感度分析和采取措施。

该电路许可的频率偏离⊿fmax=200kHz LC
f π21=
2
/2//0
00C C L L f f Δ−
Δ−=Δ根据元件离散值计算的
最大频率偏移:
%
5.72
%
52%10|/|0=+=Δf f 超出了允许的频率偏移:
%
9.4/0max =Δf f 结束。

相关文档
最新文档