智能车源程序+很详细

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于今年组委会光电管和摄像头分开比赛。所以传感器部分我们选择了光电管,比赛以小车的速度记成绩,为了让小车更快更稳得跑完全程,传感器的探测距离必须要远,既要有大的前瞻,普通的红外对管由于功率较小,探测距离增大时,干扰严重,所以我们自制了大功率对管,同时采用了程序控制脉冲发光的办法,有效的降低了发热,提高了系统的稳定性。

系统采用采用了7.2V 2000mAh Ni-Cd蓄电池作为系统能源,并且通过稳压电路分出6伏,5伏已分别给舵机和单片机供电。

直流电机驱动模块接收速度控制信号控制驱动电机运行,达到控制车速目的。转向伺服模块控制舵机转向,进而控制智能车转弯。速度测量模块实时测量智能车车速,用于系统的车速闭环控制,以精确控制车速。

系统充分使用了MC9S12DG128单片机的外围模块,具体使用到的模块包括:ADC模拟数字转换模块、定时器模块、PWM脉冲宽度调制模块、中断模块、I/O 端口和实时时钟模块等。

系统调试过程中,使用了组委会提供的代码调试环境CodeWarrior IDE,同时使用了清华的Plastid2软件进行了仿真试验。

图1.1 系统结构框图

3.1舵机部分

为了使转弯更加灵活,对舵机相关部分作了部分改动。首先,我们将舵机力臂加长85mm。这样,对于同样的转弯角度值,只需更小的舵机转角,减小了舵机转弯时惯性带来的弊端。其次,我们将舵机反装,使舵机连杆水平,因为此时舵机提供的力全部用在转弯上。

3.2前轮部分

为了增加前轮转弯时的稳定性,对前轮相关部分进行了部分改动。首先,更改前后垫片的数量,使前轮主销后倾,这样,车轮具有更好的自动回正功能。其次,更改连杆的长度,使车轮外倾,车轮转弯时,前半部分重心上移,促使赛车转弯更加稳定。再次,我们通过更改舵机连杆的长度,增加前轮前束,同样增加了前轮的稳定性。

3.3底盘部分

为了提高赛车运行时的稳定性,对地盘相关部分作了部分改动。首先,前轮相关位置加垫片,降低了前轮重心。其次,更改后轮车轴处的调节块,使后轮重心升高,这样,车身前倾,一定程度上,增加了车的稳定性。

3.4后轮部分

首先,更换后轮轮距调节块,使后轮两轮之间间距加大。这样,车在转弯时不容易产生侧滑。其次,调节后轮差速,使赛车转弯更加灵活。

4.1电源部分

为了能使智能车系统能正常工作,就需要对电池电压调节。其中,单片机系统、车速传感器电路需要5V电压,路径识别的光电传感器和接收器电路电压工作为5V、伺服电机工作电压范围4.8V到6V(或直接由电池提供),直流电机可以使用7.2V 2000mAh Ni-cd蓄电池直接供电。考虑到由于驱动电机引起的电压瞬间下降的现象,因此采用低压降的三端稳压器成为必然。我们在采用lm7805,和lm7806作为稳牙芯片。经试验电压纹波小,完全可以满足要求。

电池(7.2v)

2000mAh Ni-cd

稳压电路

5V

6V 7.2V

图4.2 7805电路图

图4.3 电源模块示意图

4.2电机驱动电路

电机驱动使用飞思卡尔专用电机驱动芯片MC33886。驱动电路如图4.4 所示。

电机

图4.1系统电压调节图 对管 单片机 舵机 测速板

为了增大驱动能力,减少单片发热量,电路采用两片MC33886 并联的方案。系统使用PWM 控制电机转速,充分利用单片机的PWM 模块资源。电机PWM 频率设定为8KHz 。

MC33886芯片的工作电压为5-40V ,导通电阻为140毫欧姆,PWM 频率小于10KHz ,具有短路保护、欠压保护、过温保护等功能。

电机驱动芯片安装在制作的电机驱动PCB 板上,在PCB 板设计时,考虑到芯片散热问题,在芯片腹部设计了方型的通孔,实际运行效果表明芯片散热均匀,设计合理。为了防止电动机突然停止时产生的电磁干扰,在电动机的两端焊接了一个0.1μF 滤波电容。

AGND 1FS

2

IN13V+4V+5OUT16OUT17DNC 8PGND 9PGND 10PGND 11PGND 12

D213OUT214OUT215V+16Ccp 17D118

IN219DNC 20U3

MC33886

AGND 1FS

2

IN13V+4V+5OUT16OUT17DNC 8PGND 9PGND 10PGND 11PGND 12

D213OUT214OUT215V+16Ccp 17D118IN219DNC 20U5MC33886

1.3K

R4Res21.3K

R7Res247pF

C12Cap 47pF

C14Cap VCC

PWM5

PWM312P14Header 2

DS2LED2

1K

R5Res22

3

1S2

SW-SPDT

+7.2V

1K

R10

Res21K

R15Res2

图4.4 两片MC33886并联使用

图4.5 两片MC33886并联使用的实物图

在图中可以看到,我们使用PWM23和PWM45作为电机驱动PWM 信号,两个

PWM 通道级联可以使其输出更加精确。在程序中,我们把PWM 值直接转换成了以米/秒为单位的绝对速度,这样使智能车的速度更加直观切易于调试。

4.3测速电路

由于考虑到成本需要,我们采用了红外对管和黑白码盘作为测速模块的硬件构成。其中码盘为32格的黑白相间圆盘,如下图所示:

图4.5 码盘

红外传感器安装在正对码盘的前方,虽然这样做精度比编码器要低很多,但是成本低廉制作容易,如果智能车速度较快,可以考虑再减少码盘上黑白色条的数量即可。

当圆盘随着齿轮转动时,光电管接收到的反射光强弱交替变化,由此可以得到一系列高低电脉冲。设置9S12 的ECT 模块,同时捕捉光电管输出的电脉冲的上升沿和下降沿。通过累计一定时间内的脉冲数,或者记录相邻脉冲的间隔时间,可以得到和速度等价的参数值。

测速电路使用自行研制的红外反射式光电测速传感器。速度测量电路使用红外反射式光电对管RPR220,自行制作的编码盘,比较电路等组成。

速度测量电路图2.8所示。红外反射式光电对管的光敏三极管信号通过比较器处理后输入单片机的计数器模块,利用单片机的输入捕捉功能,处理智能车速度信息。自制的编码盘有24道黑色条纹,电机旋转一周将产生24次输入捕捉中断。

300VCC

33K

32184

A

LM358

10K

5.1K VCC

VCC 5.1K

IOC0

RPR220

相关文档
最新文档