指对幂函数知识点

合集下载

高一数学知识点:幂函数知识点_知识点总结

高一数学知识点:幂函数知识点_知识点总结

高一数学知识点:幂函数知识点_知识点总结在高一数学的学习中,幂函数是一个重要的知识点。

它不仅在数学理论中有着关键的地位,也在解决实际问题中发挥着重要作用。

接下来,让我们一起深入了解幂函数的相关知识。

一、幂函数的定义一般地,形如\(y =x^α\)(\(α\)为常数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。

这里需要注意的是,\(α\)可以是有理数,也可以是无理数。

例如,\(y = x^2\),\(y = x^{\frac{1}{2}}\),\(y = x^{ 1}\)等都是幂函数。

二、幂函数的图像幂函数的图像因其指数\(α\)的不同而具有不同的特征。

当\(α > 0\)时:1、\(α > 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越快;在\((∞, 0)\)上函数无定义。

其图像类似于“一撇”,经过点\((1, 1)\)和\((0, 0)\)。

2、\(0 <α < 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越慢;在\((∞,0)\)上函数无定义。

其图像类似于“上凸”的曲线,经过点\((1, 1)\)和\((0, 0)\)。

当\(α < 0\)时:函数\(y =x^α\)在\((0, +∞)\)上单调递减,且曲线向\(x\)轴、\(y\)轴无限接近,但永不相交。

在\((∞, 0)\)上函数无定义。

其图像类似于“下凸”的曲线,经过点\((1, 1)\)。

特别地,当\(α = 0\)时,函数\(y = x^0 = 1\)(\(x ≠0\)),是一条平行于\(x\)轴的直线(去掉点\((0, 1)\))。

三、幂函数的性质1、定义域幂函数的定义域与其指数\(α\)有关。

当\(α\)为正整数时,定义域为\(R\);当\(α\)为分数时,要考虑分母的奇偶性以及根号下式子的非负性来确定定义域。

2、值域幂函数的值域也与指数\(α\)有关。

高中幂函数知识点总结

高中幂函数知识点总结

高中幂函数知识点总结幂函数知识点包括幂函数的定义、幂函数的图象和性质、利用幂函数解不等式的步骤、幂函数图象性质的拓展等部分,有关幂函数的详情如下:幂函数的定义(1)一般地,函数y=xα叫做幂函数(power function),其中x是自变量,α是常数.(2)幂函数解析式的结构特征①指数为常数;②底数是自变量,自变量的系数为1;③幂xα的系数为1;④只有1项.幂函数的图象和性质常见幂函数(1)y=x、y=x2、y=x3、、y=x-1的图象(2)性质利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式求参数范围,注意分类讨论思想的应用.幂函数图象性质的拓展对于幂函数y=xα(α∈R)时,可视为y=型(p,q互异)根据最简分数的值,来类比常见幂函数的图象.(1)当α>0时,①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x的增大而增大;③在第一象限内,α>1时,图象是向下凸的;0<α<1时,图象是向上凸的;④在第一象限内,过点(1,1)后,图象向右上方无限伸展.(2)当α<0时,①图象都通过点(1,1);②在第一象限内,函数值随x的增大而减小,图象是向下凸的;③在第一象限内,图象向上与y轴无限接近,向右与x轴无限接近;④在第一象限内,过点(1,1)后,|α|越大,图象下降的速度越快.(3)幂函数的奇偶性.y=xα,当α=p,q∈Z)是最简分数时,当p,q均为奇数时,y=xα是奇函数;当p为偶数,q为奇数时,y=xα是偶函数;当q为偶数时,y=xα为非奇非偶函数.。

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。

掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。

本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。

一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。

在幂函数中,x的指数是常数,y与x之间存在特定的关系。

二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。

当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。

2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。

3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。

三、幂函数的性质1. 定义域:所有实数。

2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。

3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。

4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。

5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。

四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。

在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。

例如,求解一个正方形的面积与边长之间的关系。

我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。

幂对函数知识点总结

幂对函数知识点总结

幂对函数知识点总结幂函数的图像是以原点为中心的曲线,其变化方式随着a和n的取值不同而不同。

幂函数的性质、图像和应用都是数学中的重要内容。

一、幂函数的性质1. 幂函数的定义域和值域:幂函数的定义域为全体实数,其值域的范围取决于a和n的取值。

2. 幂函数的奇偶性:当n为偶数时,幂函数关于y轴对称;当n为奇数时,幂函数关于原点对称。

3. 幂函数的增减性:当n>0时,幂函数在定义域上是增函数;当n<0时,幂函数在定义域上是减函数。

4. 幂函数的特殊性质:当n=1时,幂函数为线性函数;当n=2时,幂函数为二次函数;当n=3时,幂函数为三次函数。

二、幂函数的图像1. 幂函数的图像特点:当n>1时,幂函数的图像是上凸的,并且随着n的增大而变得越来越陡;当0<n<1时,幂函数的图像是下凹的,并且随着n的增大而变得越来越平缓。

2. 幂函数的变化规律:当a>1时,幂函数的图像在x轴的右侧上升;当0<a<1时,幂函数的图像在x轴的右侧下降。

三、幂函数的运算1. 幂函数的加法和减法:两个幂函数相加或相减时,只需将其对应项相加或相减即可。

2. 幂函数的乘法和除法:两个幂函数相乘时,可以将它们的底数乘在一起,并将指数相加;两个幂函数相除时,可以将它们的底数相除,并将指数相减。

四、幂函数的应用1. 经济学中的应用:幂函数可以用来描述供求关系、成本与产量关系等经济学中的重要问题。

2. 物理学中的应用:幂函数可以用来描述速度与时间的关系、力与位移的关系等物理学中的重要问题。

3. 生物学中的应用:幂函数可以用来描述生物体的生长规律、物种的数量变化规律等生物学中的重要问题。

总之,幂函数是数学中的重要内容,它具有丰富的性质和应用。

通过学习幂函数,我们不仅可以更深入地理解数学的基本概念,还可以更好地应用数学知识解决实际问题。

因此,幂函数的学习具有重要的意义,也是数学学习中不可或缺的一部分。

七年级幂函数知识点

七年级幂函数知识点

七年级幂函数知识点幂函数是一种常见的函数类型,以 x 的某个次幂作为自变量,常数作为系数,形如 y=a*x^n。

在初中七年级的数学学习中,幂函数也是一个重要的知识点,本文将从以下三个方面介绍幂函数的相关知识点。

一、幂函数的表示方法幂函数是一类比较基础的函数类型,其表达式一般可以用y=a*x^n 的形式表示,其中 a 和 n 分别是常数,x 是自变量,y 是因变量。

当 n=1 时,函数 y=a*x 的图象为一条直线,称为一次函数。

当 n=-1 时,函数 y=a/x 的图象为一个双曲线,称为反比例函数。

当 n=2 时,函数 y=a*x^2 的图象为一个开口朝上的抛物线,称为二次函数。

当 n=3 时,函数 y=a*x^3 的图象为一个类似于开口朝上的标志的图形,称为三次函数。

以此类推,可以得到幂函数的不同表达形式。

二、幂函数的性质幂函数具有一些独特的性质,其中包括:1. 当 n 是奇数时,函数图象以原点为对称中心,当 n 是偶数时,函数图象关于 y 轴对称。

2. 当 n>0 时,函数图象过第一象限,当 n<0 时,函数图象过第二象限。

3. 当 a>0 时,函数图象上升,当 a<0 时,函数图象下降。

4. 当 |a|<1 时,函数图象横轴方向收缩,当 |a|>1 时,函数图象横轴方向拉长。

5. 函数图象的斜率大小与 n 相关,当 n>1 时,函数图象在 x>0的区间上单调递增,当0<n<1 时,函数在x>0 的区间上单调递减。

三、幂函数的应用幂函数在数学、物理、化学等学科领域都具有重要的应用价值,其中包括:1. 幂函数常用于表达某些现象或规律,如人口增长、社会经济发展等。

2. 幂函数常用于数学建模和解决实际问题,如路程、速度、时间等。

3. 幂函数在物理学中也有应用,如物体的自由落体、天体的运动、物体的振动等。

4. 幂函数在化学中也具有重要的应用价值,如化学平衡等。

幂函数知识点

幂函数知识点

幂函数1.幂函数:一般地,形如y=x a(a∈R)叫做幂函数,其中x是自变量,a是常数.要准确理解幂函数的定义,注意以下四点:(1)幂函数具有严格的形式,形如 y=mx a, y=(mx)a, y=x a+m,y=(x+m)a(以上m均为不等于零的常数,且前两个函数中的m也不等于1)的函数都不是幂函数,二次函数中只有y=x2是幂函数,其他的二次函数都不是幂函数,幂函数y=x a要满足三个特征:○1幂x a前的系数是1;○2底数只能是自变量x,指数是常数;○3项数只有一项,只有满足这三个特征,才是幂函数;(2)求函数解析式时,若已知待求函数是幂函数,则可根据待定系数法设函数为f(x)=x a,根据条件求出a即可.(3)不要把幂函数与指数函数混淆,幂函数的底数为自变量,指数为常数,而指数函数恰好相反,底数为常数,指数为自变量.当遇到一个有关幂的形式的问题时,要先看自变量所在的位置,然后决定是用幂函数知识解决,还是用指数函数知识解决.2.幂函数在第一象限的图象:幂函数在其他象限的图象,可由幂函数的奇偶性根据对称性做出.α=n/m (其中m∈N*,n∈Z且m,n互质).(1)当n为偶数时,f(x)为偶函数,其图象关于y轴对称.(2)当m,n都为奇数时,f(x)为奇函数,其图象关于原点对称.(3)当m为偶数,n为奇数时,f(x)为非奇非偶函数,其图象只能在第一象限.3.幂函数当α=1,2,3,0.5,-1时的图象与性质.(1)图象(如图所示)(2)性质(如表)4.幂函数的性质:(1)所有的幂函数在(0,+∞)上都有定义,并且图像都通过点(1,1);(2)如果a>0,则幂函数的图像过原点,并且在区间(0,+∞)上为增函数;(3)如果a<0,则幂函数的图像在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于零时,图像在y轴右方无限逼近y轴,当x趋向于无穷大时,图像在x轴上方无限逼近x轴;(4)当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数.(5)①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,y=x a表示过点(1,1)且平行于x轴的直线(除去点(0,1))5.幂函数图象的其他性质:(1)图象的对称性:把幂函数y=x a的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数y=x a的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数y=x a的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。

高考数学幂函数知识点总结

高考数学幂函数知识点总结一、幂函数的定义和性质幂函数是数学中一种常见的函数形式,它的定义形式为y = ax^n,其中a和n都为实数,x为自变量,y为因变量。

幂函数在数学中扮演着重要的角色,广泛应用于自然科学和工程技术领域。

下面我们来总结一些幂函数的重要性质和应用。

1. 幂函数的定义域和值域:幂函数y = ax^n的定义域为实数集R,值域则取决于a和n 的取值范围。

当a>0时,n为整数时,函数的值域为正实数集R+;当a<0时,n为奇数时,函数的值域为负实数集R-。

2. 幂函数的奇偶性:当n为偶数时,函数为偶函数;当n为奇数时,函数为奇函数。

具体而言,当n为偶数时,对于任意x,有f(-x)=f(x);当n为奇数时,对于任意x,有f(-x)=-f(x)。

3. 幂函数的图像变换:幂函数y = ax^n在平面直角坐标系中的图像变换与参数a和n的取值相关。

当a>1时,函数图像沿y轴方向压缩,当0<a<1时,函数图像沿y轴方向拉伸;当n>1时,函数图像在原点左侧上升,当0<n<1时,函数图像在原点右侧上升。

4. 幂函数的极限:当a>1时,幂函数在正无穷大时趋于正无穷大;当0<a<1时,幂函数在正无穷大时趋于0。

若n>0,幂函数在负无穷大时趋于正无穷大;若n<0,幂函数在负无穷大时趋于0。

二、幂函数的常见应用幂函数因为其特殊的形式和性质,在科学和工程中有广泛的应用。

以下是幂函数在一些具体问题中的运用。

1. 物质的增长和衰减:在生物学和经济学中,常常需要研究物质的增长和衰减过程。

幂函数可用来描述这种过程。

例如,生物种群的增长可以用幂函数进行建模,其中a表示种群的初始数量,n表示增长率。

同样,经济学中的人口增长、环境污染以及经济发展等问题也可以利用幂函数进行分析。

2. 各种规律的描述:幂函数可以应用于描述一些规律和现象。

例如,光的强度随距离的关系、金融领域中财富分布的不平等系数、能量消耗与功率之间的关系等都可以用幂函数来表达。

数学高考知识点幂函数

数学高考知识点幂函数数学高考知识点:幂函数幂函数是高考数学中非常重要的一个知识点,它是指形如y=x^a的函数,其中a是一个实数。

在高考中,幂函数常常会与其他函数进行比较或者求解方程等相关问题,因此熟练掌握幂函数的性质和应用是非常重要的。

一、幂函数的性质1. 幂函数的定义域:幂函数y=x^a的定义域是所有使得x^a有意义的实数x。

2. 幂函数的奇偶性:当指数a为偶数时,幂函数具有关于y轴的对称性,即f(-x) = f(x)。

当指数a为奇数时,幂函数关于原点对称,即f(-x) = -f(x)。

3. 幂函数的单调性:当指数a大于0时,幂函数在定义域上是递增的;当指数a小于0时,幂函数在定义域上是递减的。

4. 幂函数的图像:幂函数的图像呈现出如下特点:当a>1时,幂函数在∞处增加,0处取到最小值;当0<a<1时,幂函数在∞处减小,0处取到最大值;当a<0时,幂函数在定义域上是奇函数,图像关于原点对称。

二、幂函数的应用1. 幂函数与对数函数的关系:幂函数和对数函数是互为反函数的,即y=x^a和y=loga(x)是一对反函数。

这一性质在解决指数方程和对数方程时非常有用。

2. 幂函数的极限:对于幂函数y=x^a,当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于零。

这一性质在求解极限时常常会被用到。

3. 幂函数的应用:幂函数在物理学、生物学、经济学等领域具有广泛的应用。

例如,在物理学中,速度和加速度的计算常常涉及到幂函数的运算。

三、幂函数在高考中的常见题型解析1. 求解方程:高考经常出现要求解幂函数方程的题目,在解这类问题时,我们可以利用幂函数和对数函数互为反函数的特性,将幂函数方程转化为对数方程进行求解。

2. 判断性质:高考中会出现判断幂函数性质的题目,例如给出一个函数的图像,要求判断该函数的奇偶性、单调性等。

在解这类问题时,我们需要运用幂函数的性质和图像特点进行分析。

幂函数的性质知识点总结

幂函数的性质知识点总结幂函数是一种常见的函数形式,其形式为$f(x)=x^a$,其中$a$为实数,$x$为正实数。

在初等数学中,我们常常使用幂函数来描述各种各样的问题。

因此,本文将全面总结幂函数的性质,包括定义域、值域、单调性、奇偶性、最值等等。

一、定义域对于幂函数$f(x)=x^a$,其定义域为$x>0$。

这是因为,对于$x\leq 0$的情况,幂函数的值可能会在实数范围内无限制地扩大或缩小,从而变成无意义的虚数或复数。

因此,为了确保$f(x)$在实数范围内有意义,必须限定$x>0$。

二、值域当$a>0$时,$f(x)$的值域为$[0,+\infty)$。

这是因为,对于$x=0$时,$f(x)=0$;而对于$x>0$时,$f(x)$的值随着$x$的增大而增大,趋近于无穷大。

因此,$f(x)$的值域为$[0,+\infty)$。

当$a<0$时,$f(x)$的值域为$(0,+\infty)$。

这是因为,对于$x\neq 0$时,$f(x)>0$;而对于$x=0$时,$f(x)=0$。

因此,$f(x)$的值域为$(0,+\infty)$。

三、单调性当$a>0$时,$f(x)$在定义域内单调递增。

这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。

由于$x_2>x_1$且$a>0$,因此$x_2^a>x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。

因此,$f(x)$在定义域内单调递增。

当$a<0$时,$f(x)$在定义域内单调递减。

这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。

由于$x_2>x_1$且$a<0$,因此$x_2^a<x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。

高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结幂函数知识点总结幂函数是数学中重要的函数之一,也是高考数学中的考点内容。

本文将对幂函数的相关知识点进行总结,包括定义、性质、图像和应用等内容。

一、定义幂函数是指函数y = ax^n,其中a和n均为常数,且a ≠ 0,n为正整数。

其中,a称为幂函数的底数,n称为幂函数的指数。

幂函数的定义域为全体实数,值域根据指数的奇偶性而定。

当指数n为奇数时,值域为全体实数;当指数n为偶数时,值域为非负实数。

二、性质1. 当底数a大于1时,幂函数的图像随着自变量x的增大而增大;当底数a介于0和1之间时,幂函数的图像随着自变量x的增大而减小。

2. 当指数n为正整数时,幂函数的图像在第一象限上且经过点(1,a)。

3. 当指数n为奇数时,幂函数的图像关于y轴对称;当指数n为偶数时,幂函数的图像关于原点对称。

三、图像根据幂函数的性质,我们可以画出幂函数的大致图像。

以y = 2x^2为例,我们可以按照以下步骤绘制图像:1. 计算出若干个点的坐标,取x的值为-2,-1,0,1,2,3等,并计算出对应的y值。

2. 将这些点连接起来,形成平滑的曲线。

3. 注意幂函数的对称性,根据对称轴上的点可以在其他位置上找到对应的点。

四、应用幂函数在实际问题中有广泛的应用,其中一些典型的应用包括:1. 复利计算:由于幂函数的特性,它可以很好地描述复利增长的情况。

例如,存款的本金在每年按一定的比例增长,这就可以用幂函数来表示。

2. 科学实验:在某些科学实验中,现象的变化与自变量并非线性关系,而是呈现幂函数的规律。

通过研究幂函数的图像和性质,可以更好地理解实验结果。

3. 经济增长:幂函数也可以描述经济增长的规律。

例如,某地区的GDP每年按一定的比例增长,可以用幂函数来表示。

总结:幂函数是高考数学中的重要知识点,掌握了幂函数的定义、性质、图像和应用,能够解决与幂函数相关的各种问题。

在学习过程中,我们还可以通过练习题加深对幂函数的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 基本初等函数(Ⅰ)
〖2.1〗指数函数
【2.1.1】指数与指数幂的运算
(1)根式的概念

①如果,,,1nxaaRxRn,且nN,那么x叫做a的n次方根.当n是奇

数时,a的n次方根用符号na表示;当n是偶数时,正数a的正的n次方根用符号
n
a

表示,负的n次方根用符号na表示;0的n次方根是0;负数a没有n次方根.
②式子na叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任
意实数;当n为偶数时,0a.
③根式的性质:()nnaa;当n为奇数时,nnaa;当n为偶数时,
(0)|| (0) nnaaaaaa





(2)分数指数幂的概念
①正数的正分数指数幂的意义是:(0,,,mnmnaaamnN且1)n.0的正分
数指数幂等于0.

②正数的负分数指数幂的意义是: 11()()(0,,,mmmnnnaamnNaa且
1)n
.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.

(3)分数指数幂的运算性质
①(0,,)rsrsaaaarsR ②()(0,,)rsrsaaarsR

③()(0,0,)rrrabababrR
【2.1.2】指数函数及其性质
(4)指数函数
函数名称 指数函数

定义
函数(0xyaa且1)a叫做指数函数

图象
1a
01a

定义域
R

值域
(0,)

过定点 图象过定点(0,1),即当0x时,1y.
奇偶性 非奇非偶
单调性 在R上是增函数 在R上是减函数

函数值的
变化情况

1(0)1(0)1(0)xxxaxaxax 1(0)1(0)1(0)xxxaxaxax




a变化对 图象的影响 在第一象限内,a越大图象越高;在第二象限内,a
越大图象越低.

〖2.2〗对数函数
【2.2.1】对数与对数运算
(1)对数的定义

①若(0,1)xaNaa且,则x叫做以a为底N的对数,记作logaxN,其中a叫
做底数,N叫做真数.
②负数和零没有对数.

③对数式与指数式的互化:log(0,1,0)xaxNaNaaN.
(2)几个重要的对数恒等式
log10a,log1aa
,logbaab.

(3)常用对数与自然对数
常用对数:lgN,即10logN;自然对数:lnN,即logeN(其中2.71828e…).

x
ay

x
y

(0,1)
O1yxayxy(0,1)O
1y
(4)对数的运算性质 如果0,1,0,0aaMN,那么
①加法:logloglog()aaaMNMN ②减法:logloglogaaaMMNN
③数乘:loglog()naanMMnR ④logaNaN
⑤loglog(0,)bnaanMMbnRb ⑥换底公式:
loglog(0,1)logbabN
Nbba且

【2.2.2】对数函数及其性质
(5)对数函数
函数
名称
对数函数

定义
函数log(0ayxa且1)a叫做对数函数

图象
1a
01a

定义域
(0,)
值域
R
过定点 图象过定点(1,0),即当1x时,0y.
奇偶性 非奇非偶
单调性
在(0,)上是增函数 在(0,)上是减函数

函数值的
变化情况

log0(1)log0(1)log0(01)aaaxxxxxx

 log0(1)log0(1)log0(01)aaaxxxxxx


a变化对 图象的影响 在第一象限内,a越大图象越靠低;在第四象限内,a
越大图象越靠高.

(6)反函数的概念

设函数()yfx的定义域为A,值域为C,从式子()yfx中解出x,得式子

x
y
O
(1,0)
1x

logayx

x
y

O
(1,0)

1x
logayx
()xy.如果对于y在C中的任何一个值,通过式子()xy
,x在A中都有唯一确

定的值和它对应,那么式子()xy表示x是y的函数,函数()xy叫做函数
()yfx
的反函数,记作1()xfy,习惯上改写成1()yfx.

(7)反函数的求法
①确定反函数的定义域,即原函数的值域;②从原函数式()yfx中反解出1()xfy;

③将1()xfy改写成1()yfx,并注明反函数的定义域.
(8)反函数的性质
①原函数()yfx与反函数1()yfx的图象关于直线yx对称.

②函数()yfx的定义域、值域分别是其反函数1()yfx的值域、定义域.
③若(,)Pab在原函数()yfx的图象上,则'(,)Pba在反函数1()yfx的图象上.
④一般地,函数()yfx要有反函数则它必须为单调函数.
〖2.3〗幂函数
(1)幂函数的定义

一般地,函数yx叫做幂函数,其中x为自变量,是常数.
(2)幂函数的图象
(3)幂函数的性质
①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,
图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图

象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.

②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).

③单调性:如果0,则幂函数的图象过原点,并且在[0,)上为增函数.如果0,
则幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.

④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当qp(其
中,pq互质,p和qZ),若p为奇数q为奇数时,则qpyx是奇函数,若p为奇数q为
偶数时,则qpyx是偶函数,若p为偶数q为奇数时,则qpyx是非奇非偶函数.
⑤图象特征:幂函数,(0,)yxx,当1时,若01x,其图象在直线yx下
方,若1x,其图象在直线yx上方,当1时,若01x,其图象在直线yx上
方,若1x,其图象在直线yx下方.

相关文档
最新文档