二次函数动点问题解答方法技巧(含例解答案)
二次函数动点问题

二次函数中的动点问题探究【解题方法和策略】二次函数中直角三角形解题思路:(1)分类讨论:按直角顶点进行讨论(2)勾股定理(3)相似三角形,经常用K 型相似二次函数中等腰三角形解题思路:(一)代数方法:(1)求出或用变量(或者用未知数)表示出三角形三条边的长(2)根据题意确定三边中某两边的相等关系,等到方程或方程组(3)解方程或方程组,若方程有解,则解即为所求,写出坐标即可;若无解,则不存在满足题意的三角形(二)几何方法:找到满足条件的等腰三角形两圆一线:1.如果知道底边是定长,可以做出底边中垂线找到所需的点2.如果一腰是定长,则分别以定长的两个端点为圆心,找到需要的点;二次函数中等腰直角三角形问题:根据题意分情况讨论边的情况,根据等腰三角形“三线合一”以及“直角三角形斜边中线等于斜边一半”解题【典型例题】一、二次函数中直角三角形【例1】如图,已知直线112y x =+与y 轴交于点A,与x 轴交于点D,抛物线212y x bx c =++与直线交于A、E(4,m)两点,与x 轴交于B、C 两点,且B 点坐标为(1,0).⑴求该抛物线的解析式;⑵设动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标..【例2】如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.【练习1】如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD 的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.二、二次函数中等腰三角形【例3】如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.【例4】如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.(1)求抛物线的解析式;(2)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.【练习2】在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.三、二次函数中等腰直角三角形【例5】如图,在直角坐标系中,已知点A(﹣1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为;(2)若二次函数y=x2﹣ax﹣2的图象经过点C.①求二次函数y=x2﹣ax﹣2的关系式;②在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【例6】如图,二次函数y=x2+bx+c的图象经过A(1,0),B(﹣3,0)两点,与y轴交于点C,过点A的直线与y轴交干点D,与抛物线交于点M,且tan∠BAM=1.(1)求该二次函数的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.【练习3】已知如图,在平面直角坐标系xOy中,二次函数y=﹣x2+bx+c的图象经过点A (4,0),C(0,2)(1)求抛物线的表达式;(2)如图2,在抛物线上是否存在一点P,使△ACP是以AC为斜边的等腰直角三角形?若存在,求点P的坐标,若不存在请说明理由.【例7】如图,矩形OABC的边OA、OC分别在x、y轴的正半轴上,且OA=1,OC=2,以O为直角顶点作Rt△COD,OD=3,已知二次函数y=ax2+bx﹣的图象过D、B两点.(1)求二次函数的解析式;(2)如图1,连接BD,在BD下方的抛物线是否存在点M,使得四边形BCDM的面积S最大?若存在,请求出S的最大值及点M的坐标,若不存在,请说明理由;(3)如图2,E为射线DB上的一点,过E作EH⊥x轴于H,点P为抛物线对称轴上一点,且在x轴上方,点Q在第二象限的抛物线上,是否存在P、Q使得以P、O、Q为顶点的三角形与△DEH全等?若存在,请直接写出点Q的坐标,如果不存在,请说明理由.【练习4】如图,二次函数y=ax2+c的图象交x轴于A、B两点,点A坐标为(﹣1,0),顶点C的坐标为(0,﹣2),点D在x轴上,过点D作直线l垂直于x轴,设点D的横坐标为m(m>1).(1)求二次函数的函数关系式和点B的坐标;(2)二次函数y=ax2+c的图象上有一点Q,当△ODQ是以点D为直角顶点的等腰直角三角形时,求m的值;(3)在直线l上有一点P(点P在第一象限),使得以点P、D、B为顶点的三角形与以点B、C、O为顶点的三角形全等,求点P的坐标.课后作业:1.如图,已知二次函数y=ax2+2x+3的图象与x轴交于点A、点B(点B在x轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+3,又tan∠OBC=1.(1)求a,k的值.(2)探究:在该二次函数的图象上是否存在点P(点P与B、C不重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,O 是坐标原点,点A、B 的坐标分别为)3,0(A 和)0,5(B ,连结AB .(1)现将AOB △绕点O 按逆时针方向旋转90°,得到COD ∆,(点A 落到点C 处),请画出COD ∆,并求经过B 、C 、D 三点的抛物线对应的函数关系式;(2)将(1)中抛物线向右平移两个单位,点B 的对应点为点E ,平移后的抛物线与原抛物线相交于点F .P 为平移后的抛物线对称轴上一个动点,连结PF PE 、,当PF PE -取得最大值时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴上运动时,是否存在点P 使EPF ∆为直角三角形?如果存在,请求出点P 的坐标;如果不存在,请说明理由.3.已知抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.4.如图,在直角坐标系中,已知点A(﹣1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为;(2)若二次函数y=x2﹣ax﹣2的图象经过点C.①求二次函数y=x2﹣ax﹣2的关系式;②当﹣1≤x≤4时,直接写出函数值y对应的取值范围;③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.。
二次函数动点问题解答方法技巧(含例解答案)(可编辑修改word版)

所以 S 2S△ADN .
所以,四边形 MDNA 的面积 S (8 2t)(1 2t) 4t2 14t 8 . 因为运动至点 A 与点 D 重合为止,据题意可知 0 ≤ t 4 . 所以,所求关系式是 S 4t2 14t 8 , t 的取值范围是 0 ≤ t 4 .
单位的速度沿水平方向分别向右、向左运动;与此同时,
点 M ,点 N 同时以每秒 2 个单位的速度沿坚直方向分别 向下、向上运动,直到点 A 与点 D 重合为止.求出四边 形 MDNA 的面积 S 与运动时间 t 之间的关系式,并写出 自变量 t 的取值范围; (3)当 t 为何值时,四边形 MDNA 的面积 S 有最大值,
函数解题思路方法总结:
⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式; ⑶ 根据图象的位置判断二次函数 ax²+bx+c=0 中 a,b,c 的符号,或由二次函
数中 a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的
二次函数的动态问题(动点)
1.如图,已知抛物线 C1 与坐标轴的交点依次是 A(4,0) , B(2,0) , E(0,8) .
(1)求抛物线 C1 关于原点对称的抛物线 C2 的解析式;
(2)设抛物线 C1 的顶点为 M ,抛物线 C2 与 x 轴分别交
于 C, D 两点(点 C 在点 D 的左侧),顶点为 N ,四边 形 MDNA 的面积为 S .若点 A ,点 D 同时以每秒 1 个
并求出此最大值;
(4)在运动过程中,四边形 MDNA 能否形成矩形?若 能,求出此时 t 的值;若不能,请说明理由.
初三复习二次函数动点问题(含答案)

二次函数的动态问题(动点)1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长.(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有 个.(抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.[解] (1)作BF y ⊥轴于F .()()01084A B ,,,,86FB FA ∴==,.10AB ∴=.(2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=,.P Q ∴,两点的运动速度均为每秒1个单位.(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.图①图②GA AP FA AB ∴=,即610GA t=.35GA t ∴=.3105OG t ∴=-.4OQ t =+,()113410225S OQ OG t t ⎛⎫∴=⨯⨯=+- ⎪⎝⎭.即231920105S t t =-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时4763311051555GP t OG t ===-=,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(8分)方法二:当5t =时,1637922OG OQ S OG OQ ====,,. 设所求函数关系式为220S at bt =++.抛物线过点()63102852⎛⎫ ⎪⎝⎭,,,,1001020286325520.2a b a b ++=⎧⎪∴⎨++=⎪⎩,31019.5a b ⎧=-⎪⎪∴⎨⎪=⎪⎩,231920105S t t ∴=-++.19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时7631155GP OG ==,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(4)2.[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。
一元二次方程动点问题的解题技巧

一元二次方程动点问题的解题技巧
关于二次函数动点问题的解答方法:
1、求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
2、求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
3、根据图象的位置判断二次函数ax+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
4、二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标。
5、与二次函数有关的还有二次三项式,二次三项式ax+bx+c﹙a≠0﹚本身就是所含字母x的二次函数。
二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线(a ≠0)与轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;32++=bx ax y x(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。
二次函数动点问题类型

二次函数动点问题类型一、求解动点坐标问题:1.已知二次函数的图像经过特定点,求该点的坐标。
例如,已知二次函数y=ax^2+bx+c的图像过点(2,5),求a、b、c的值。
解:由于(2,5)是曲线上的一点,所以满足曲线上的点的坐标满足函数的定义关系式,即:y=ax^2+bx+c代入已知点的坐标,得到:5=4a+2b+c再结合二次函数的性质,无论a、b、c取何值,都可以确定一个二次函数,因此需要再提供其他的条件才能完全确定a、b、c的值。
2.已知二次函数的顶点坐标,求顶点坐标与对称轴的方程。
例如,已知二次函数y=ax^2+bx+c的顶点坐标为(2,3),求对称轴的方程和a、b、c的值。
解:根据二次函数的性质,二次函数的顶点坐标位于对称轴上,所以对称轴的方程可以通过已知的顶点坐标得到。
对称轴的方程为x=顶点的横坐标,即x=2然后,再结合二次函数顶点坐标的性质,即顶点坐标(2,3)满足a*(2^2)+b*2+c=3,代入这个关系式,可以求解出a、b、c的值。
3.已知二次函数的零点,求函数的表达式。
例如,已知二次函数y=ax^2+bx+c的零点为x=1和x=3,求函数的表达式。
解:已知x=1和x=3是函数的零点,代入函数的定义关系式,得到a*(1^2)+b*1+c=0和a*(3^2)+b*3+c=0。
进一步整理就可以得到一个由a、b、c构成的方程组,解这个方程组就可以确定a、b、c的值,从而得到二次函数的表达式。
二、研究动点运动规律问题:1.如何通过二次函数的图像研究点的运动规律?二次函数可以表示一个抛物线的图像,通过分析二次函数的各项系数可以得到抛物线的开口方向、顶点坐标等信息,从而研究点的运动规律。
例如,当二次函数的a大于0时,抛物线开口向上,顶点坐标为最低点,点的运动趋势是从下往上;当二次函数的a小于0时,抛物线开口向下,顶点坐标为最高点,点的运动趋势是从上往下。
2.如何通过已知条件研究点的运动规律?已知的条件可以包括点的初始位置、速度、加速度等信息,将这些信息转化成数学问题,从而得到二次函数的各项系数,进而通过研究二次函数的图像研究点的运动规律。
二次函数动点问题解答方法技巧(含例解答案)
二次函数动点问题解答方法技巧(含例解答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。
二次函数动点问题解答方法技巧分析
函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。
第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。
①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
二次函数动点问题解答方法技巧(含例解标准答案)
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是
,
则
解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
⑶ 根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
当运动到时刻 时, , .
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).
专题01 二次函数背景下的动点问题探究(解析版)
备战2019年中考数学压轴题之二次函数专题1 二次函数背景下的动点问题探究【方法综述】动点是常见的综合问题中的构成要件,通过点的运动命题者可以构造各种问题情景。
动点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无速度动点和有速度动点,从动点的引起的变化分为单个动点变化和以动点驱动的图形运动。
【典例示范】类型一 常规单动点问题例1:.(广东省深圳市)已知二次函数y =ax 2+bx +3的图象分别与x 轴交于点A (3,0),C (-1,0),与y 轴交于点B .点D 为二次函数图象的顶点.(1)如图①所示,求此二次函数的关系式:(2)如图②所示,在x 轴上取一动点P (m ,0),且1<m <3,过点P 作x 轴的垂线分别交二次函数图象、线段AD ,AB 于点Q 、F ,E ,求证:EF =EP ;(3)在图①中,若R 为y 轴上的一个动点,连接AR ,则√1010BR +AR 的最小值______(直接写出结果). 【答案】(1)y=-x 2+2x+3;(2)见解析;(3)6√105【解析】解:(1)将A (3,0),C (-1,0)代入y=ax2+bx+3,得: {9a +3b +3=0a −b +3=0,解得:{a =−1b =2 ,∴此二次函数的关系式为y=-x 2+2x+3. (2)证明:∵y=-x 2+2x+3=-(x -1)2+4, ∴点D 的坐标为(1,4).设线段AB 所在直线的函数关系式为y=kx+c (k≠0),将A (3,0),C (0,3)代入y=kx+c ,得: {3k +c =0c =3 ,解得:{k =−1c =3,∴线段AB 所在直线的函数关系式为y=-x+3.同理,可得出:线段AD 所在直线的函数关系式为y=-2x+6. ∵点P 的坐标为(m ,0),∴点E 的坐标为(m ,-m+3),点F 的坐标为(m ,-2m+6), ∴EP=-m+3,EF=-m+3,∴EF=EP .(3)如图③,连接BC ,过点R 作RQ ⊥BC ,垂足为Q . ∵OC=1,OB=3, ∴BC=√10.(勾股定理)∵∠CBO=∠CBO ,∠BOC=∠BQR=90°, ∴△BQR ∽△AOB , ∴BRBC =QROC ,即√10=QR 1,∴RQ=√1010BR , ∴AR+√1010BR=AR+RQ ,∴当A ,R ,Q 共线且垂直AB 时,即AR+√1010BR=AQ 时,其值最小. ∵∠ACQ=∠BCO ,∠BOC=∠AQC , ∴△CQA ∽△COB , ∴AQBO =ACBC ,即AQ3=√10∴AQ=6√105, ∴√1010BR+CR 的最小值为6√105.故答案为:6√105. 例2:(2019年广西)如图,抛物线y =x 2-2x -3与x 轴交于A ,B 两点,与y 轴交于点C ,其对称轴与抛物线相交于点M ,与x 轴相交于点N ,点P 是线段MN 上的一个动点,连接CP ,过点P 作PE ⊥CP 交x 轴于点E .(1)求抛物线的顶点M 的坐标;(2)当点E 与原点O 的重合时,求点P 的坐标; (3)求动点E 到抛物线对称轴的最大距离是多少?【答案】(1)(1,-4).(2)当点E 与原点O 的重合时,点P 的坐标为(1,−3−√52)或(1,√5−32).(3)点E 到抛物线对称轴的最大距离是4. 【解析】解:(1)∵y=x2-2x -3=(x -1)2-4, ∴抛物线的顶点M 的坐标为(1,-4). (2)当x=0时,y=x2-2x -3=-3, ∴点C 的坐标为(0,-3).过点C 作CF ⊥直线MN ,垂足为点F ,如图1所示.∵∠PON+∠OPN=90°,∠OPN+∠CPF=180°-∠CPO=90°, ∴∠PON=∠CPF . 又∵∠PNO=∠CFP=90°, ∴△PON ∽△CPF , ∴CF PN =PF ON,即1PN=3−PN 1,∴PN=3±√52, ∴当点E 与原点O 的重合时,点P 的坐标为(1,−3−√52)或(1,√5−32). (3)过点C 作CF ⊥直线MN ,垂足为点F ,设PN=m ,分三种情况考虑,如图2所示.①当0<m <3时,由(2)可知:△PEN ∽△CPF , ∴EN PF =PNCF ,即EN3−m =m , ∴EN=-m2+3m=-(m -32)2+94. ∵-1<0,∴当m=32时,EN 取得最大值,最大值为94;②当m=0或3时,点E 和点N 重合,此时EN=0;③当3<m≤4时,∵∠PCF+∠CPF=90°,∠CPF+∠EPN=90°, ∴∠PCF=∠EPN . 又∵∠CFP=∠PNE=90°, ∴△PCF ∽△EPN , ∴EN PF =PN CF,即ENm−3=m1,∴EN=m2-3m . ∵1>0,∴当3<m≤4时,EN 的值随m 值的增大而增大, ∴当m=4时,EN 取得最大值,最大值为4. 综上所述:点E 到抛物线对称轴的最大距离是4.针对训练1.(山东省济南市历下区)如图,在平面直角坐标系中,抛物线y =−12x 2+bx +c ,经过点A(1,3)、B(0,1),过点A 作x 轴的平行线交抛物线于另一点C . (1)求抛物线的表达式及其顶点坐标;(2)如图,点M 是第一象限中BC 上方抛物线上的一个动点,过点作MH ⊥BC 于点H ,作ME ⊥x 轴于点E ,交BC 于点F ,在点M 运动的过程中,ΔMFH 的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图,连接AB ,在y 轴上取一点P ,使ΔABP 和ΔABC 相似,请求出符合要求的点P 坐标.【答案】(1)抛物线的解析式为y =−12x 2+52x +1,顶点坐标为(52,338);(2)最大值为6√55+2;(3)满足条件的P 点有(0,52),(0,133). 【解析】(1)将A(1,3),B(0,1),代入y=−12x2+bx+c,解得b=52,c=1.∴抛物线的解析式为y=−12x2+52x+1.∴顶点坐标为(52,338).(2)由B(0,1),C(4,3)得直线BC解析式为:y=12x+1设M(m,−12m2+52m+1),则得F(0,12m+1)则MF=−12m2+52m+1−(12m+1)=−12m2+2m∵−12<0∴MF有最大值,当m=2时,MF最大值为2 将直线AC与y轴交点记作D,易得BD:CD:BC=1:2:√5因为ME//y轴,∴∠MFH=∠DBC又∵∠CDB=∠MHP=900,∴ΔMHF∽ΔCDB ∴FH:MH:MF=1:2:√5∴CΔMHF=(3√55+1)MF所以CΔMHF的最大值为6√55+2(3)∵ADBD =BDCD=12,∠CDB为公共角,∴ΔABD∽ΔBCD.∴∠ABD=∠BCD.1°当∠PAB=∠ABC时,PBAC =ABBC,∵ BC =√(0−4)2+(1−3)2=2√5, AB =√(0−1)2+(1−3)2=√5,AC =3 ∴ PB =32,∴ P 1(0,52). 2°当∠PAB =∠BAC 时,PBBC =ABAC , ∴2√5=√53, ∴ PB =103,∴ P 2(0,133).综上所述满足条件的P 点有(0,52),(0,133).2.(四川省简阳市2019届九年级)如图1,在平面直角坐标系xOy 中,抛物线y =−(x −a )(x −4)(a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点. (1)若D 点坐标为(32,254),求抛物线的解析式和点C 的坐标;(2)若点M 为抛物线对称轴上一点,且点M 的纵坐标为a ,点N 为抛物线在x 轴上方一点,若以C 、B 、M 、N 为顶点的四边形为平行四边形时,求a 的值;(3)直线y =2x +b 与(1)中的抛物线交于点D 、E (如图2),将(1)中的抛物线沿着该直线方向进行平移,平移后抛物线的顶点为D ′,与直线的另一个交点为E ,与x 轴的交点为B ′,在平移的过程中,求D ′E ′的长度;当∠E ′D ′B ′=90°时,求点B ′的坐标.【答案】(1)y =−x 2+3x +4;C (0,4);(2)a =−2±2√13; a 1=−2−2√13,a 2=6−2√213;(3)B ′(−1,0) 【解析】(1)依题意得:254=−(32−a)(32−4) 解得a =−1,∴抛物线的解析式为:y=-(x+1)(x -4)或y =−x 2+3x +4 ∴C (0,4)(2)由题意可知A (a,0)、B (4,0)、C (0,−4a ) 对称轴为直线x =a+42,则M (a+42,a)①MN//BC ,且MN =BC ,根据点的平移特征可知N (a−42,−3a)则−3a =−(a−42−a)⋅(a−42−4),解得:a =−2±2√13(舍去正值);②当BC 为对角线时,设N (x,y ),根据平行四边形的对角线互相平分可得 {a+42+x =4a +y =−4a,解得{x =4−a 2y =−5a, 则−5a =−(4−a 2−a)⋅(4−a 2−4)解得:a =6±2√213∴a 1=−2−2√13,a 2=6−2√213(3)联立{y =2x +134y =−x 2+3x +4解得:{x 1=32y 1=254 (舍去),{x 2=−12y 2=94则DE =2√5,根据抛物线的平移规律, 则平移后的线段D ′E ′始终等于2√5 设平移后的D ′(m,2m +134),则E ′(m −2,2m −34) 平移后的抛物线解析式为:y =−(x −m )2+2m +134则D ′B ′:y =−12x +n 过(m,2m +134), ∴y =−12x +52m +134,则B ′(5m +132,0)抛物线y =−(x −m )2+2m +134过B ′(5m +132,0)解得m 1=−32,m 2=−138 ∴B 1′(−1,0),B 2′(−138,0)(与D ′重合,舍去)∴B ′(−1,0)3.(浙江省金衢十二校2019届九年级3月联考数学)如图1,抛物线y 1=−43x 2−43tx -t+2与x 轴交于点A ,B(点A 在点B 的左侧),过y 轴上的点C(0,4),直线y 2=kx+3交x 轴,y 轴于点M 、N ,且ON=OC. (1)求出t 与k 的值.(2)抛物线的对称轴交x 轴于点D ,在x 轴上方的对称轴上找一点E ,使△BDE 与△AOC 相似,求出DE 的长. (3)如图2,过抛物线上动点G 作GH ⊥x 轴于点H ,交直线y 2=kx+3于点Q ,若点Q′是点Q 关于直线MG 的对称点,是否存在点G(不与点C 重合),使点Q′落在y 轴上?,若存在,请直接写出点G 的横坐标;若不存在,请说明理由.【答案】(1)t=-2,k=34;(2)12或8;(3)1−√134;1+√134;19+√55316;19−√55316.【解析】解:(1)将点C(0,4)代入抛物线y1=−43x2−43tx -t+2,得-t+2=4,∴t=-2,∴抛物线y1=−43x2+83x+4, ∵ON=OC ,∴N (-4,0),将N (-4,0)代入直线y2=kx+3,得-4k+3=0,∴k =34, ∴直线y2=34x+3, ∴t=-2,k =34.(2)如图1,链接BE ,在y1=−43x2+83x+4中,当y=0时,解得:x 1=−1,x 2=3, ∴A (-1,0),B (3,0),对称轴为x=−b2a =1, ∴D (1,0),∴AO=1,CO=4,BD=2,∠AOC=∠EDB=90°, ①当△AOC ∽△BDE 时,AO BD=OC DE,即12=4DE,∴DE=8,②当△AOC ∽△EDB 时,AODE=OC BD ,即1DE =42, ∴DE=12,综上:DE=12或8;(3)如图2,点Q'是点Q 关于直线MG 的对称点,且点Q'在y 轴上, 由轴对称的性质知:QM= Q'M ,QG= Q'G ,∠Q'MG= ∠QMG , ∵QG ⊥x 轴,∴QG ∥y 轴, ∴∠Q'MG=∠QGM , ∴∠QMG=∠QGM , ∴QM=QG ,∴QM=Q'M=QG=Q'G , ∴四边形QMQ'G 为菱形,设G (a ,−43a2+83a+4),则Q (a ,34a+3),过点G 作GH ⊥y 轴于点H , ∵GQ'∥QN , ∴∠GQ'H=∠NMO , 在Rt △NMO 中, NM=√NO 2+MO 2=5, ∴sin∠NMO =NO NM =45,∴sin∠GQ′H =HGGQ′=45,①当点G 在直线MN 下方时,QG= Q'G=43a 2−2312a −1, ∴a43a 2−2312a−1=45,解得:a 1=19+√55316,a 2=19−√55316;②如图3,当点G 在直线MN 上方时,QG= Q'G=−(43a 2−2312a −1),∴a−(43a 2−2312a−1)=45,解得:a 1=1+√134,a 2=1−√134. 综上所述:点G 的横坐标为19+√55316,19−√55316,1+√134或1−√134.4.(四川省自贡市2019年初中升学考试调研)如图,直线y =34x +a 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =34x 2+bx +c 经过点A ,B .点M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线分别交直线AB 及抛物线于点P ,N .(1)填空:点B 的坐标为 ,抛物线的解析式为 ; (2)当点M 在线段OA 上运动时(不与点O ,A 重合), ①当m 为何值时,线段PN 最大值,并求出PN 的最大值; ②求出使△BPN 为直角三角形时m 的值;(3)若抛物线上有且只有三个点N 到直线AB 的距离是h ,请直接写出此时由点O ,B ,N ,P 构成的四边形的面积.【答案】(1)(0,﹣3),y =34x2﹣94x ﹣3;(2)①是3,②3或119;(3)6或6+6√2或6√2﹣6. 【解析】解:(1)把点A 坐标代入直线表达式y =34x+a ,解得:a =﹣3,则:直线表达式为:y═34x ﹣3,令x =0,则:y =﹣3, 则点B 坐标为(0,﹣3),将点B 的坐标代入二次函数表达式得:c =﹣3, 把点A 的坐标代入二次函数表达式得:34×16+4b ﹣3=0,解得:b =﹣94,故抛物线的解析式为:y =34x2﹣94x ﹣3,(2)①∵M (m ,0)在线段OA 上,且MN ⊥x 轴, ∴点P (m ,34m ﹣3),N (m ,34m2﹣94m ﹣3), ∴PN =34m ﹣3﹣(34m2﹣94m ﹣3)=﹣34(m ﹣2)2+3,∵a =﹣34<0, ∴抛物线开口向下,∴当m =2时,PN 有最大值是3, ②当∠BNP =90°时,点N 的纵坐标为﹣3,把y =﹣3代入抛物线的表达式得:﹣3=34m2﹣94m ﹣3,解得:m =3或0(舍去m =0), ∴m =3;当∠NBP =90°时,∵BN ⊥AB ,两直线垂直,其k 值相乘为﹣1, 设:直线BN 的表达式为:y =﹣43x+n ,把点B 的坐标代入上式,解得:n =﹣3,则:直线BN 的表达式为:y =﹣43x ﹣3, 将上式与抛物线的表达式联立并解得:m =119或0(舍去m =0),当∠BPN =90°时,不合题意舍去,故:使△BPN 为直角三角形时m 的值为3或43; (3)∵OA =4,OB =3,在Rt △AOB 中,tanα=43,则:cosα=35,sinα=45, ∵PM ∥y 轴,∴∠BPN =∠ABO =α,若抛物线上有且只有三个点N 到直线AB 的距离是h ,则只能出现:在AB 直线下方抛物线与过点N 的直线与抛物线有一个交点N ,在直线AB 上方的交点有两个.当过点N 的直线与抛物线有一个交点N ,点M 的坐标为(m ,0),设:点N 坐标为:(m ,n ), 则:n =34m2﹣94m ﹣3,过点N 作AB 的平行线,则点N 所在的直线表达式为:y =34x+b ,将点N 坐标代入, 解得:过N 点直线表达式为:y =34x+(n ﹣34m ),将抛物线的表达式与上式联立并整理得:3x2﹣12x ﹣12+3m ﹣4n =0, △=144﹣3×4×(﹣12+3m ﹣4n )=0,将n =34m2﹣94m ﹣3代入上式并整理得:m2﹣4m+4=0,解得:m =2,则点N 的坐标为(2,﹣92), 则:点P 坐标为(2,﹣32), 则:PN =3, ∵OB =3,PN ∥OB ,∴四边形OBNP 为平行四边形,则点O 到直线AB 的距离等于点N 到直线AB 的距离, 即:过点O 与AB 平行的直线与抛物线的交点为另外两个N 点,即:N′、N″, 直线ON 的表达式为:y =34x ,将该表达式与二次函数表达式联立并整理得: x2﹣4x ﹣4=0,解得:x =2±2√2,则点N′、N″的横坐标分别为2+2√2,2﹣2√2, 作NH ⊥AB 交直线AB 于点H , 则h =NH =NPsinα=125,作N′P′⊥x 轴,交x 轴于点P′,则:∠ON′P′=α,ON′=OP ′sinα=54(2+2√2), S 四边形OBPN =BP•h =52×125=6,则:S 四边形OBP′N′=S △OP′N′+S △OBP′=6+6√2, 同理:S 四边形OBN″P″=6√2﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6√2或6√2﹣6.5.(江苏省无锡市天一实验学校2019届中考数学一模)如图,已知抛物线y =ax 2−4a(a >0)与x 轴相交于A ,B 两点,点P 是抛物线上一点,且PB =AB ,∠PBA =120∘. (1)求该抛物线的表达式;(2)设点M(m,n)为抛物线上的一个动点,当点M 在曲线BA 之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M 的坐标.【答案】(1)抛物线解析式为;y =√36x2﹣2√33;(2)当点M 在曲线BA 之间(含端点)移动时,M 的坐标为(√3,﹣√36)或(﹣√3,﹣√36)时,|m|+|n|的最大值为7√36. 【解析】(1)如图,令y =0代入y =ax2﹣4a , ∴0=ax2﹣4a , ∵a >0, ∴x2﹣4=0, ∴x =±2,∴A (﹣2,0),B (2,0),∴AB =4,过点P 作PC ⊥x 轴于点C , ∴∠PBC =180°﹣∠PBA =60°, ∵PB =AB =4, ∴cos ∠PBC =BCPB ,∴BC =2,由勾股定理可求得:PC =2√3, ∵OC =OB+BC =4, ∴P (4,2√3),把P (4,2√3)代入y =ax2﹣4a , ∴2√3=16a ﹣4a , ∴a =√36,∴抛物线解析式为:y =√36x2﹣2√33; (2)当点M 在曲线BA 之间(含端点)移动时, ∴﹣2≤m≤2,n <0, 当﹣2≤m≤0时,∴|m|+|n|=﹣m ﹣n =﹣√36m2﹣m+2√33=﹣√36(m+√3)2+7√36, 当m =﹣√3时,∴|m|+|n|可取得最大值,最大值为7√36, 此时,M 的坐标为(﹣√3,﹣√36), 当0<m≤2时,∴|m|+|n|=m ﹣n =﹣√36m2+m+2√36=﹣√36(m ﹣√3)2+7√36, 当m =√3时,∴|m|+|n|可取得最大值,最大值为7√36, 此时,M 的坐标为(√3,﹣√36),综上所述,当点M 在曲线BA 之间(含端点)移动时,M 的坐标为(√3,﹣√36)或(﹣√3,﹣√36)时,|m|+|n|的最大值为7√36.类型二 双动点问题例3.(重庆市大渡口区2019届九年级第二次诊断考试)如图,抛物线y=-35[(x -2)2+n]与x 轴交于点A (m -2,0)和B (2m+3,0)(点A 在点B 的左侧),与y 轴交于点C ,连结BC . (1)求m 、n 的值;(2)如图,点N 为抛物线上的一动点,且位于直线BC 上方,连接CN 、BN .求△NBC 面积的最大值; (3)如图,点M 、P 分别为线段BC 和线段OB 上的动点,连接PM 、PC ,是否存在这样的点P ,使△PCM 为等腰三角形,△PMB 为直角三角形同时成立?若存在,求出点P 的坐标;若不存在,请说明理由.【来源】【区级联考】数学试题【答案】(1)m=1;n=-9;(2)最大值为758;(3)存在,P 点坐标为(3√34−95,0)或(34,0). 【解析】(1)∵抛物线的解析式为y=-35[(x -2)2+n]=- 35(x -2)2-35n , ∴抛物线的对称轴为直线x=2, ∵点A 和点B 为对称点, ∴2-(m -2)=2m+3-2,解得m=1, ∴A (-1,0),B (5,0),把A (-1,0)代入y=-35 [(x -2)2+n]得9+n=0,解得n=-9;(2)作ND ∥y 轴交BC 于D ,如图2,抛物线解析式为y=-35[(x -2)2-9]=-35x2+125x+3,当x=0时,y=3,则C (0,3), 设直线BC 的解析式为y=kx+b ,把B (5,0),C (0,3)代入得{5k +b =0b =3 ,解得{k =−35b =3 , ∴直线BC 的解析式为y=-35x+3,设N (x ,-35x2+125x+3),则D (x ,-35x+3),∴ND=-35x2+125x+3-(-35x+3)=-35x2+3x ,∴S △NBC=S △NDC+S △NDB=12×5×ND=-32x2+152x=-32(x -52)2+758,当x=52时,△NBC 面积最大,最大值为758;(3)存在.∵B (5,0),C (0,3), ∴BC=2+52=√34,当∠PMB=90°,则∠PMC=90°,△PMC 为等腰直角三角形,MP=MC ,设PM=t ,则CM=t ,MB=√34-t , ∵∠MBP=∠OBC , ∴△BMP ∽△BOC , ∴PMOC =BM OB=BP BC ,即 t3=√34−t 5=34t=3√348,BP=174, ∴OP=OB -BP=5-174=34, 此时P 点坐标为(34,0); 当∠MPB=90°,则MP=MC , 设PM=t ,则CM=t ,MB=√34-t , ∵∠MBP=∠CBO , ∴△BMP ∽△BCO , ∴MPOC =BM BC=BP BO ,即t3=√34−t√34=BP5,解得t=102−9√3425,BP=34−3√345, ∴OP=OB -BP=5-34−3√345=3√34−95, 此时P 点坐标为(3√34−95,0); 综上所述,P 点坐标为(3√34−95,0)或(34,0). 针对训练1.(河北省2019届九年级毕业生升学文化课考试模拟)如图,已知在平面直角坐标系xOy 中,四边形OABC 是矩形,OA =4,OC =3,动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P ,点Q 的运动时间为t(s). (1)当t =1s 时,按要求回答下列问题①tan∠QPC =______________;②求经过O ,P ,A 三点的抛物线G 的解析式,若将抛物线G 在x 轴上方的部分图象记为G 1,已知直线y =12x +b与G 1有两个不同的交点,求b 的取值范围;(2)连接CQ ,点P ,Q 在运动过程中,记ΔCQP 与矩形OABC 重叠部分的面积为S ,求S 与t 的函数解析式.【答案】(1)①3;②y=-34x2+3x ; 0≤b <2512;(2)当0≤t≤2时,S=3t ;当2<t≤4时,S=24-24t -3t ;当t >4时,S=24t .【解析】解:(1)①过Q 作QM ⊥BC ,tan ∠QPC=MQMP =3;②A (4,0)O (0,0)P (2,3)设抛物线的解析式为y=ax2+bx+c, 把A (4,0)O (0,0)P (2,3)代入y=ax2+bx+c 得{16a +4b +c =0c =04a +2b +c =3 , 解得{a =−34b =3c =0.∴y=−34x2+3x.联立直线 y=12x+b 与 y=-34x2+3x,得 {y =12x +by =−34x 2+3x则-34x2+3x=12x+b , ∵直线12x+b 与 G1 有 两 个 不 同 交 点, ∴方程-34x2+3x=12x+b 有2个不同解, ∴Δ>0即254-3b >0,b<2512,又由直线与G1交于x轴上方,∴b≥0,∴b的范围为0≤b<2512.(2)当0≤t≤2时,S=3t;当2<t≤4时,S=24−24t −3t;当t>4时,S=24t.当0≤t≤2时,如图1,由题意可知CP=2t,∴S=S△PCQ=12×2t×3=3t;当2<t≤4时,如图2:过Q作QH⊥CP于H,BP=2t-4,HP=HC=t,HQ=3,∵BM∥HQ,∴△PBM∽△PHQ,∴BMHQ =BPHP.即BM3=2t−4t,∴BM=3(2t−4)t,∴AM=3- BM=12−3tt,S=S矩形OABC−SΔCOQ−SΔAQM=4×3−1·t×3−1(4−t)∙12−3t=24-3t-24t(2<t≤4)当P在CB延长线上,Q在OA延长线上时,即t>4时,如图3,CQ与AB交于M点,过Q做QN⊥CB,则ΔMBC∼ΔQNC,∴BMNQ =CBCN即BM3=4t,故有BM=12t.面积为:S=12CB·BM=12×4×12t=24t(t > 4)2.(重庆一中2019届九年级(上)期中数学试卷)在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+53(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2√3PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=132PH−14PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.【答案】(1)y =16x2﹣43x ﹣8,y =512x+53;(2)P (5,−212),m 的最小值为2√19;(3)D1(31−5√132,0),D2(﹣4,0),D3(343,0),D4(31+5√132,0). 【解析】解(1)∵y =ax2+bx ﹣8与y 轴的交点为C ,令x =0,y =﹣8, ∴点C (0,﹣8), ∴OC =8,∵OC =2OA ,OB =3OA , ∴OA =4,OB =12, ∴A (﹣4,0)B (12,0),将点A 代入直线解析式可得0=﹣4k+53, 解得k =512, ∴y =512x+53,将点A 和点B 代入抛物线中, {0=16a −4b −80=144a +12b −8 , 解得a =16,b =﹣43,∴y =16x2﹣43x ﹣8;(2)设点P 的坐标为(p ,16p2﹣43p ﹣8),﹣2ab =4, ∴抛物线的对称轴为直线x =4, ∴点Q (8﹣p ,16p2﹣43p ﹣8), ∴PQ =2p ﹣8, ∵PK =2√3PQ , ∴PK =4√3p ﹣16√3,如图1所示,延长PK 交直线AR 于点M ,则M (p ,512P+53),∴PM =512P+53﹣(16p2﹣43p ﹣8)=﹣16p2﹣2112p+293, ∵∠PHM =∠MH′A ,∠HMP =∠AMH′, ∴∠HPM =∠MAH′,∵直线解析式为y =512x+53,,令x =0,y =53,∴OE =53,∵OA =4,根据勾股定理得∴AE =133, ∴cos ∠EAO =OA AE =1213, ∴cos ∠HPM =PHPM =PH﹣16P 2﹣2112p+293=1213,∴PH =﹣213p2+2113p+11613, ∵I =132PH −14PQ , ∴I =132(﹣213p2+2113p+11613)﹣14(2p ﹣8)=﹣(p ﹣5)2+85,∴当p =5时,I 取最大值此时点P (5,﹣212), ∴PQ =2,PK =4√3,如图2所示,连接QK ,以PQ 为边向下做等边三角形PQD ,连接KD ,在KD 取I , 使∠PID =60°,以PI 为边做等边三角形IPF ,连接IQ ,∵IP=PF,PQ=PD,∠IPQ=∠FPD,∴△IPQ≌△FPD(SAS),∴DF=IQ,∴IP+IQ+IK=IF+FD+IK=DK,此时m最小,过点D作DN垂直于KP,∵∠KPD=∠KPQ+∠QPD=150°,∴∠PDN=30°,∵DP=PQ=2,∴DN=1,根据勾股定理得PN=√3,在△KDN中,KN=5√3,DN=1,根据勾股定理得KD=2√19,∴m的最小值为2√19;(3)设NM与x轴交于点J,∵AM=13,cos∠MAJ=12,13∴AJ=12,根据勾股定理得MJ=5,∵OA=4,∴OJ=8,∴M(8,5),当x=8时,代入抛物线中,可得y=﹣8,∴N(8,﹣8),MN=13,在△AJN中,根据勾股定理得AN=4√13,∵点D为x轴上的动点,根据翻折,MN′=13,所以点N′在以M为圆心,13个单位长度为半径的圆上运动,如图3所示,①当N′落在AN 的垂直平分线上时, tan ∠MNA =128=32, ∴tan ∠MGJ =32,∵MJ =5,∴JG =103,根据勾股定理得MG =5√133, ∵MD1为∠GMJ 的角平分线, ∴MG MJ=GD DJ,∴D1J =5√13﹣152, ∴D1(31−5√132,0), ∵MD4也为角平分线, ∴∠D1MD4=90°,根据射影定理得MJ2=JD1•JD4, ∴JD4=5√13+152, ∴D4(31+5√132,0); ②当AN =AN′时,D2与点A 重合, ∴D2(﹣4,0), ∵MD3为角平分线, ∴MJ MN′=JD 3D 3N′,∴JD3=103, ∴D3(343,0), 综上所述D1(31−5√132,0),D2(﹣4,0),D3(343,0),D4(31+5√132,0). 3.(江苏省扬州市宝应县2019届九年级上学期期末)已知,如图1,二次函数y =ax 2+2ax ﹣3a (a ≠0)图象的顶点为C 与x 轴交于A 、B 两点(点A 在点B 左侧),点C 、B 关于过点A 的直线l :y =kx +√3对称.(1)求A 、B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)如图2,过点B 作直线BD ∥AC 交直线l 于D 点,M 、N 分别为直线AC 和直线l 上的两个动点,连接CN ,MM 、MD ,求CN +NM +MD 的最小值.【答案】(1) 点A 、B 的坐标分别为(﹣3,0)、(1,0),直线l 的表达式为:y =√33x+√3;(2) 二次函数解析式为:y =﹣√32x2﹣√3x+3√32;(3)8.【解析】解:(1)y =ax2+2ax ﹣3a ,令y =0,则x =﹣1或3, 即点A 、B 的坐标分别为(﹣3,0)、(1,0), 点A 坐标代入y =kx+√3得:0=﹣3k+√3,解得:k =√33,即直线l 的表达式为:y =√33x +√3.①,同理可得直线AC的表达式为:y=√3x+3√3.直线BD的表达式为:y=√3x−√3.②,联立①②并解得:x=3,在点D的坐标为(3,2√3);(2)设点C的坐标为(﹣1,m),点C、B关于过点A的直线l:y=kx+√3对称得AC2=AB2,即:(﹣3+1)2+m2=16,解得:m=±2√3(舍去负值),点C(1,2√3),将点C的坐标代入二次函数并解得:a=−√32.故二次函数解析式为:y=−√32x2−√3x+3√32;(3)连接BC,则CN+MN的最小值为MB(即:M、N、B三点共线),作D点关于直线AC的对称点Q交y轴于点E,则MB+MD的最小值为BQ(即:B、M、Q三点共线),则CN+MN+MD的最小值=MB+MD的最小值=BQ,∵DQ⊥AC,AC∥BD,∴∠QDB=90°,作DF⊥x轴交于点F,DF=ADsin∠DAF=4√3×12=2√3,∵B、C关于直线l对称,即直线l是∠EAF的平分线,∴ED=FD=2√3,则QD=4√3,BD=4,∴BQ=√(4√3)2+42=8.即CN+NM+MD的最小值为8.4.(江苏省句容市第二中学)如图①,在平面直角坐标系中,二次函数y=−13x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ . (1)填空:b = ,c = ;(2)在点P ,Q 运动过程中,△APQ 可能是直角三角形吗?请说明理由;(3)点M 在抛物线上,且△AOM 的面积与△AOC 的面积相等,求出点M 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。
二、 抛物线上动点5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点B (-3.0).与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.(3) 如图②.若点E为第二象限抛物线上一动点.连接BE、CE.求四边形BOCE面积的最大值.并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时.以C为圆心CM为半径画弧.与对称轴交点即为所求点P.②M为顶点时.以M为圆心MC为半径画弧.与对称轴交点即为所求点P.③P为顶点时.线段MC的垂直平分线与对称轴交点即为所求点P。
第(3)问方法一.先写出面积函数关系式.再求最大值(涉及二次函数最值);方法二.先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组).再求面积。
07 08 09动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动共同点:⑤探究存在性问题时.先画出图形.再根据图形性质探究答案。
二次函数的动态问题(动点)1.如图.已知抛物线1C 与坐标轴的交点依次是(40)A -,.(20)B -,.(08)E ,.①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式;(1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M .抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧).顶点为N .四边形MDNA 的面积为S .若点A .点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时.点M .点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动.直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式.并写出自变量t 的取值范围;(3)当t 为何值时.四边形MDNA 的面积S 有最大值.并求出此最大值;(4)在运动过程中.四边形MDNA 能否形成矩形?若能.求出此时t 的值;若不能.请说明理由.[解] (1)点(40)A -,.点(20)B -,.点(08)E ,关于原点的对称点分别为(40)D ,.(20)C ,.(08)F -,.设抛物线2C 的解析式是2(0)y ax bx c a =++≠.则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,. 解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥.垂足为H .当运动到时刻t 时.282AD OD t ==-.12NH t =+.根据中心对称的性质OA OD OM ON ==,.所以四边形MDNA 是平行四边形. 所以2ADN S S =△.所以.四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++.因为运动至点A 与点D 重合为止.据题意可知04t <≤.所以.所求关系式是24148S t t =-++.t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭.(04t <≤). 所以74t =时.S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形.由(2)知四边形MDNA 是平行四边形.对角线是AD MN ,.所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA 可以形成矩形.此时2t =.[点评]本题以二次函数为背景.结合动态问题、存在性问题、最值问题.是一道较传统的压轴题.能力要求较高。
2. (06福建龙岩卷)如图.已知抛物线234y x bx c =-++与坐标轴交于A B C ,,三点.点A 的横坐标为1-.过点(03)C ,的直线334y x t=-+与x 轴交于点Q .点P 是线段BC 上的一个动点.PH OB ⊥于点H .若5PB t =.且01t <<.(1)确定b c ,的值:__________b c ==,;(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示):(______)(______)(______)B Q P ,,,,,;(3)依点P 的变化.是否存在t 的值.使PQB △为等腰三角形?若存在.求出所有t 的值;若不存在.说明理由.[解] (1)94b =3c = (2)(40)B , (40)Q t , (443)P t t -,(3)存在t 的值.有以下三种情况 ①当PQ PB =时PH OB ⊥.则GH HB = 4444t t t ∴--= 13t ∴=②当PB QB =时 得445t t -= 49t ∴=③当PQ QB =时.如图解法一:过Q 作QD BP ⊥.又PQ QB =则522BP BD t ==又BDQ BOC △∽△BD BQBO BC ∴=544245tt -∴= 3257t ∴=解法二:作Rt OBC △斜边中线OE则522BC OE BE BE ===,.此时OEB PQB △∽△BE OBBQ PB∴= 542445t t ∴=-3257t ∴=解法三:在Rt PHQ △中有222QH PH PQ += 222(84)(3)(44)t t t ∴-+=-C OCO257320t t ∴-=32057t t ∴==,(舍去) 又01t <<∴当13t =或49或3257时.PQB △为等腰三角形.解法四: 数学往往有两个思考方向:代数和几何.有时可以独立思考.有时需要综合运用。
代数讨论:计算出△PQB 三边长度.均用t 表示.再讨论分析 Rt △PHQ 中用勾股定理计算PQ 长度.而PB 、BQ 长度都可以直接直接用t 表示.进行分组讨论即可计算。
[点评]此题综合性较强.涉及函数、相似性等代数、几何知识.1、2小题不难.第3小题是比较常规的关于等腰三角形的分类讨论.需要注意的是在进行讨论并且得出结论后应当检验.在本题中若求出的t 值与题目中的01t <<矛盾.应舍去 3.如图1.已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2.取与线段AB 等长的一根橡皮筋.端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动.动点P 将与A B ,构成无数个三角形.这些三角形中是否存在一个面积最大的三角形?如果存在.求出最大面积.并指出此时P 点的坐标;如果不存在.请简要说明理由.[解] (1)解:依题意得216412y x y x⎧=-+⎪⎪⎨⎪=-⎪⎩解之得12126432x x y y ==-⎧⎧⎨⎨=-=⎩⎩(63)(42)A B ∴--,,,(2)作AB 的垂直平分线交x 轴.y 轴于C D ,两点.交AB 于M (如图1) 由(1)可知:OA OB ==图2 图1AB ∴=12OM AB OB ∴=-= 过B 作BE x ⊥轴.E 为垂足 由BEO OCM △∽△.得:54OC OM OC OB OE =∴=,. 同理:55500242OD C D ⎛⎫⎛⎫=∴- ⎪ ⎪⎝⎭⎝⎭,,,, 设CD 的解析式为(0)y kx b k =+≠52045522k k b b b ⎧==+⎧⎪⎪⎪∴∴⎨⎨=-⎪⎪-=⎩⎪⎩AB ∴的垂直平分线的解析式为:522y x =-. (3)若存在点P 使APB △的面积最大.则点P 在与直线AB 平行且和抛物线只有一个交点的直线12y x m =-+上.并设该直线与x 轴.y 轴交于G H ,两点(如图2). 212164y x m y x ⎧=-+⎪⎪∴⎨⎪=-+⎪⎩2116042x x m ∴-+-=抛物线与直线只有一个交点.2114(6)024m ⎛⎫∴--⨯-= ⎪⎝⎭.2523144m P ⎛⎫∴=∴ ⎪⎝⎭, 在直线12524GH y x =-+:中. 25250024G H ⎛⎫⎛⎫∴ ⎪ ⎪⎝⎭⎝⎭,,,GH ∴=图2设O 到GH 的距离为d .11221255125252224552GH d OG OH d d AB GH ∴=∴⨯=⨯⨯∴=,∥P ∴到AB 的距离等于O 到GH 的距离d .另解:过P 做PC ∥y 轴.PC 交AB 于C.当PC 最大时△PBA 在AB 边上的高h 最大(h 与PC 夹角固定).则S △PBA 最大 → 问题转化为求PC 最大值.设P (x, ),C (x, ),从而可以表示PC 长度.进行极值求取。
最后.以PC 为底边.分别计算S △PBC 和S △PAC 即可。
[点评]这是一道涉及二次函数、方程、几何知识的综合压轴题.有一定的能力要求.第3小题是一个最值问题.解此类题时需数形结合方可较轻松的解决问题。