2012-2013年度人教版八年级数学上册期末模拟试题(4)

合集下载

人教版八年级(上)期末模拟数学试卷(含答案)

人教版八年级(上)期末模拟数学试卷(含答案)

人教版八年级(上)期末模拟数学试卷(含答案)一、选择题(每小题3分,共36分)1.一下列语句中,属于定义的是()A.两点确定一条直线B.平行线的同位角相等C.两点之间线段最短D.直线外一点到直线的垂线段的长度,叫做点到直线的距离2.如果分式的值为0,则x的值是()A.1 B.0 C.﹣1 D.±13.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直4.在解分式方程+=2时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合B.转化思想C.模型思想D.特殊到一般5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.17.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°8.把命题“同角的余角相等”用“如果…那么…”的形式写出来,下列写法正确的是()A.如果几个角是同一个角的余角,那么这几个角都相等B.如果一个角是这个角的余角,那么这两个角相等C.如果两个角是同角,那么同角的余角都相等D.如果两个角的和为90゜,那么这两个角可能相等9.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A.=B.=C.=D.=10.如图,平行四边形ABCD的对角线AC,BD交于点O,已知BD=12,AC=6,△BOC 的周长为17,则AD的长为()A.7 B.8 C.9 D.1011.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠312.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°13.当x=时,分式与的值相等.14.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是15.请选择一组a,b的值,写出一个关于x的形如的分式方程,使它的解是x=0,这样的分式方程可以是(答案不唯一).16.规定,若,则x为.17.(3分)某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为18.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.19.一个二位数的十位数字与个位数字的和是12,如果交换十位数字与个位数字的位置并把所得到的新的二位数作为分子,把原来的二位数作为分母,所得的分数约分为,则这个二位数是.20.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BD 的平分线与∠A1CD的平分线交于点A2,若∠A=60°,则∠A2的度数为.21.(9分)如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)22.(10分)解下列分式方程:(1)﹣=40(2)+=.23.(10分)我市准备挑选一名跳高运动员参加省中学生运动会,对跳高队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下甲:170 165 168 169 172 173 168 167乙:163 174 173 162 163 171 170 176(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm就很可能获得冠军该校为了获得冠军,可能选哪位运动员参赛?为什么?若预测跳过170m才能得冠军,可能选哪位运动员参赛?为什么?24.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E,求证:DE=AC.25.(10分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?26.(11分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.参考答案一、选择题1.下列语句中,属于定义的是()A.两点确定一条直线B.平行线的同位角相等C.两点之间线段最短D.直线外一点到直线的垂线段的长度,叫做点到直线的距离【分析】根据定义的概念对各个选项进行分析,从而得到答案.解:A.两点确定一条直线,这是一个命题;B.平行线的同位角相等,这是一个命题;C.两点之间线段最短,这是一个命题;D.直线外一点到直线的垂线段的长度,叫做点到直线的距离不是命题,这是一个定义;故选:D.【点评】此题考查了命题与定理以及定义,关键是能根据命题与定理以及定义的区别得出属于定义的语句.2.如果分式的值为0,则x的值是()A.1 B.0 C.﹣1 D.±1【分析】根据分式的值为零的条件可以求出x的值.解:由分式的值为零的条件得x2﹣1=0,2x+2≠0,由x2﹣1=0,得x=±1,由2x+2≠0,得x≠﹣1,综上,得x=1.故选:A.【点评】本题考查了分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选:D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.4.在解分式方程+=2时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合B.转化思想C.模型思想D.特殊到一般【分析】分式方程去分母转化为整式方程,确定出用到的数学思想即可.解:在解分式方程+=2时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是转化思想,故选:B.【点评】此题考查了解分式方程,利用了转化的数学思想,解分式方程时注意要检验.5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选:C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.解:(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选:C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.7.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选:B.【点评】本题考查了平行线的性质,熟记平行线的性质是解题的关键.8.把命题“同角的余角相等”用“如果…那么…”的形式写出来,下列写法正确的是()A.如果几个角是同一个角的余角,那么这几个角都相等B.如果一个角是这个角的余角,那么这两个角相等C.如果两个角是同角,那么同角的余角都相等D.如果两个角的和为90゜,那么这两个角可能相等【分析】根据命题有题设与结论两部分组成即可把同角的余角相等”用“如果…那么…”的形式,然后进行判断.解:命题“同角的余角相等”用“如果…那么…”的形式写出为:如果几个角是同一个角的余角,那么这几个角都相等.故选:A.【点评】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A.=B.=C.=D.=【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.解:设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得,=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.如图,平行四边形ABCD的对角线AC,BD交于点O,已知BD=12,AC=6,△BOC 的周长为17,则AD的长为()A.7 B.8 C.9 D.10【分析】首先求出OB+OC,再根据△OBC的周长计算即可;解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,AD=BC,∵△BOC的周长为17,∴BC+OB+OC=17,∴BC=8,∴AD=BC=8,故选:B.【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C.【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.12.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.二、填空题(每题3分,共24分)13.当x=8 时,分式与的值相等.【分析】先根据题意列出方程,再求出方程的解即可.解:根据题意得:=,解得:x=8,经检验x=8是方程=的解,故答案为:8.【点评】本题考查了解分式方程,能根据题意得出方程是解此题的关键.14.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是7【分析】首先由平均数的定义得出x1+x2+…,+x n的值,再运用求算术平均数的公式计算,求出样本x1+2,x2+2,…,x n+2的平均数.解:∵样本x1,x2,…x n的平均数为5,(x1+2)+(x2+2)+…+(x n+2)=(x1+x2+…+x n)+2n∴样本x1+2,x2+2,…,x n+2的平均数=5+2=7,故答案为:7.【点评】主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.15.请选择一组a,b的值,写出一个关于x的形如的分式方程,使它的解是x=0,这样的分式方程可以是(答案不唯一).【分析】由题知,把x=0代入可得,a=﹣2b,所以只需保证所给的两个常数具备这种关系就行.解:本题考查方程解的意义,既然方程的解是x=0,所以=b,即a=﹣2b,因此,令b=1,则可得a=﹣2所以有=1.【点评】本题的结论是开放的,答案不唯一,实际上a、b的值只要满足a=﹣2b即可,比如a=2,b=﹣1.16.规定,若,则x为﹣1 .【分析】首先根据题干条件得出x•(x+2)=﹣,从而得出方程﹣=,解这个方程,即可求出x的值.解:∵,∴x•(x+2)=﹣,又∵,∴﹣=,方程两边同乘以x(x﹣2),得(x+2)﹣x=2(x+2),解得x=﹣1,将x=﹣1代入x(x﹣2)=3≠0,所以原方程的解为:x=﹣1.故若,则x为﹣1.【点评】本题考查了学生读题、做题的能力及解分式方程的能力.能够根据规定得出方程﹣=,是解决本题的关键.17.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为84【分析】根据加权平均数的计算公式进行计算即可.解:张明的平均成绩为:(90×3+80×3+83×2+82×2)÷10=84;故答案为:84.【点评】此题考查了加权平均数的计算公式,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.18.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为125°.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,由三角形内角和定理即可求出∠BPC的度数.解:∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,∴∠P=180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.【点评】本题考查的是三角形内角和定理及角平分线的定义,熟知三角形的内角和定理是解答此题的关键.19.一个二位数的十位数字与个位数字的和是12,如果交换十位数字与个位数字的位置并把所得到的新的二位数作为分子,把原来的二位数作为分母,所得的分数约分为,则这个二位数是84 .【分析】设这个二位数的十位数字为x,则个位数字为(12﹣x),根据“如果交换十位数字与个位数字的位置并把所得到的新的二位数作为分子,把原来的二位数作为分母,所得的分数约分为”,即可得出关于x的分式方程,经检验后即可得出结论.解:设这个二位数的十位数字为x,则个位数字为(12﹣x),根据题意得:=,解得:x=8,经检验,x=8是所列分式方程的解,且符合题意,∴12﹣x=4.故答案为:84.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BD 的平分线与∠A1CD的平分线交于点A2,若∠A=60°,则∠A2的度数为15°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,然后整理得到∠A=∠A,同理可得∠A2=∠A1.1解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A,同理可得∠A2=∠A1=××60°=15°,故答案为15°.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的是解题的关键.三、解答题(本大题共计60分)21.(9分)如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)【分析】过D作DG垂直AB于点G,由三个角为直角的四边形为矩形得到四边形CEDF 为矩形,由AD为角平分线,利用角平分线定理得到DG=DF,同理得到DE=DG,等量代换得到DE=DF,利用邻边相等的矩形为正方形即可得证.证明:如图,过D作DG⊥AB,交AB于点G,∵∠C=∠DEC=∠DFC=90°,∴四边形CEDF为矩形,∵AD平分∠CAB,DF⊥AC,DG⊥AB,∴DF=DG;∵BD平分∠ABC,DG⊥AB,DE⊥BC,∴DE=DG,∴DE=DF,∴四边形CEDF为正方形.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.22.(10分)解下列分式方程:(1)﹣=40(2)+=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)方程整理得:﹣=40,去分母得:40x=30,解得:x=,经检验x=是分式方程的解;(2)去分母得:2+2x=5x+5,移项合并得:3x=﹣3,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(10分)我市准备挑选一名跳高运动员参加省中学生运动会,对跳高队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下甲:170 165 168 169 172 173 168 167乙:163 174 173 162 163 171 170 176(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm就很可能获得冠军该校为了获得冠军,可能选哪位运动员参赛?为什么?若预测跳过170m才能得冠军,可能选哪位运动员参赛?为什么?【分析】(1)根据平均数的计算方法,将数据先求和,再除以8即可得到各自的平均数;(2)分别计算、并比较两人的方差即可判断.(3)根据题意,分析数据,若跳过165cm就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm,而乙只有5次;若跳过170cm才能得冠军,则在8次成绩中,甲只有3次都跳过了170cm,而乙有5次.解:(1)分别计算甲、乙两人的跳高平均成绩:甲的平均成绩为:(170+165+168+169+172+173+168+167)=169cm,乙的平均成绩为:(163+174+173+162+163+171+170+176)=169cm;(2)分别计算甲、乙两人的跳高成绩的方差分别:2=×48=6cm2,S甲2=×216=27cm2,S乙∴甲运动员的成绩更为稳定;(3)若跳过165cm就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm,而乙只有5次,所以应选甲运动员参加;若跳过170cm才能得冠军,则在8次成绩中,甲只有3次都跳过了170cm,而乙有5次,所以应选乙运动员参加.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E,求证:DE=AC.【分析】先根据菱形的性质得出AB∥CD,AC⊥BD,再证明DE∥AC,然后根据平行四边形的判定和性质证明即可.证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°.∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形∴DE=AC.【点评】此题考查了菱形的性质、平行四边形的性质和判定等知识,熟练掌握菱形的性质和平行四边形的判定是解决问题的关键.25.(10分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?【分析】首先设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程×0.8=,解方程即可.解:设九年级学生有x 人,根据题意,列方程得:×0.8=,整理得:0.8(x +88)=x ,解之得:x =352,经检验x =352是原方程的解,答:这个学校九年级学生有352人.【点评】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.26.(11分)如图,点P 是正方形ABCD 的对角线AC 上的一点,PM ⊥AB ,PN ⊥BC ,垂足分别为点M ,N ,求证:DP =MN .【分析】连结PB ,由正方形的性质得到BC =D C ,∠BCP =∠DCP ,接下来证明△CBP ≌△CDP ,于是得到DP =BP ,然后证明四边形BNPM 是矩形,由矩形的对角线相等可得到BP =MN ,从而等量代换可证得问题的答案.证明:如图,连结PB .∵四边形ABCD 是正方形,∴BC =DC ,∠BCP =∠DCP =45°.∵在△CBP 和△CDP 中,,∴△CBP ≌△CDP (SAS ).∴DP =BP .∵PM ⊥AB ,PN ⊥BC ,∠MBN =90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.【点评】本题主要考查的是正方形的性质、全等三角形的性质和判定、矩形的性质和判定,证得四边形BFPE为矩形是解题的关键.八年级(上)数学期末考试题及答案一.选择题(满分40分,每小题4分)1.等腰三角形两边长分别为2、5,则这个等腰三角形的周长为()A.9 B.12C.9或12 D.上述答案都不对2.下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a63.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±14.如图,已知AC∥BD,要使△ABC≌△BAD需再补充一个条件,下列条件中,不能选择的是()A.BC∥AD B.AC=BD C.BC=AD D.∠C=∠D 5.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为()A.12 B.6 C.7 D.87.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.528.如图,△ABC中,∠C=90°,∠B=15°,AB的垂直平分线与BC交于点D,交AB于E,DB=10,则AC的长为()A.2.5 B.5 C.10 D.209.已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA﹣PB|最大时,点P 的坐标为()A.(﹣1,0)B.C.D.(1,0)10.如图,在等边三角形ABC中,AD=BE=CF,D、E、F不是各边的中点,AE、BF、CD分别交于P、M、H,如果把三个三角形全等叫做一组全等三角形,那么图中全等三角形有()A.6组B.5组C.4组D.3组二.填空题(共10小题,满分40分,每小题4分)11.将0.000 002 06用科学记数法表示为.12.分解因式:4m2﹣16n2=.13.已知点A(a,5)与B(2,b)关于y轴对称,则a+b=.14.已知多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则此多边形的内角和是.15.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,∠ADE=∠EDB,则∠DEB 为.16.若(x+3)0=1,则x应满足条件.17.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中正确结论的序号是.18.如图,在矩形纸片ABCD中,AB=6,BC=10,BC边上有一点E,BE=4,将纸片折叠,使A点与E点重合,折痕MN交AD于M点,则线段AM的长是.19.如图,图(1)的瓶子中盛满了水,如果将这个瓶子中的水全部倒入图(2)的杯子中,那么一共需要个这样的杯子.(不考虑是否整除)20.如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三.解答题(共3小题,满分28分)21.(16分)计算:(1)()2018×(﹣)2019×(﹣1)2017(2)[(x﹣y)2+(x+y)(x﹣y)]÷2x(3)(x+2y﹣3)(x﹣2y+3)(4)(1﹣)÷22.(6分)解方程:=223.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.四.解答题(共2小题,满分12分,每小题6分)24.(6分)已知某个图形是按下面方法连接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).(1)请连接图案,它是一个什么汉字?(2)作出这个图案关于y轴的轴对称图形,并写出新图案相应各端点的坐标,你得到一个什么汉字?25.(6分)如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为.五.解答题(共2小题,满分14分,每小题7分)26.(7分)如图,在三角形ABC中,∠C=90°,AC=6cm,BC=10cm,点P从B点开始向C点运动速度是每秒1cm,设运动时间是t秒,(1)用含t的代数式来表示三角形ACP的面积.(2)当三角形ACP的面积是三角形ABC的面积的一半时,求t的值,并指出此时点P在BC上的什么位置?27.(7分)在等腰三角形ABC的腰AC上取一点D,腰AB的延长线上取一点E,使CD=BE,交BC于M,探索能得到的结论,并证明.解:结论是.证明:六.解答题(共1小题,满分8分,每小题8分)28.(8分)某中学为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书本数相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,科普书的单价与去年相同,为了普及科普知识,书店举办了每买三本科普书就赠一本文学书的优惠活动,这所中学今年计划在优惠活动期间,再购进文学书和科普书共200本,且购买文学书和科普书的总费用不超过1880元,这所中学今年最多能购进多少本文学书?七.解答题(共1小题,满分8分,每小题8分)29.(8分)如图,△ABC和△CDE都是等边三角形,A、C、E在一条直线上.(1)线段AD与BE相等吗?请证明你的结论;(2)设AD与BE交于点O,求∠AOE的度数.。

2012—2013学年八年级上册数学期末试卷

2012—2013学年八年级上册数学期末试卷

2012—2013学年八年级上册数学期末试卷2012-2013学年八年级上册数学期末试卷一、选择题(本大题共6小题,每小题3分,共18分)1.在3.14、、、、pi;这五个数中,无理数有 ( )A.0个B.1个C.2个D.3个2.下列交通标识中,是轴对称图形的是 ( )3.点M(-3,2)关于轴对称的点的坐标为 ( )A.(-3,-2)B.(3,-2)C.(3,2)D.(-3,2)4.下列计算正确的是 ( )A.x2bull;x2=2x4B.(-2a)3= -8a3C.(a3)2=a5D. m3÷m3=m5.下列关系中,不是的函数的是 ( )A. ( )B.C.D.6.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线Brarr;Crarr;D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为 ( )二、填空题(本大题共8小题,每小题3分,共24分)7.已知木星的质量约是a×1024吨,地球的质量约是3a×1021吨,则木星的质量约是地球质量的___________倍.(结果取整数)8.若一个正数的两个平方根分别为,则这个正数是 ;9.分解因式:。

10.已知,则 .11.已知a、b均为实数且,则a2+b2=12.在函数中,自变量的取值范围是 .13如图:已知AE∥BF, ang;E=ang;F,要使△ADE≌△BCF,可添加的条件是_____________(写一个即可).14. 如图OA、AB分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线BA表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8 秒钟后,甲超过了乙,其中正确的说法是 (填上正确序号)。

(第13题图) ( 第14题图)三、(本大题共4小题,每小题6分,共24分)15、先化简,再求值: ,其中16、已知是正比例函数,且函数图象经过第一、三象限,求的值17、如图所示,要在街道旁修建一个奶站,向居民A,B 提供牛奶,奶站应建在什么地方,才能使从A,B到它的距离之和最短?(在图中作出奶站的位置点P,不要求写作法和证明。

2013年秋八年级数学上学期期末模拟试卷(有答案)

2013年秋八年级数学上学期期末模拟试卷(有答案)

2013年秋八年级数学上学期期末模拟试卷(有答案)2013年秋八年级上学期期末数学模拟试卷一、选择题:(每题3分,共30分)1、下列运算不正确的是()A、x2•x3=x5B、(x2)3=x6C、x3+x3=2x6D、(-2x)3=-8x32、下列式子中,从左到右的变形是因式分解的是().A.(x-1)(x-2)=x2-3x+2B.x2-3x+2=(x-1)(x-2)C.x2+4x+4=x(x一4)+4D.x2+y2=(x+y)(x—y)3、如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有()A.1个B.4个C.3个D.2个4.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1、y2大小关系是()(A)y1>y2(B)y1=y2(C)y15.如下图:l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量()A小于3吨B大于3吨C小于4吨D大于4吨6.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是()A.108°B.100°C.90°D.80°7、下列各组中,一定全等的是A、所有的直角三角形B、两个等边三角形C、各有一条边相等且有一个角为110°的两个等腰三角形D、斜边和一锐角对应相等的两个直角三角形8、如图,是在同一坐标系内作出的一次函数y1、y2的图象l1、l2,设y1=k1x+b1,y2=k2x+b2,则方程组y1=k1x+b1y2=k2x+b2的解是_______.A、x=-2y=2B、x=-2y=3C、x=-3y=3D、x=-3y=49、.已知正比例函数(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是().10.直线与两坐标轴分别交于A、B两点,点C在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C最多有()。

人教版八年级(上)期末模拟数学试卷及答案

人教版八年级(上)期末模拟数学试卷及答案

人教版八年级(上)期末模拟数学试卷及答案一、选择题(每题3分,共30分)1.已知,,则的值是 ( )A.1 B.13 C.17 D.252.如果一个多边形的每个内角的度数都是108,那么这个多边形的边数是( ) A.3 B.4 C.5 D.63.三角形三个内角度数之比是1:1:2,则这个三角形是 ( )A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形4.三角形内有一点到三个顶点的距离都相等,则这点一定是该三角形( )A.三条中线的交点 B.三条高线的交点C.三内角平分线的交点 D.三边垂直平分线的交点5.下列图形是轴对称图形的有 ( )A.1个 B.2个 C.3个 D.4个6.点P(4,5)关于y轴对称的点的坐标是()A.(-4,5) B.(-4,-5) C.(4,-5) D.(4,5)7.下列各式不是分式的是 ( )A. B. C. D.8.下列各图形中具有稳定性的是 ( )A.三角形 B.四边形 C.五边形 D.六边形9.下列计算正确的是 ( )A. B. C. D.10.等腰三角形的两边分别为2和6,则这个三角形的周长是 ( )A.10 B.14 C.10或14 D.以上答案都不对二、填空题(每题3分共30分)11.氧原子的直径约为0. 000 000 000 148 m,用科学记数法表示这个数为 m. 12.把分解因式为 .13.分式有意义的x的取值范围是 .14.已知是完全平方式,则a的值是 .15.计算: .16.△ABC中,AB=3,BC=7,则AC的长度x的取值范围是 .17.如图,在△ABC中AB=AC,AD⊥BC于点D,∠BAD=25,则∠ACD= .18.如图:AB∥CD, GN平分么BGH, HN平分么DHG,点N到直线AB的距离是2,则点N到直线CD的距离是 .19.在△ABC中,∠A:∠B:∠C=1:2:3,CD AB于点D,若AB=10,则BD= .20.如图,已知AB=AC=AD,么CAD=60,分别迮接BC、BD,作AE平分∠BAC交BD于点E,若BE=4,ED=8,则DF= .三、解答题(共60分)21.(7分)化简求值:其中a=1.22.(7分)如图5,在平面直角坐标系中,A(-l,2),B(l,1),C(-4,-1).(1)在图中作出△ABC关于x轴对称的△A1B1C1.(2)写出点A1,B1,CI的坐标(直接写答案)A1 B1 C123.(8分)如图,已知∠ACD=∠ADC,∠DAC=∠EAB,AE=AB.求证:BC=ED24.(8分)已知,求的值 .25.(10分)为促进我市教育均衡发展,市政府向某文教店采购一批绘图工具套装分配到各学校,该店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.(1)求A、B两种品牌套装进价分别为多少元?(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则至少购进A品牌工具套装多少套?26.(10分)已知△ABC是等边三角形,在直线AC、直线BC上分别取点D和点E,且AD=CE,直线BD、AE相交于点F.(1)如图l所示,当点D、点E分别在线段CA、BC上时,求证:BD=AE;(2)如图2所示,当点D、点E分别在CA、BC的延长线时,求∠BFE的度数;(3)如图3所示,在(2)的条件下,过点C作CM∥BD,交EF于点M,若DF:AF:AM=l:2:4,BC=12,求CE的长度.27.(10分)如图,△ABC为等腰直角三角形,∠ABC=90,AB=BC,点A在x轴的负半轴上,点B是y轴上的一个动点,点C在点B的上方.(1)如图1.当点A的坐标为(-3,0),点B的坐标为(0,1)时,求点C的坐标;(2)设点A的坐标为(a,O),点B的坐标为(O,b).过点C作CD上y轴于点D.在点B运动过程中(不包含△ABC的一边与坐标轴重合的情况),猜想线段OD的长与a、b的数量关系,并说明理由:(3)在(2)的条件下如图4,当x轴平分∠BAC时,BC交x轴于点E,过点C作CF⊥x轴于点F.说明此时线段CF与AE的数量关系(用含a、b的式子表示).答案ABAAB CACCB人教版数学八年级上册期末考试试题(答案) 一、选择题(本大题共6小题,每小题3分,共18分)1.下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.2.下列图形是中心对称图形的是()A.B.C.D.3.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读书册数的众数、中位数是()A.3,3B.3,2C.2,3D.2,24.下列命题是真命题的是()A.如果a2=b2,则a=bB.两边一角对应相等的两个三角形全等C.的算术平方根是9D.x=2,y=1是方程2x﹣y=3的解5.如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24B.100π﹣48C.25π﹣24D.25π﹣486.已知一次函数y=﹣x+1的图象与x轴、y轴分别交于点A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,则这样的点M有()A.3个B.4个C.5个D.6个二、填空题(本大题共6小题,每小题3分,共18分)7.的算术平方根是.8.小王在求点A关于x轴对称的点的坐标时,由于把x轴看成y轴,结果是(2,﹣5),那么正确的答案应该是.9.如图,在数轴上标注了三段范围,则表示的点落在第段内.10.滴滴快车是一种便捷的出行工具,计价规则如表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差.11.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.12.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)若x,y为实数,且+(x﹣y+3)2=0,求x+y的值.(2)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是多少?14.(6分)如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.15.(6分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.16.(6分)若三角形的三个内角的比是1:2:3,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.17.(6分)已知点A(5,a)与点B(5,﹣3)关于x轴对称,b为的小数部分,求;(1)a+b的值;(2)化简:+(+1)b﹣.四、(本大题共3小题,每小题8分,共24分)18.(8分)某单位有一块四边形的空地,∠B=90°,量得各边的长度如图(单位:米),现计划在空地内种草,若每平方米草地造价30元,这块地全部种草的费用是多少元?19.(8分)现由6个大小相同的小正方形组成的方格中:(1)如图①,A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图②,连接三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)20.(8分)某文具店销售功能完全相同的A、B两种品牌的计算器,若购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和2个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,请分别求出y1、y2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知△ABC与△EFC都是等腰直角三角形,其中∠ACB=∠ECF=90°,E为AB边上一点.(1)试判断AE与BF的大小关系,并说明理由;(2)求证:AE2+BE2=EF2.22.(9分)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y 轴上的一个动点,且A、B、C三点不在同一条直线上.(1)求出AB的长.(2)求出△ABC的周长的最小值?六、(本大题共12分)23.(12分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x 轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D 的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.2017-2018学年江西省吉安市吉州区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.【解答】解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故选:B.2.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.3.【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选:B.4.【解答】解:A、如果a2=b2,则a=b或a=﹣b,所以A选项为假命题;B、两边和它们的夹角对应相等的两个三角形全等,所以B选项为假命题;C、=9,而9的算术平方根为3,所以C选项为假命题;D、x=2,y=1是方程2x﹣y=3的解,所以D选项为真命题.故选:D.5.【解答】解:∵Rt△ABC中∠B=90°,AB=8,BC=6,∴AC===10,∴AC为直径的圆的半径为5,∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24.故选:C.6.【解答】解:如图,x轴上使以点A、B、M为顶点的三角形是等腰三角形的点M如图所示,共有4个.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.8.【解答】解:∵点A关于y轴对称的点的坐标(2,﹣5),∴点A的坐标为(﹣2,﹣5),∴点A关于x轴的对称点的坐标为(﹣2,5).故答案为:(﹣2,5).9.【解答】解:∵2.42=5.76,2.62=6.76,2.82=7.84,∴的点落在第③段内.故答案为:③.10.【解答】解:设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7),10.8+0.3x=16.5+0.3y,0.3(x﹣y)=5.7,x﹣y=19.故这两辆滴滴快车的行车时间相差19分钟.故答案是:19分钟.11.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.12.【解答】解:由函数图象,得“龟兔再次赛跑”的路程为1 000米,兔子子乌龟出发40分钟后出发的,乌龟在途中休息了10分钟,故①③正确,∵y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,20x﹣200=100x﹣4000,解得x=47.5,此时y1=y2=750米,故④正确故答案为①③④.三、(本大题共5小题,每小题6分,共30分)13.【解答】解:(1)由题意知,①+②,得:3x=﹣3,解得:x=﹣1,将x=﹣1代入①,得:﹣2+y=0,解得:y=2,则x+y=﹣1+2=1;(2)如图,∵直线a∥b,∴∠1=∠3=60°,∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=30°.14.【解答】解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).15.【解答】解:(1)甲=(83+79+90)÷3=84,=(85+80+75)÷3=80,乙=(80+90+73)÷3=81.丙从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.16.【解答】解:(1)∵三角形的三个内角的比是1:2:3,∴可设三个内角分别为k,2k,3k,∵k+2k+3k=180°,∴k=30°,∴三角形的三个内角分别是:30°、60°、90°;(2)∵由(1)知三角形是直角三角形,则一条直角边为1,斜边为2,由根据勾股定理,得另外一边的平方是22﹣12=3.17.【解答】解:(1)∵点A(5,a)与点B(5,﹣3)关于x轴对称,∴a=3,∵b为的小数部分,∴b=﹣1,∴a+b=+2;(2)原式=+(+1)(+2)﹣=+3+4.四、(本大题共3小题,每小题8分,共24分)18.【解答】解:连接AC,∵∠B=90°,∴在Rt△ABC中,AC2=AB2+BC=32+42=52,在△ACD中,CD2=132,AD2=122,∵52+122=132,∴AC2+AD2=CD2,∴∠DAC=90°,∴S四边形ABCD=S△BAC+S△DAC=AB•BC+AC•AD=36cm2,∵36×30=1080(元),∴这块地全部种草的费用是1080元.19.【解答】解:(1)如图①,连接AC,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,AB=BC,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC,综上所述,AB与BC的关系为:AB⊥BC且AB=BC;(2)∠α+∠β=45°.证明如下:如图②,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形,∴∠α+∠β=45°.20.【解答】解:(1)设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,,解得:,答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:①当0≤x≤5时,y2=32x,②当x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48,综上所述:y1=24x,y2=;(3)当x=50时,y1=24×50=1200元;y2=22.4×50+48=1168元,所以,购买超过50个的计算器时,B品牌的计算器更合算.五、(本大题共2小题,每小题9分,共18分)21.【解答】解:(1)AE=BF.理由如下:∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF.又AC=BC,CE=CF,∴△ACE≌△BCF,∴AE=BF.(2)由已知,得∠CAE=∠CBF=45°,则∠EBF=90°.则BF2+BE2=EF2,又AE=BF,因此AE2+BE2=EF2.22.【解答】解:(1)作AD⊥OB于D,如图1所示:则∠ADB=90°,OD=1,AD=4,OB=3,∴BD=3﹣1=2,∴AB=;(2)要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A′,连接BA′交y轴于点C,点C即为使AC+BC最小的点,作A′E⊥x轴于E,由对称的性质得:AC=A′C,则AC+BC=A′B,A′E=4,OE=1,∴BE=4,由勾股定理得:A′B=,∴△ABC的周长的最小值为2+4.六、(本大题共12分)23.【解答】解:(1)∵经过A(0,1),∴b=1,∴直线AB的解析式是.当y=0时,,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).八年级上册数学期末考试试题【答案】一.选择题(共10小题,满分30分)1.点P(2,﹣4)到y轴的距离是()A.2 B.﹣4 C.﹣2 D.42.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个3.下列各组数中,不是勾股数的是()A.0.3,0.4,0.5 B.9,40,41C.6,8,10 D.7,24,254.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°5.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游6.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.7.如图,∠1=57°,则∠2的度数为()A.120°B.123°C.130°D.147°8.下列各式成立的是()A.=±5 B.±=4 C.=5 D.=±19.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁10.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.+的有理化因式是.12.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是(填序号)13.计算:×+=.14.某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本件.15.某市实行阶梯电价制度,居民家庭每月用电量不超过80千瓦时时,实行“基本电价”;当每月用电量超过80千瓦时时,超过部分实行“提高电价”.去年小张家4月用电量为100千瓦时,交电费68元;5月用电量为120千瓦时,交电费88元.则基本电价”是元/千瓦时,“提高电价”是元/千瓦时.16.如图,△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1是等腰直角三角形,其中点A1,A2,…A在x轴上,点B1,B2…B n在直线y=x上,已知OA1=1,则OA2017=.n三.解答题(共3小题,满分18分,每小题6分)17.(6分)计算:18.(6分)解方程组:(1)(2)19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)在(1)的条件下,连接CC1交AB于点D,请标出点D,并直接写出CD的长.四.解答题(共3小题,满分21分,每小题7分)20.(7分)某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?21.(7分)某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛其预赛成绩如图:(1)根据上图填写下表(2)根据上表中的平均数和中位数你认为哪班的成绩较好?并说明你的理由22.(7分)已知:AE是△ABC的外角∠CAD的平分线.(1)若AE∥BC,如图1,试说明∠B=∠C;(2)若AE交BC的延长线于点E,如图2,直接写出反应∠B、∠ACB、∠AEC之间关系的等式.五.解答题(共3小题,满分27分,每小题9分)23.(9分)张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y与x之间的函数关系.乙(1)甲采摘园的门票是元,两个采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.24.(9分)如图,Rt△ABC中,∠BAC=90°,AC=9,AB=12.按如图所示方式折叠,使点B、C重合,折痕为DE,连接AE.求AE与CD的长.25.(9分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)参考答案一.选择题1.点P(2,﹣4)到y轴的距离是()A.2 B.﹣4 C.﹣2 D.4【分析】根据点到y轴的距离等于横坐标的绝对值解答.解:点P(2,﹣4)到y轴的距离为2.故选:A.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.2.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.【点评】本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.3.下列各组数中,不是勾股数的是()A.0.3,0.4,0.5 B.9,40,41C.6,8,10 D.7,24,25【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.解:A、0.32+0.42=0.52,但不是整数,不是勾股数,此选项正确;B、92+402=412,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、72+242=252,是勾股数,此选项错误;故选:A.【点评】此题主要考查了勾股数:满足a2+b2=c2的三个正整数,称为勾股数.注意:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.【点评】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.5.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )A .八(2)班的总分高于八(1)班B .八(2)班的成绩比八(1)班稳定C .两个班的最高分在八(2)班D .八(2)班的成绩集中在中上游【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案. 解:A 、八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B 、八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;C 、两个班的最高分无法判断出现在哪个班,错误;D 、八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选:C .【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.6.一次函数y =mx +n 与y =mnx (mn ≠0),在同一平面直角坐标系的图象是( )A .B .C .D .【分析】由于m 、n 的符号不确定,故应先讨论m 、n 的符号,再根据一次函数的性质进行选择.解:(1)当m >0,n >0时, mn >0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选:C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7.如图,∠1=57°,则∠2的度数为()A.120°B.123°C.130°D.147°【分析】先根据两个直角,可得AB∥CD,再根据邻补角的定义以及同位角相等,即可得到∠2的度数.解:由图可得,AB∥CD,又∵∠1=57°,∴∠3=123°,∴∠2=∠3=123°,故选:B.【点评】本题主要考查了平行线判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列各式成立的是()A.=±5 B.±=4 C.=5 D.=±1【分析】根据平方根和算术平方根及立方根的定义计算可得.解:A、=5,此选项错误;B、±=±4,此选项错误;C、=5,此选项正确;D、=1,此选项错误;故选:C.【点评】本题主要考查平方根和立方根,解题的关键是掌握平方根、立方根及算术平方根的定义及其表示.9.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.【点评】此题主要考查了推理与论证,正确分析得出每队胜负场次是解题关键.10.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.B.C.D.【分析】设购买甲种花木x棵、乙种花木y棵,根据总价=单价×数量结合购买两种树苗共200棵,即可得出关于x,y的二元一次方程组,此题得解.解:设购买甲种花木x棵、乙种花木y棵,根据题意得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.+的有理化因式是﹣.【分析】一般二次根式的有理化因式是符合平方差公式的特点的式子,据此作答.解:∵(+)(﹣)=()2﹣()2=a﹣b,∴+的有理化因式是﹣,故答案为:﹣.【点评】本题考查了二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.。

四川省成都市八年级数学上学期期末模拟试题 新人教版

四川省成都市八年级数学上学期期末模拟试题 新人教版

2012-2013学年度上期八年级数学期末检测题A 卷(共100分) 一.选择题:(每小题3分,共30分)1.△ABC 的三边长分别为3,3,23,则此三角形是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形2. 在338,7,52.3,3,311,414.1,2---•• π中,无理数有( )A 、1个B 、2个C 、3个D 、4个3.在同一坐标系中,对于以下几个函数 ①y=-x -1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图象有四种说法 ⑴ 过点(-1,0)的是①和③、 ⑵ ②和④的交点在y 轴上、⑶ 互相平行的是①和③、⑷ 关于x 轴对称的是②和③。

那么正确说法的个数是( )A .4个B .3个C .2个D 。

1个.4.平行四边形的周长等于48cm ,两邻边之长比是3:1,那么这个平行四边形的较短的边长为( )A. 3cmB. 6cmC. 9cmD. 12cm5、下列说法不正确的是( )A 、对角线互相垂直平分的四边形是菱形B 、对角线相等且互相平分的四边形是矩形C 、对角线互相垂直且相等的四边形是正方形D 、一条对角线平分一组对角的平行四边形是菱形6.如图,是某人骑自行车的行驶路程s (千米)与时间t (时)的函数图象, 下列说法不正确的是( )(1)从0时到3时,行驶了30千米; (2)从1时到2时,匀速前进; (3)从1时到2时,原地不动;(4)从0时到1时与从2时到3时的行驶速度相同。

7.一个等腰梯形的两底之差等于一腰长,那么它的腰与下底的夹角是( ) A. 30° B. 45° C. 60° D. 75°8. 在函数x x k y 2)1(--=中,y 随x 的增大而增大,则k 的值可能是( )A.1B. 2C.2D. 229.若从某观察站得到的数据中,取出1f 个1x ,2f 个2x ,3f 个3x ,则这组数据的平均数是()A.321332211fffxfxfxf++++B.3321xxx++C.3332211xfxfxf++D.3321fff++10.苹果熟了,从树上落下来,下面的哪个图形可以大致刻画出苹果在下落过程中速度随时间的变化情况( )二.填空题(每小题4分,共16分)11.计算:81的平方根为 .12.使式子3+x都有意义的x的取值范围是。

2012--2013学年八年级上学期期末数学试卷

2012--2013学年八年级上学期期末数学试卷

2012--2013学年八年级上学期期末数学试卷D-21O yxD .325()x x =4. 分式||22x x --的值为零,则x 的值为 A .0 B .2 C .-2 D .2或-25. 下列各式从左到右的变形是因式分解的是A.)(222y x y x -=-B.22))((y xy x y x -=-+C.2)1(3222++=++x x x D.ay ax y x a +=+)( 6. 已知点(-4,1y ),(2,2y )都在直线221+-=x y 上,则1y 、2y 大小关系是A. 1y >2y B. 1y =2y C.1y <2y D.不能比较7. 已知一次函数y kx b =+的图象如图所示,当y 0>时,x 的取值范围是( )A .x>-2B .x>1C .x<-2D .x<18. 如图,直线是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线上滑动,使A ,B 在函数xk y =的图象上,那么k 的值是A .3B .6C .12D .415 二、填空题(每小题3分,共12分) 9. 函数2-=x x y 中自变量x 的取值范围是___________. 10. 如图,已知函数y ax b =+和y kx =的图象交于点P,则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是___________. 11. 在2011,,4,3,2,1 中,共有 个无理数. 12. 已知n是正整数,111222(,),(,),,(,),n n n P x y P x y P x y 是反比例函数k y x=图象上的一列点,其中 121,2,,,n x x x n ===. 记112A x y =,223Ax y =,1n n n A x y +=,,若1A a =(a 是非零常数),则A 1·A 2·…·A n 的值是___________(用含a 和n 的代数式表示).三、解答题(共64分)13.分解因式:33ax y axy - 14.分解因式:22882n mn m +- 15.计算:0119(π4)22----- 16.计算:29631aa --+17.解方程:423532=-+-xx x18.计算:2)2()3)(2()2)(2(y x y x y x y x y x ---+--+19.已知210x x +-=,求222(1)(1)(1)121x x x x x x x --÷+---+的值.20.某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人? 21.设22113-=a,22235-=a,22357-=a……(1)写出na (n 为大于0的自然数)的表达式;(2)探究na 是否为8的倍数,并用文字语言表述你所获得的结论;(3)若一个数的算术平方根是一个自然数,则这个数是“完全平方数”,试找出1a ,2a ,3a ,……,na 这一列数中从小到大排列的前4个完全平方数;并说出当n 满足什么条件时, na 为完全平方数(不必说明理由).22.如图,已知A(n ,-2),B(1,4)是一次函数b kx y +=的图象和反比例函数y=x m 的图象的两个交点,直线 (1)求反比例函数和一次函数的关系式; (2)求△AO B 的面积;(3)求不等式0<-+xm b kx 的解集(直接写出答案).23.某蒜薹生产基地喜获丰收收蒜薹200吨。

2012人教版数学八年级数学模拟试卷

2012—2013学年度人教版八年级数学第一学期期末考试题(卷)一.选择题(本大题共30分,每小题3分,共10小题;请把最佳的一个选项填在题中括号内)1.下列运算中,结果正确的是( )A .a a a =÷33B .422)(ab ab =C .523)(a a =D .2a a a =⋅ 2.下列图形中,是轴对称图形.....的是( )3.下列各曲线中,不能表示y 是x 的函数的是( )D )A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间 5.下列计算错误的是( )A.b a a b a 3215)3)(5(=--B.232412)13)(4(x x x x --=+-C.273)2)(13(2++=++x x x xD.243531155ab b a c b a -=÷-6.下列计算正确的是( )A.2)1)(2(2--=-+x x x x B.222)(b a b a +=+ C.22))((b a b a b a -=-+ D.x y x x x xy -=÷+-6)6(27. 图中全等的三角形是 ( )A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ8. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .49.已知一次函数y=kx+b 的图象如图所示,则k 、b 的符号是( ) A.k>0,b>0 B.k>0,b<0C.k<0,b>0D.k<0,b<0 10.如图,∠1=∠2,∠C=∠D ,AC 、BD 交于E 点,下列结论中A B CD不正确的是( )A .∠DAE=∠CBEB .ΔDEA 不全等于ΔC .CE=DED .ΔEAB 是等腰三角形二.填空题(本大题共30分,每小题3分,共最佳答案填在题中横线上)11.点(2,3)关于y 轴对称的点的坐标为12.把直线121-=x y 向上平移21个单位,13.若直线y=kx 平行直线y=5x+3,则k=_____.14.比较大小:-3 - 15. 16的算术平方根是 .16. 函数y =x 的取值范围是_______________.17. 在Rt △ABC 中,∠C =90°,∠B =60°,AB =12,则BC = . 18. 点M (-2,k )在直线y=2x+1上,则点M 到x 轴的距离是 19. 如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是 . 20. 大家一定知道杨辉三角(Ⅰ),观察下列等式(Ⅱ)20. 大家一定知道杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律5()a b += .三.解答题(本大题共40分,共6小题;请写出必要的演算、推理、解答过程) 21.化简(每题4分,共8分)(1)先化简,再求值:2[()(2)8]2x y y x y x x +-+-÷,其中x =-2 .(2.) 利用乘法公式计算 1.02×0.9822. 分解因式(每题4分,共8分)(1) 6xy 2-9x 2y-y 3 (2) 3x 3—12x 23.(5分)已知一次函数的图像经过点(—2,-2)和点(2,4), 求这个一次函数的解析式._2_1 E AD1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab ba b a a b a b ab b +=++=+++=++++=++++11 1 12 1 13 3 11 4 6 4 1.....................24.(6分)已知:如图,CAE ∠是ABC ∆的外角,12∠=∠,AD ∥BC. 求证:AB AC =25.(6分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:BC=DE. 26.(7分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚了多少钱?四.解答题(本大题共50分,共6小题;请写出必要的演算、推理、解答过程)27.(8分)运用乘法公式计算:计算:28.(8分)如图在AFD ∆和CEB ∆中,点A ,E ,F ,C 在同一条直线上,有下面四个论断:(1)AD =CB , (2)AE =CF , (3)D B ∠=∠, (4)AD //BC .请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.29.(8分)如图,ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF.()()x y x y -+-2(x-y )∆AB DC E30. (8分)如图,已知直线1:23l y x =+,直线2:5l y x =-+,直线1l 、2l 分别交x 轴于B 、C 两点,1l 、2l 相交于点A .(1) 求A 、B 、C 三点坐标; (2) 求△ABC 的面积. 31.(8分)探索:11)(1(2-=+-x x x ) 1)1)(1(32-=++-x x x x1)1)(1(423-=+++-x x x x x 1)1)(1(5234-=++++-x x x x x x......(1)试求122222223456++++++的值;(2)判断1222222200620072008++++++ 的值的个位数是几?32.(10分)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县.已知C ,D 两县运化肥到A ,B 两县的运费(元/吨)如下表所示.(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数关系式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.。

【人教版】八年级数学上期末模拟试卷(及答案)

一、选择题1.分式293x x --等于0的条件是( ) A .3x = B .3x =- C .3x =± D .以上均不对2.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④ 3.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10 B .11 C .20 D .214.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .85.如下列试题,嘉淇的得分是( )姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+-A .40分B .60分C .80分D .100分 6.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18 C .5 D .97.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 8.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+9.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021- 10.已知等腰三角形的一个内角为50°,则它的顶角为( ) A .50° B .80° C .65°或80° D .50°或80° 11.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ACE △和CDE △面积相;③//BF CE ;④BDF CDE ≌.其中正确的有( )A .1个B .2个C .3个D .4个12.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒二、填空题13.分式2222,39a b b c ac的最简公分母是______. 14.23()a -=______(a≠0),2(3)-=______,132)-=______.15.若2330x x --=,则()()()123x x x x ---的值为______.16.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________. 17.已知,如图,△ABC 是等边三角形,AE =CD ,BQ ⊥AD 于Q ,BE 交AD 于点P ,下列说法:①∠APE =∠C ,②AQ =BQ ,③BP =2PQ ,④AE +BD =AB ,其正确的个数是_____.18.若9m =4,27n =2,则32m ﹣3n =__.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).20.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.三、解答题21.计算:(1)2031(2021)|13|(2)4; (2)2222()()ab a ab b a b a ab b . 22.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中21a =+ 23.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.24.如图,在△ABC 中,AD 垂直平分BC ,E 是AB 边上一点,连接ED ,F 是ED 延长线上一点,连接CF ,若BC 平分∠ACF ,求证:BE =CF .25.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .26.如图①,在ABC 中,,CD CE 分别是ABC 的高和角平分线,(),BAC B αβαβ∠=∠=∠>(1)若70,40BAC B ︒︒∠=∠=,求DCE ∠的度数(2)若(),BAC B αβαβ∠=∠=∠>,则DCE ∠= (用含,αβ的代数式表示); (3)若将ABC 换成钝角三角形,如图②,其他条件不变,试用含,αβ的代数式表示DCE ∠的度数,并说明理由;(4)如图③,若CE 是ABC 外角ACF ∠的平分线,交BA 延长线与点E ,且30αβ︒-=,则DCE ∠= (直接写出结果)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 2.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x -=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B .【点睛】 本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.3.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+---111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+= 20n ∴=经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.4.C解析:C【分析】根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】解分式方程2311a x x+=--,得53a x -=,∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.5.A解析:A【分析】根据提公因式法及公式法分解即可.【详解】①242(12)xy xyz xy z -=-,故该项正确;②2363(12)x x x x --=-+,故该项错误;③2221(1)a +a a +=+,故该项错误;④224(2)(2)m n m n m n -=+-,故该项错误;⑤22222()()x y x y x y -+=-+-,故该项正确;正确的有:①与⑤共2道题,得40分,故选:A .【点睛】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键. 6.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 7.D解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭ =2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.8.B解析:B【分析】根据平方差公式()()22a b a b a b -+=-一项一项代入判断即可. 【详解】A 选项:两项都是互为相反数,故不能用平方差公式;B 选项:两项有一项完全相同,另一项为相反数,故可用平方差公式;C 选项:两项完全相同,故不能用平方差公式;D 选项:有一项2-与1不同,故不能用平方差公式.故选:B .【点睛】此题考查平方差的基本特征:()()22a b a b a b -+=-中a 与b 两项符号不同,难度一般.9.A解析:A【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 10.D解析:D【分析】由50︒的角是顶角或底角,依据三角形内角和计算得出顶角的度数.【详解】当50︒的角为顶角时,它的顶角为50︒,当50︒的角为底角时,它的顶角为18050280︒-︒⨯=︒,∴它的顶角为50︒或80︒,【点睛】此题考查等腰三角形等边对等角的性质,三角形内角和定理,熟记等边对等角的性质是解题的关键.11.C解析:C【分析】根据“SAS”可证明△CDE ≌△BDF ,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于AE 和DE 不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠ECD=∠FBD ,则利用平行线的判定方法可对③进行判断;【详解】∵ AD 是△ABC 的中线,∴ CD=BD ,∵ DE=DF ,∠CDE=∠BDF ,∴ △CDE ≌△BDF(SAS),所以④正确;∴ CE=BF ,所以①正确;∵ AE 与DE 不能确定相等,∴ △ACE 和△CDE 面积不一定相等,所以②错误;∵ △CDE ≌△BDF ,∴∠ECD=∠FBD ,∴BF ∥CE ,所以③正确;故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形的面积 ,熟练掌握三角形全等的判定方法并准确识图是解题的关键.12.C解析:C【分析】根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.二、填空题13.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】 分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 14.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化.15.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x+3则原式=(x2−x)(x2−5x+6)=(2x+3)(−2x+解析:15【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值.【详解】∵x2−3x−3=0,∴x2=3x+3,则原式=(x2−x)(x2−5x+6)=(2x+3)(−2x+9)=−4x2+12x+27=−4(3x+3)+12x+27=−12x−12+12x+27=15.故答案为:15【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.16.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A=30°过B作BD⊥AC于D∵∠A=30°AB=1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A=30°,过B作BD⊥AC于D,∵∠A=30°,AB=10,∴BD=12AB=5,∴S△ABC=12AC×BD=12×10×5=25,故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.17.3【分析】根据等边三角形的性质可得AB=AC ∠BAE=∠C=60°再利用边角边证明△ABE 和△CAD 全等然后得到∠1=∠2结合角的关系得到∠APE =∠C ;再结合30°直角三角形的性质得到BP =2PQ解析:3【分析】根据等边三角形的性质可得AB=AC ,∠BAE=∠C=60°,再利用“边角边”证明△ABE 和△CAD 全等.然后得到∠1=∠2,结合角的关系,得到∠APE =∠C ;再结合30°直角三角形的性质,得到BP =2PQ ;再结合边的关系,得到AC=AB ;即可得到答案.【详解】证明:如图所示:∵△ABC 是等边三角形,∴AB=AC ,∠BAE=∠C=60°,在△ABE 和△CAD 中,60AB AC BAE C AE CD =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△CAD (SAS ),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ ⊥AD ,∴∠PBQ=90°-∠BPQ=90°-60°=30°,∴BP=2PQ .故③正确,∵AC=BC .AE=DC ,∴BD=CE ,∴AE+BD=AE+EC=AC=AB ,故④正确,无法判断BQ=AQ ,故②错误,∴正确的有①③④,共3个;故答案为:3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,解题的关键是灵活运用所学知识解决问题.18.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂解析:2【分析】根据指数的运算,把32m ﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n÷=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 19.①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明③正确;连接BD、DC,然后证明△EBD≌△CFD,从而得到BE=FC,从而可得AB+AC=2AE,故可判断④.【详解】解:如图所示:连接BD、DC.(1)∵DE AB⊥,DF AC⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC是否等于60°不知道,∴不能判定MD平分∠EDF,故②错误;③∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12 AD.∴DE+DF=AD.故③正确.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.20.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.三、解答题21.(1)7;(2)32a .【分析】(1)根据绝对值、零指数幂、负整数指数幂、立方的运算分别进行计算,然后根据实数的运算法则求得计算结果;(2)先根据多项式乘以多项式的法则进行计算,再合并同类项即可.【详解】解:(1)2031(2021)|13|(2)416128=+--7=(2)2222()()a b a ab b a b a ab b322223a a b ab a b ab b =-++-++322223a a b ab a b ab b ++---3333a b a b =++-32a =.【点睛】考查了整式的混合运算以及负整数指数幂、零指数幂、立方、绝对值运算等知识,熟练运用这些法则是解题关键.22.1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯ ⎪+⎝⎭=(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 23.①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.24.证明见解析.【分析】根据线段垂直平分线的性质得到AB=AC ,证明△BDE ≌△CDF ,根据全等三角形的性质得到BE=CF .【详解】证明:∵AD 垂直平分BC ,∴AB =AC ,BD =DC ,∴∠ABC =∠ACB ,∵BC 平分∠ACF ,∴∠FCB =∠ACB ,∴∠ABC =∠FCB ,在△BDE 和△CDF 中,EDB FDC BD CDEBD FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BDE ≌△CDF (ASA ),∴BE =CF .【点睛】本题考查全等三角形的判定与性质及线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON ,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a ,接着以点O 为圆心,同样的长度为半径画弧,交ON 于一个点,以这个点为圆心,a 为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O ,得到射线OM ,即可得到∠MON =∠α;(2)以点O 为圆心,m 为半径画弧,交OM 于点A ,以点O 为圆心,n 为半径画弧,交ON 于点B ;(3)连接AB ,线段AB 所在的直线即直线AB .【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 26.(1)15°;(2)1122a β-;(3)1122a β-,理由见解析;(4)75°. 【分析】(1)根据三角形的内角和180°解得=70BCA ∠︒、20DCA ∠=︒,再根据角平分线的性质,得到35ACE ∠=︒,最后由DCE ACE DCA ∠=∠-∠解题即可;(2)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到ACE ∠的度数,最后由DCE ACE DCA ∠=∠-∠解题即可;(3)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到BCE ∠的度数,最后由DCE BCD BCE ∠=∠-∠解题即可;(4)根据角平分线的性质,12FCE ECA FCA ∠=∠=∠,结合三角形一个外角等于不相邻的两个内角和,解得1()2ECA αβ∠=+,根据三角形的内角和180°解得DCA ∠的度数,最后由DCE DCA ACE ∠=∠+∠解题即可.【详解】(1)180BAC B BCA ∠+∠+∠=︒,70,40BAC B ∠=︒∠=︒=180704070BCA ∴∠︒-︒-︒=︒ CE 平分BCA ∠11703522ACE BCA ∴∠=∠=⨯︒=︒,CD AB ⊥180907020DCA ∴∠=︒-︒-︒=︒352015DCE ACE DCA ∴∠=∠-∠=︒-︒=︒;(2)若(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222ACE BCA αβαβ∴∠=∠=︒--=︒--, CD AB ⊥1809090DCA αα∴∠=︒-︒-=︒-11119022(90)22DCE ACE DCA αβαβα∴∠=∠-∠=-︒-=︒---, 故答案为:1122a β-; (3)若将ABC 换成钝角三角形,(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222BCE ACE BCA αβαβ∴∠=∠=∠=︒--=︒--, CD AB ⊥1809090BCD ββ∴∠=︒-︒-=︒-DCE BCD BCE ∴∠=∠-∠1190(90)22βαβ=︒--︒-- 01190229βαβ︒+=︒--+ 1122αβ=- 故答案为:1122αβ-; (4)CE 是ABC 外角ACF ∠的平分线,12FCE ECA FCA ∴∠=∠=∠ 由三角形的外角性质得,11=()22FCE ECA FCA αβ∴∠=∠=∠+ CD AB ⊥1809090ACD αα∴∠=︒-︒-=︒-DCE ACD ACE ∴∠=∠+∠190()2ααβ=︒-++ 119022αβ=︒-+ 190()2αβ=︒-- 30αβ-=︒19030752DCE ∴∠=︒-⨯︒=︒ 故答案为:75︒.【点睛】本题考查角平分线的性质、三角形内角和180°、三角形外角性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

2012-2013学年度初二上学期期末考试数学模拟题

新世纪教育网 精品资料 版权所有@新世纪教育网2012-2013学年度初二上学期期末考试模拟题第I 卷(选择题)评卷人 得分一、选择题(题型注释)1.计算)2(33xy x -∙=_______ 2.直线y=x+4与x 轴的交点坐标为 ,与y 轴的交点坐标为3.如图:在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E 且DE =5.6cm ,则CD = __________ cm4.多项式加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是___________。

(填上一个你认为正确的即可)5.如图:∠A=∠D ,AE=DF ,补充一个条件 ,使△ABE ≌△DCF6.观察下列各式:;;;……根据前面各式的规律可得到.7.下列图形中,对称轴有且只有3条的是( )A .菱形B .等边三角形C .正方形D .圆8.已知实数a 在数轴上的位置如图9所示,则化简2|1|a a -+的结果为( )AB CEDAB CFED1-1a图99.下列图案中是轴对称图形的是( )10.2的平方根是 ( ) A. ±B.C. ±4D. 411.下列各数:0.2,,,,,,,,其中无理数的个数是(A )1个 (B )2个 (C )3个 (D )4个12.已知等腰三角形的内角是40°,则另外两个内角的度数分别是( ) A. 70°,70° B. 70°,70°或40°,100° C. 40°,40° D. 40°,70°13.如图,在四边形ABCD 中,AB=AD ,CB=CD ,点E 在AC 上,则图中全等三角形共有(A )1对(B )2对 (C )3对(D )4对 14.已知等腰三角形的周长为10,腰长为,底边为,则与之间的关系式是,在这个问题中,变量是( )A. 腰长B. 底边长C. 周长10D. 腰长,底边长15.已知点P 的坐标为(-3,-4),则点P 关于x ,y 轴对称的点的坐标分别为( ) (A )(3,-4);(-3,-4) (B )(-3,4);(3,-4) (C )(3,-4);(-3,4) (D )(-3,4);(3,4) 16.如果()()22x y x y m +=-+那么m 应该是( ) A. 4xyB. 2xy -C. xy -D. 4xy -17.到三角形三条边的距离相等的点是这个三角形( ) A .三条高的交点 B .三条中线的交点C .三条角平分线的交点D .三条边的垂直平分线的交点 18.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )A.2008年北京 B.2004年雅典 C.1988年汉城 D.1980年莫斯新世纪教育网 精品资料 版权所有@新世纪教育网19.下列运算正确的是( )A .224x x x +=B .()2211a a -=-C .325x y xy +=D .235a a a ⋅=20.下列图形中,一次函数y = mx + n 与正比例函数y = mnx (m 、n 为常数且mn ≠0)的图象大致是( )AO yxBO yxCO yxDO yx第II 卷(非选择题)评卷人得分二、填空题(题型注释)21.下列各数中是无理数的是( ) A . B . C . D .22.如图,已知在△ABC 中,AB=AC,BD=DC,则下列结论中错误的是( )A .∠B=∠C B. ∠BAD=∠CAD C. AD ⊥BC D. ∠BAC=∠B 23.下列计算正确的是 ( ) (A ) (B )(C )(D )232a a a a a a⋅÷== 24.若式子在实数范围内有意义,则x 的取值范围是( ) A.x >5B.x ≥5C.x ≠5D.x ≥025.估算的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 26.下列各式中,不能用平方差公式计算的有( ) A . B . C . D .27.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t (时)与山高h (千米)之间的函数关系用图象(如图所示)表示是( ).28.如图所示,,再添加一个条件 ,就可以使△≌△。

人教版八年级数学上学期期末模考试卷(含答案)优质版

八年级数学上学期期末模考试卷一、填空题:(每空2分,共24分)=___ __;3-8 =___ __ _;的平方根__ ___.2.经统计,2012~2013赛季广州恒大主场的门票销售总额为579600000元人民币,精确到到百万位可表示为 元.3.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 .[来 4.已知点A (a ,-5)与点B (-4,b )关于y 轴对称,则a +b= ;5.如图,有A ,B ,C 三点,如果A 点用(1,1)来表示,B 点用(2,3)表示,则C 点的坐标的位置可以表示为6.函数y =x +1 中自变量x 的取值范围是 . 7.已知函数2)2(1+-=-m xm y 是关于x 的一次函数,则m = 。

8.一直角三角形的两边长分别为3和4.则第三边的长为 。

9.已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .10. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐标分别是(-1,-1)、(-3,-1),把正方形ABCD经过连续7次这样的变换得到正方形A ′B ′C ′D ′,则B二、选择题:(每小题3分,共30分)11.下列交通标识中,是轴对称图形的是: ( )A B C D 12.若a >0,b <-2,则点(a ,b +2)在: ( )A .第一象限B .第二象限C .第三象限D .第四象限第5题 第9题13.点P(m+3,m+1)在x轴上,则点P坐标为()A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)14.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE 的周长为( )A.20B.12C.14D.1315.下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边 C.已知两边和其中一边的对;D.已知三边16.满足下列条件的△ABC不是..直角三角形的是()A.1b=, c B.a∶b∶c=3∶4∶5a=, 2C.∠A+∠B=∠C D.∠A∶∠B∶∠C=3∶4∶517.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于().A.﹣4和﹣3之间 B.3和4之间 C.﹣5和﹣4之间 D.4和5之间18.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A B C D19.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确的是( )A 甲的速度是4千米/小时B 乙的速度是10千米/小时C 乙比甲晚出发1小时D 甲比乙晚到B地3小时20.如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;.其中正确的有()个.A.②③B.①②④C.③④D.①②③④三、解答题:21.(本题满分8分)计算:(1)102- (2)()3122⎛⎫-- ⎪⎝⎭22.(本题6分)已知y 与x 成一次函数,当x =0时,y =3,当x =2时,y =7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A BDCMN2012-2013年度人教版八年级数学上册期末模拟试题(4)(总分:120分,时间:120分钟)班级 学号 姓名 得分一、选择题(每小题3分,共30分)1.16的算术平方根是 ( )A . 2B . 2C .4D .2.下列计算正确的是【 】 A. 2323a a a += B. 624a aa -÷=(0a ≠) C. 236a a a ⋅= D. 236()a a =3. 下列图案是轴对称图形的有【 】 A 、1个 B 、2个 C 、3个 D 、4个4. 已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )(A) (B) (C ) A . B . C . D .5.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定 △ABM ≌△CDN 的是( )A.∠M=∠NB. AM ∥CNC.AB=CDD. AM=CN6.如图9, △ABC 中,AB=AC=BC,CD 是∠ACB 的平分线,过D 作DE ∥BC 交AC 于E,若△ABC 的边长为a,则△ADE 的周长是( ) A.2a B.34a C.23a D.a7.在实数23-,0,34,π,9中,无理数有 ( )A .1个B .2个C .3个D .4个8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )9.如图4,ABC ∆中,已知AC AB =,CD BE ,分别是ACB ABC ∠∠,的角平分线, 下列结论:(1)ACD ABE ∠=∠ (2)CD BE = (3)OB OC =(4)AC BE AB CD ⊥⊥,。

其中正确的是( )A.(1)(3)(4)B.(1)(2)(4) C(1)(2)(3) D(2)(3)(4)ACD E O图410.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 二、填空题 (每小题3分,共30分)11.若4412-+-=+a a b ,则=⋅-⋅--353223)(])2[(a b b b ___________12.函数1--=x xy 中自变量x 的取值范围是___________13. 如图,在△ABC 中,AB=AC ,∠A =40︒,AB 的垂直平分线MN交AC 于D . 连接BD ,则∠DBC = .(-1,1)1y (2,2)2yxyONMDA14. 已知函数32)2(3--+=mxm y 是一次函数,则m = ;此图象经过第 象限。

15.如图,已知ACB DBC ∠=∠,要使⊿ABC ≌⊿DCB ,只需增加的一个条件是_________.16.如图,MN 是正方形ABCD 的一条对称轴,点P 是直线MN上的一个动点,当PC+PD 最小时,∠PCD=_________.17.如果实数y 、x 满足y=111+-+-x x ,那么3y x ++20092010(0.125)8-⨯= 18.已知P 1,P 2关于y 轴对称,P 2,P 3关于x 轴对称,P 3(-2,3),则P 1的坐标为________19.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为_________.20. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示的方式放置.点A 1,A 2,A 3和点C 1,C 2,C 3分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B 3的坐标是_______.三、解答下列各题(共7题,共60分)21、 (8分)计算: (1101()1(2)3π-----.DAMNBCPA BD(2)、计算:32(1263)3a a a a -+÷-122、(6分)先化简,再求值先化简, x x y x y y x 2]8)2()[(2÷-+-+,其中x =-2 .23(8分)分解因式:(1)a ax ax 8822+-(2) 33ab b a -24.(8分)两块含30°角的相同直角三角板,按如图位置摆放,使得两条相等的直角边AC 、C 1A 1共线。

(1)问图中有多少对全等三角形?并将他们写出来;(2)选出其中一对全等三角形进行证明。

(△ABC ≌△A 1B 1C 1除外)A A 1C C 1 B (第24题)B 1 O25、(10分)△ABC 中,AB=AC ,∠BAC=120°,点D 、F 分别为AB 、AC 中点,ED ⊥AB ,GF ⊥AC ,若BC=15cm 求EG 的长.26. (10分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?30 50 19503000 80 x/miny/m O(第22题)27、(10分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.y(元)和蔬菜加(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用1y(元)关于x(个)的函数关系式;工厂自己加工制作纸箱的费用2(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.参考答案一、选择:1.A2.D3.B4.D5.D6.C7.B8.B9.C 10.D 二、填空:11.-8 12. x ≥0且x ≠l 13. 30°14.m=-2,二、一、四 15.答案不唯一 16. 45°17.-6 18.(2,-3) 19. x<-1 20.(7,4) 三、解答下列各题:21.(1) 解: 原式=233311--+- =33-.(2)解:原式=3212363331a a a a a a ÷-÷+÷- =24211a a -+-=242a a -22.解:[2)4()2)(2(y x y x y x +--+]y 4÷,其中5=x ,2=y =[x ²-4y ²-x ²-16y ²-8xy]÷4y =(-20y ²-8xy)÷4y =-5y-2x当x=5, y=2时 原式=-5×2-2×5 =-10-10 =-2023.(1)a ax ax 8822+-22(2)a x -(2) 解:原式=ab(a 2-b 2)=ab(a+b)(a-b)24. (1)有3对.分别是⊿ABC ≌⊿A 1B 1C 1,⊿B 1EO ≌⊿BFO ,⊿AC 1E ≌⊿A 1CF, ——— (2)(以⊿AC 1E ≌⊿A 1CF 为例)证明:∵AC=A 1C 1,∴AC 1=A 1C,又∵∠A=∠A 1=300,∠AC 1E=∠A 1CF=900,∴Rt ⊿AC 1E ≌Rt ⊿A 1CF25.解:如图,连结AE 、AG∵AD 为AB 中点,ED ⊥AB ,∴EB=EA ,∴△ABE 为等腰三角形 又∵∠B=︒=︒-︒302120180,∴∠BAE=30°,∴∠AEG=60°同理可证:∠AGE=60°,∴△AEG 为等边三角形,∴AE=EG=AG 又∵AE=BE ,AG=GC ,∴BE=EG=GC 又BE+EG+GC=BC=15(cm ) ∴EG=5(cm )26. 解:⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ). 27.解:(1)从纸箱厂定制购买纸箱费用:14y x =蔬菜加工厂自己加工纸箱费用:2 2.416000y x =+.(2)21(2.416000)4y y x x -=+-16000 1.6x =-, 由12y y =,得:16000 1.60x -=,解得:10000x =.∴当10000x <时,12y y <,选择方案一,从纸箱厂定制购买纸箱所需的费用低.∴当10000x >时,12y y >,选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.∴当10000x =时,12y y =,两种方案都可以,两种方案所需的费用相同.。

相关文档
最新文档