三角恒等变换知识

合集下载

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。

这些恒等变换在解决三角函数相关问题时非常有用。

下面是对一些常见的三角恒等变换进行总结和详解。

1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。

- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。

- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。

2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。

- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。

- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。

3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。

- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。

- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。

4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。

- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。

- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。

三角恒等变换知识点

三角恒等变换知识点

三角恒等变换一、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=- (1)下列各式中,值为12的是 A 、1515sin cos B 、221212cos sin ππ- C 、22251225tan .tan .- D 30 (2)已知35sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (3)131080sin sin -的值是______ ; (4)已知0tan110a =,求0tan 50的值, 二. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

基本的技巧有: ★★★(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), 如(1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____(答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+ (3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<) (2)三角函数名互化(切割化弦),如(1)求值sin 50(13tan10)+(答:1); (2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18) (3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。

5.5.2-简单的三角恒等变换 2025年高考数学知识点题型及考项复习

5.5.2-简单的三角恒等变换 2025年高考数学知识点题型及考项复习

+ cos

2


sin
2
2


2
,
= cos


cos
2
2
+ sin


sin ,
2
2
即 sin

2
所以sin
即tan

2

2
π
4

2
− cos

2
− cos
cos

2
= 1或tan

2

2
= 0或cos

2
故 =
π
4
=

2

2
= 0,
− sin

2
= 0,
= 1,又, ∈ 0, π
故 = 或 = .
cos = ± 1 −
π−
所以cos
2
=
5 2
13
=
π−
,则底角为
,由题意可知sin
2
12
π−
± ,所以cos
13
2
26 5 26

.
26
26
=

sin
2
=
1−cos
2
5
,所以
13
=
12
=
1±13
2
,
sin 4
6.化简:
1+cos 4

cos 2
1+cos 2
cos

1+cos
的交点,则( ABD
)
图5.5.2-1

三角恒等变换(知识、题型、训练及答案)

三角恒等变换(知识、题型、训练及答案)

三角恒等变换知 识 梳 理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β.tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.tan 2α=2tan α1-tan α. 3.辅助角公式函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2·cos(α-φ).(其中,ab =ϕtan )注意:1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.在三角求值时,往往要借助角的范围求值.基础自检测1.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.792.若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.453.tan 20°+tan 40°+3tan 20°·tan 40°=________.4.sin 347°cos 148°+sin 77°·cos 58°=________.题型解析题型一 三角函数式的化简【例1】(1)化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.(2)化简:(1+sin α+cos α)·⎝ ⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.【训练1】 cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β)B.sin αC.cos(α+2β)D.cos α题型二 三角函数式的求值【例2】(1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=________.(2)若sin ⎪⎭⎫ ⎝⎛-απ3=14,则cos ⎪⎭⎫ ⎝⎛+απ23=________.(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.【训练2】 (1)已知x ∈(0,π),且cos ⎪⎭⎫ ⎝⎛-22πx =sin 2x ,则tan ⎪⎭⎫ ⎝⎛-4πx =( )A.13B.-13C.3D.-3(2)已知α∈⎥⎦⎤⎢⎣⎡20π,,cos ⎪⎭⎫ ⎝⎛+3πα=-23,则cos α=________.题型三 三角变换的简单应用【例3】 △ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B 2的最大值.【训练3】已知函数f (x )=3cos ⎪⎭⎫ ⎝⎛-32πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡-4,4ππ时,f (x )≥-12.答案诊 断 自 测1.A2.D3.34.22【例1】 (1)sin(α+γ) (2)cos α 【训练1】 D 【例2】(1)6 (2)-78 (3)-3π4【训练2】(1)A (2)15-26【例3】解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A-cos A ),则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3.(2)y =2sin 2 B +cos C -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1=sin ⎝ ⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,B +A >π2,所以π6<B <π2, 所以2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值, 此时B =π3,y max =2.【训练3】 (1)解 f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x =32cos 2x +32sin 2x -sin 2x=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, 所以f (x )的最小正周期T =2π2=π.(2)证明 由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6, ∴当2x +π3=-π6,即x =-π4时,f (x )取得最小值-12. ∴f (x )≥-12成立.。

(完整版)三角恒等变换知识点归纳

(完整版)三角恒等变换知识点归纳

第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式⑴;⑵;()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-⑶;⑷;()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+⑸ ();()tan tan tan 1tan tan αβαβαβ--=+⇒()()tan tan tan 1tan tan αβαβαβ-=-+⑹ ().()tan tan tan 1tan tan αβαβαβ++=-⇒()()tan tan tan 1tan tan αβαβαβ+=+-25、二倍角的正弦、余弦和正切公式:⑴.sin 22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos 2cossin 2cos 112sin ααααα=-=-=-升幂公式⇒2sin 2cos 1,2cos 2cos 122αααα=-=+降幂公式,. ⇒2cos 21cos 2αα+=21cos 2sin 2αα-=26、 .22tan tan 21tan ααα=-27、(后两个不用判断符号,更加好用)⇒28、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的⇒形式。

,其B x A y ++=)sin(ϕϖ()sin cos αααϕA +B =+中.tan ϕB =A29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,αα2tan 2cos ==2tan 12tan 1 cos ;2tan 12tan2sin :222αααααα万能公式+-=+=灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①是的二倍;是的二倍;是的二倍;是的二倍;α2αα4α2α2α2α4α②;问:;2304560304515o ooooo=-=-==12sin π=12cosπ;③;④;ββαα-+=)()4(24αππαπ--=+⑤;等等)4()4()()(2απαπβαβαα--+=-++=(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

三角恒等变换知识点总结

三角恒等变换知识点总结

三角恒等变换知识点总结三角恒等变换是解决三角函数中相关问题的重要工具,它们可以帮助我们简化表达式、证明恒等式以及解决三角方程等。

在本文中,将总结三角恒等变换的一些基本知识点,包括正弦、余弦和正切的恒等变换。

1. 正弦和余弦的恒等变换:(1) 余弦的恒等变换:a. 基本恒等式:cos^2θ + sin^2θ = 1,该恒等式也被称为三角恒等式之母。

b. 余弦的平方差公式:cos(α - β) = cosα·cosβ + sinα·sinβ,该公式可以用于简化两个余弦的差的表达式。

c. 余弦的和的公式:cos(α + β) = cosα·cosβ - sinα·sinβ,该公式可以用于简化两个余弦的和的表达式。

d. 余弦的倍角公式:cos2θ = 2cos^2θ - 1或cos2θ = 1 - 2sin^2θ,该公式可以用于简化余弦的倍角表达式。

(2) 正弦的恒等变换:a. 正弦的平方差公式:sin(α - β) = sinα·cosβ - cosα·sinβ,该公式可以用于简化两个正弦的差的表达式。

b. 正弦的和的公式:sin(α + β) = sinα·cosβ + cosα·sinβ,该公式可以用于简化两个正弦的和的表达式。

c. 正弦的倍角公式:sin2θ = 2sinθ·cosθ,该公式可以用于简化正弦的倍角表达式。

2. 正切的恒等变换:正切的恒等变换是基于正弦和余弦的恒等变换推导而来的:a. 正切的平方差公式:tan(α - β) = (tanα - tanβ)/(1 + tanα·tanβ),该公式可以简化两个正切的差的表达式。

b. 正切的和的公式:tan(α + β) = (tanα + tanβ)/(1 - tanα·tanβ),该公式可以简化两个正切的和的表达式。

c. 正切的倍角公式:tan2θ = (2tanθ)/(1 - tan^2θ),该公式可以简化正切的倍角表达式。

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

三角恒等变换-知识点+例题+练习

两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β. (2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15°2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ). 3.已知sin α=23,则cos(π-2α)等于( ). 4.(2011·辽宁)设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin 2θ=( ).5.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .[审题视点] 切化弦,合理使用倍角公式.三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.【训练1】化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考向二三角函数式的求值【例2】►已知0<β<π2<α<π,且cos⎝⎛⎭⎪⎫α-β2=-19,sin⎝⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.【训练2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)求f (x )的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.【课后训练】A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于 ( ) A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( )A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( )A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________.7.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎫0,π2,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若s in(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·山东)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318 B.1322 C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分)4.已知锐角α满足cos 2α=cos ⎝⎛⎭⎫π4-α,则sin 2α=_______. 5.已知cos ⎝⎛⎭⎫π4-α=1213,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫π4+α=_________. 6. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值.。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换基础知识及题型分类汇总一、知识点:一)公式回顾:cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta $,简记为C($\alpha\pm\beta$)sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,简记为S($\alpha\pm\beta$)sin2\alpha=2\sin\alpha\cos\alpha$,简记为S2cos2\alpha=\cos^2\alpha-\sin^2\alpha$,简记为C2tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$,其中$\alpha\neq\frac{k\pi}{2}$,简记为T2二)公式的变式1\pm\cos2\alpha=2\cos^2\alpha$,简记为1±C2frac{1\pm\cos\alpha}{2}=\sin^2\frac{\alpha}{2}$,简记为S2/2sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac {\alpha\mp\beta}{2}$,简记为S±Scos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\al pha-\beta}{2}$,简记为C+Ccos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$,简记为C-Ctan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}$,简记为T1辅助角(合一)公式:begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}-\alpha)=\cos\alpha\\\cos(\frac{\pi}{2}-\alpha)=\sin\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}+\alpha)=\cos\alpha\\\cos(\frac {\pi}{2}+\alpha)=-\sin\alpha\end{cases}$begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$二典例剖析:基础题型例1:已知$\sin2\alpha=\frac{5\pi}{13}$,$\alpha\in\left(0,\frac{\pi}{2}\right)$,求$\sin4\alpha$,$\cos4\alpha$,$\tan4\alpha$。

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。

2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 三角函数恒等变形公式(1)两角和与差公式(2)二倍角公式(3)三倍角公式(4)半角公式(5)万能公式,,(6)积化和差,,,(7)和差化积,,,2. 网络结构3. 基础知识疑点辨析(1)正弦、余弦的和差角公式能否统一成一个三角公式?实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。

另外,公式虽然形式不同,结构不同,但本质相同:。

(2)怎样正确理解正切的和差角公式?正确理解正切的和差角公式需要把握以下三点:①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。

②公式都适用于为任意角,但运用公式时,必须限定,都不等于。

③用代替,可把转化为,其限制条件同②。

(3)正弦、余弦、正切的和差角公式有哪些应用?①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。

②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。

③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函数式,要注意公式可以正用,逆用和变用。

运用这些公式可求得简单三角函数式的最大值或最小值。

(4)利用单角的三角函数表示半角的三角函数时应注意什么?先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,,分别叫做正弦、余弦、正切的半角公式。

公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。

另外,容易证明。

4. 三角函数变换的方法总结三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。

三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。

下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。

(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。

(2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

解析:设θ+15°=α,则原式=sin(α+60°)+cos (α+30°)-cosα=(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα=sinα+cosα+cosα-sinα-cosα=0点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=证明:已知条件可变为:sin[(α+β)-β]=Asin (α+β)所以有:sin (α+β) cosβ-cos (α+β) sinβ=Asin (α+β)∴ sin (α+β)( cosβ-A)=cos (α+β) sinβ∴ tan(α+β)=点评:在变换中通常用到视“复角”为“单角”的整体思想方法,它往往是寻找解题突破的关键。

(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。

这其中以“1”的变换为最常见且最灵活。

“1”可以看作是sin2x+cos2x,sec2x-tan2x,csc2x -cot2x,tanxcotx,secxcosx,tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。

【例4】化简:解析:原式====点评:1=“”的正用、逆用在三角变换中应用十分广泛。

(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。

这往往用到倍、半角公式。

【例5】解三角方程:sin2x+sin22x=sin23x解析:原方程变形为:(1-cos2x)+(1-cos4x)=(1-cos6x)即:1+cos6x =cos2x+cos4x2cos23x =2cos3x cosx得: cos3x sin2x sinx =0解得:x=+或x=()∴原方程的解集为{x| x=+或x=,}点评:题中先降次后升幂,这种交错使用的方法在解三角方程中时有出现,其目的是为了提取公因式。

(5)添补法与代数恒等变换一样,在三角变换中有时应用添补法对原式作一定的添项裂项会使某些问题很便利地得以解决。

将原式“配”上一个因子,同时除以这个式子也是添补法的一种特殊情形。

【例6】求证:=证明:左边======右边∴原式成立。

点评:本例中采用“加一项再减去一项”,“乘一项再除以一项”的方法,其技巧性较强,目的都是为了便于分解因式进行约分化简。

(6)代数方法三角问题有时稍作置换,用各种代数方法对三角函数式作因式分解、等量置换等的变形,从而将三角问题转换成代数问题来解,而且更加简捷。

这其中有设元转化、利用不等式等方法。

【例7】锐角α、β满足条件,则下列结论中正确的是()A.α+β≠B. α+β<C. α+β>D. α+β=解析:令sin,则有整理得:(a-b)2=0即a=b即:sin2α=cos2β(α,β同为锐角)∴sinα=cosβ∴α+β=,故应选D。

点评:本例用设元转化法将三角问题转化为代数问题。

换元法这种数学思想应用十分广泛,往往能收到简捷解题的效果.(7)数形结合有的三角变换问题蕴含着丰富的几何直观,此时若能以数思形,数形渗透,两者交融,则可开辟解题捷径。

利用单位圆,构造三角形,利用直线、曲线的方程等方法都是数形结合的思想。

【例9】已知:,,求的值。

解析:∵点A,B均在单位圆上。

由已知条件知:AB的中点坐标为C(1/6,1/8),即直线AB过定点C如下图所示∠xOC=∴∴据万能公式得:点评:本题用和差化积公式也不难求得,但在三角问题中利用单位圆是常见的研究方法。

数形结合方法在三角变换中应用类型颇多,篇幅所限,仅举一例,本文不赘。

从六、七两种方法可以看出,将代数、几何与三角有机联系起来,综合运用,在解三角变换题中,不仅构思精巧,过程简易,趣味横生,而且还沟通数学知识的纵横关系,也有利于多向探求,广泛渗透,提高和发展学生的创造性思维能力。

以上探讨了三角变换中的七种变换思想和解题方法,在实际解题中这些方法是交织在一起的,混合于同一问题中灵活使用。

掌握这些变换方法的前提是熟悉公式,善于公式的变形运用,同时注意纵横联系数学知识用发散性的思维考虑问题。

三角变换的技巧除了以上七个方面外,还有平方消元,万能置换,利用正余弦定理进行边角转换,利用辅助角,借用复数表示等方法我们以后有机会再介绍。

5. 非特殊角的化简、求值问题的解题方法探究非特殊角的化简求值是给角求值中一类常见的三角求值类型,对于此类求值问题,由于涉及到的三角公式及其变形灵活多样,因而如何利用三角公式迅速准确的求值应是解决这类问题的重点,现在我们通过一个题目的解法探寻,体会非特殊角三角函数的求法。

【题目】求的值。

分析1:这是一道给角求值中非特殊角的化简求值问题,仔细观察可看出在所求式子中有一项是正切函数、一项是正弦函数,因此通常运用切割化弦,然后通过通分化简,使其化为特殊的三角函数值。

解法1:点评:通分以后,要将和式转化为积式,需将拆项为,这是将和式转化为积式中常用的变形手段,在将和差化积后要尽可能的出现特殊角特殊值,这样才有可能使化简得以进行下去。

分析2:运用切割化弦,通过通分化简后,若不考虑将和式转化为积式,而是对角进行变换,观察到运算的式子中出现的两角为20°,40°,与特殊角比较则会有60°-40°=20°,变角后再应用两角差的正弦公式展开进行化简。

解法2:分析3:我们在运用“切割化弦”时,若不利用商数关系,而是将tan200利用半角公式进行化弦,也能进行求值。

点评:本题利用综合法求得了的值,在这里首先进行角的变换,然后利用两角差的正弦公式展开,合并同类项后,再进行弦化切割,从而得到所要求的值。

以上我们探寻了不查表求非特珠角的三角函数的值的问题,对于这类问题,要从多方面考虑解决的方法,在这里我们是从三角函数的“变名”“变角”“变式”“切割化弦”弦化切割”等方面而进行了三角恒等变形,这在以后的学习训练中要逐步体会掌握。

【典型例题】例1. 化简cos(π+α)+cos(π-α),其中k∈Z。

解析:解法一:原式=cos[kπ+(+α)]+cos[kπ-(+α)]=cos kπcos(+α)-sin kπsin(+α)+cos kπcos(+α)+sin kπsin(+α)=2cos kπcos(+α),(k∈Z)当k为偶数时,原式=2cos(+α)=cosα-sinα当k为奇数时,原式=-2cos(+α)=sinα-cosα总之,原式=(-1)k(cosα-sinα),k∈Z解法二:由(kπ++α)+(kπ--α)=2kπ,知cos(kπ--α)=cos[2kπ-(+α+kπ)]=cos[-(kπ++α)]=cos(kπ++α)∴原式=2cos(kπ++α)=2×(-1)k cos(+α)=(-1)k(cosα-sinα),其中k∈Z点评:原式=cos(kπ++α)+cos(kπ--α)=cos[kπ+(+α)]+cos [kπ-(+α)]这就启发我们用余弦的和(差)角公式。

例2. 已知sin(α+β)=,cos(α-β)=,求的值。

解析:解法一:由已知条件及正弦的和(差)角公式,解法二:(设未知数)令x=解之得例 3. 在中,求的值和的面积。

相关文档
最新文档