常见几何体的展开与折叠随堂导练

合集下载

展开与折叠同步练习及答案-精选学习文档

展开与折叠同步练习及答案-精选学习文档

展开与折叠同步练习及答案以下是查字典数学网为您推荐的展开与折叠同步练习及答案,希望本篇文章对您学习有所帮助。

展开与折叠同步练习及答案【问题情境】用六个完全一样的正方形做成如图所示的拼接图形,它折叠后能得到一个密封的正方体纸盒吗?若不能,如何改?【自主探究】1、改一改能否移动上图中某一个正方形的位置,使其折叠后可以得到一个密封的正方体纸盒。

画出移动后的图形,并用纸复制下来,折一下验证你的想法。

2、想一想上述问题,还有其他的移动方法吗,画出图形,与同学交流。

3、做一做除了上面自主探究1、2中的图形外,你还能画出哪些正方体的平面展开图?请与同学交流,然后把所有的正方体的平面展开图分类整理一下。

4、练一练马小虎准备制作一个有盖的正方体纸盒,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中拼接图形上再接一个正方形(用实线在图中画出来),使得接成的图形经过折叠后能成为一个封闭的正方体盒子,再用纸复制下来,然后折叠验证你的想法。

【回顾反思】通过本课的研究与探索,你认为一个拼接图形要能折叠成为一个密封的正方体盒子,需要注意哪些问题?【应用拓展】基础演练1 .下列图形中不可以折叠成正方体的是 ( )A B C D2.一个同学画出了正方体的展开图的一个部分,还缺一个正方形(如下图所示),请在图中添上这个正方形。

3.一个无上盖的正方体纸盒,底面标有字母A,沿图中的粗线剪开,在右图中补上四个正方形,使其成为它的展开图。

【能力升级】4.一个正方体的平面展开图的如图所示,则正方形4的对面是正方形。

(第4题) (第5题)5.如图所示是一个正方体纸盒的展开图,请把8,-3,15分别填入余下的四个正方形中,使得按虚线折成正方体后,相对面上的两个数互为相反数。

6.如图所示的立方体,如果把它展开,可以是下列图形中的( )A B C D7.在右图所示的正方体的平面展开图中,确定正方体上的点M、N的位置。

展开与折叠练习题

展开与折叠练习题

1、侧面展开图是一个长方形的几何体是( )A 、圆锥B 、圆柱C 、四棱锥D 、球2、侧面展开图是一个扇形的几何体是( )A 、圆锥B 、圆柱C 、棱柱D 、球3、在图中,( )是四棱柱的侧面展开图4、下列图形不能够折叠成正方体的是( )DC B A 55、在下列各平面图形中,是圆锥的表面展开图的是( )二、填空题:1、. 下面两个图中所示的平面图形是什么图形的表面展开图。

2、下列图形是某些几何体的平面展开图,试写出原来几何体的名称。

B3、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.4、如图是一个正方体的平面展开图,那么3号面相对的面是号面;5一行中找出第二行对应的几何体的表面展开图,并划线把它们连起来。

1、人们通常根据底面多边形的_将棱柱分为三棱柱、四棱柱、五棱柱……因此,长方体和正方体都是_____棱柱2、如果一个棱往是由12个面围成的,那么这个棱柱是____棱柱.3、一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长5、一个直棱柱共有n个面,那么它共有______条棱,______个顶点3、如图1–10所示的立方体,如果把它展开,可以是下列图形中的()程前你祝似锦4、圆锥的侧面展开图是()A、三角形B、矩形C、圆D、扇形2.如果有一个正方体,它的展开图可能是下面四个展开图中的()1.2展开与折叠同步练习2:1,如图,把左边的图形折叠起来,它会变为()2,下面图形经过折叠不能围成棱柱的是()3,如图,把左边的图形折叠起来,它会变成()4,一个几何体的边面全部展开后铺在平面上,不可能是()A.一个三角形B.一个圆C.三个正方形D.一个小圆和半个大圆5,(1)侧面可以展开成一长方形的几何体有;(2)圆锥的侧面展开后是一个;(3)各个面都是长方形的几何体是;(4)棱柱两底面的形状,大小,所有侧棱长都.6,用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为cm.7,用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.8,用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?( 取3.14)9,如图,在一个正方体木块的两个相距最远的顶点外逗留着1只苍蝇和1只蜘蛛,蜘蛛沿哪条路径去捉苍蝇最快?请说明理由.第9题图第10题图10,如图,正方体a的上、前、右三个面上分别注有A,B,C三个字母,它的展开图如图b所示,请用D,E,F三个字母在展开图上分别标注下、后、左三个面.11,如图,一个长方体的底面是边长为1cm的正方形,侧棱长为2cm,现沿图中粗黑线的棱剪开,请画出展开图。

展开与折叠 同步练习北师大版七年级数学上册

展开与折叠 同步练习北师大版七年级数学上册

北师大版七上 1.2 展开与折叠一、选择题(共15小题)1. 如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数互为相反数,则x,y,z的值分别为( )A. 2,−3,−10B. −10,2,−3C. −10,−3,2D. −2,3,−102. 如图所示的立体图形,它的展开图是( )A. B.C. D.3. 下列图形中,是圆锥的侧面展开图的为( )A. B.C. D.4. 下列四个图形中是三棱柱的表面展开图的是( )A. B.C. D.5. 如图,如果把一个圆锥的侧面沿图示中的线剪开,则得到的图形是( )A. 三角形B. 圆C. 圆弧D. 扇形6. 如图所示的图形,是下面哪个正方体的展开图( )A. B.C. D.7. 如图中的圆柱体,表面展开后得到的平面图形是( )A. B.C. D.8. 下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )A. B.C. D.9. 如图为一直棱柱,其底面是三边长分别为5,12,13的直角三角形.若下列选项中的图形均由三个长方形与两个直角三角形组合而成,且其中一个为如图所示的直棱柱的展开图,则根据图形中标示的边长与直角符号判断,此展开图为( )A. B.C. D.10. 如图所示的正方体的展开图是( )A. B.C. D.11. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A. B.C. D.12. 某个几何体的展开图如图所示,该几何体是( )A.长方体B.圆柱体C.球体D.圆锥体13. 一个正方体的六个面上分别写有六个字“建”、“设”、“生”、“态”、“密”、“云”.将这个正方体展开后如图所示,则该正方体在展开前,与“建”字所在面相对的面上的字是( )A. 生B. 态C. 密D. 云14. 如图是某种几何体的表面展开图,这个几何体是( )A. 圆锥B. 球C. 圆柱D. 棱柱15. 如图中,不可能围成正方体的是()A. B.C. D.二、填空题(共10小题)16. 若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=.17. 小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是.(填写序号)18. 一个几何体的表面展开图如图所示,则这个几何体是.19. 长方体的表面沿某些棱剪开,展开成平面图形,共有个形,其中剪的过程中,需要剪条棱.20. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的.(填写字母)21. 下列各图是几何体的表面展开图,请写出对应的几何体的名称.①②③22. 如图是正方体的展开图,则原正方体相对两个面上的数字和的最大值是.23. 如图所示的两个平面图形分别是两种包装盒的展开图,这两个包装盒的形状分别是,.24. 圆柱的侧面展开图是形.25. 一个正方体的展开图已有一部分(如图),还有一个正方形未画,现有10个位置可供选择,请问:放在哪些位置能围成正方体,放在哪些位置不能围成正方体?仔细观察下图,或许你还要动手做做呢!放在可围成正方体,放在不可以围成正方体.三、解答题(共5小题)26. 如图,在一个正方体的上面、前面、右面分别标有数字1,2,3.1的对面标有数字4,2的对面标有数字5,3的对面标有数字6.(1)求与数字3所在平面垂直的面的数字之积.(2)如果与一个面垂直的面上的数字之和是14,那么这个面上的数字是多少?27. 给出一张正方形纸片(见图),要求将其剪拼成一个上、下底面均为正方形的直四棱柱模型,使它的表面积与原正方形的面积相等.请设计一种剪拼方法,在图中用虚线标示,并作简要说明.28. 四棱柱按如图所示粗线剪开一些棱,展成平面图形,请画出平面图.29. 将一个正方体的表面沿某些棱剪开,展成以下平面图形,先想一想,再动手剪.30. 下图是一个几何体的侧面展开图.(1)请写出这个几何体的名称;(2)根据图中所标的尺寸,计算这个几何体的侧面积.答案1. B 【解析】x与10为对面,y与−2为对面,z与3为对面,∴x=−10,y=2,z=−3.2. C3. A【解析】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.4. A5. D6. D【解析】根据正方体的展开图可得选D.7. B8. C【解析】把三棱柱纸盒往上打开为上底面,同时展开侧面,上面阴影正好与下面空白在最左边,且三角形垂直于矩形,利用空间想象能力,可以确定,C选项符合该展开图.9. D【解析】A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形的直角边不能与对应的棱完全重合,不合题意;C选项中,展开图下方的直角三角形的直角边不能与对应的棱完全重合,不合题意;D选项中,展开图能折叠成一个如题图所示的直棱柱,符合题意.10. C【解析】有图案的三个面是相邻的,可以排除B、D.对于A,如果三角形和圆正确的,那么棋盘格的方向反了.11. B【解析】选项A和C中涂有颜色的一个面是底面,不能折叠成题图中的几何体;选项B能折叠成题图中的几何体;D选项中有5个三角形,故不是这个几何体的表面展开图.12. B13. D14. A【解析】圆锥的展开图为一个扇形和一个圆,故这个几何体是圆锥.故选A.15. D【解析】【分析】此题需利用正方体及其表面展开图的特点解答即可得出答案.【解析】解:选项A,B,C折叠后都可以围成一个正方体,只有D折叠后有两个面重合,不能折成正方体.故选:D.【点评】本题考查了平面图形的折叠及正方体的展开图,解决此题的关键是记住正方体展开图的基本类型1−4−1型,2−3−1型,2−2−2型,3−3型.16. 817. (1)18. 四棱锥19. 6,长方,720. A、B、E【解析】将原图沿右底面棱剪开,可得到图A所示形状;将原图沿右侧面开,可得如图B示形状;将原图沿后方底面棱剪开,可得如图E所示形状.21. 圆锥,三棱锥,圆柱22. 8【解析】根据所给出的图形可得:2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,则原正方体相对两个面上的数字和最大值是8.23. 长方体,正方体24. 长方25. ①⑦⑧⑨,②③④⑤⑥⑩26. (1)40(2)2或5的正方形,再沿虚线折叠,即可构成一个缺少上27. 在正方形的四个角上剪出四个边长为原正方形边长的14底,而下底为正方形的直四棱柱,而剪下的四个正方形恰好能拼成这个四棱柱的上底,如图所示.28.展成平面图如图所示.29. 分别沿虚线剪开即可.30. (1) 这个几何体是六棱柱.(2) 侧面积 =(2+4)ab =6ab .。

5.3 展开与折叠 苏科版七年级数学上册同步练习(解析版)

5.3 展开与折叠 苏科版七年级数学上册同步练习(解析版)

5.3 展开与折叠基础过关全练知识点1 几何体的展开图1.(2022江苏淮安金湖期末)如图,以下三个图形是由立体图形展开得到的,相应的立体图形依次是( )A.正方体、圆柱、三棱锥B.正方体、三棱锥、圆柱C.正方体、圆柱、三棱柱D.三棱锥、圆锥、正方体知识点2 正方体的表面展开图2.如图是正方体的一种展开图,如果将其折叠成原来的正方体,那么与边a重合的是( )A.边dB.边eC.边fD.边i3.(2022独家原创)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体中和“战”字相对的字是( )A.新B.冠C.疫D.情知识点3 图形的折叠4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是( )A B C D5.如图,在图上剪去一个图形,剩下的图形可以折叠成一个长方体,则剪去的这个图形是( )A.①B.②C.③D.④6.(2022江苏常州期末)如图,第一行的图形分别是第二行中的几何体的展开图,请你把有对应关系的平面图形与立体图形用线连一连.7.如图是正方体的表面展开图,如果将其折叠成原来的正方体,那么与点A重合的两点应该是 .8.如果圆柱的侧面展开图是相邻两边长分别为8,20π的长方形,求这个圆柱的体积.(V圆柱=πr2h)能力提升全练 9.(2020江苏泰州中考,2,)把如图所示的纸片沿着虚线折叠,可以得到的几何体是( )A.三棱柱B.四棱柱C.三棱锥D.四棱锥10.(2020甘肃天水中考,3,)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是( )A.文B.羲C.弘D.化11.(2019江苏连云港中考,4,)一个几何体的侧面展开图如图所示,则该几何体的底面是( )A B C D12.(2021广西百色中考,8,)下列展开图中,不是正方体展开图的是( )A B C D13.(2022江苏扬州江都期末,7,)下列三棱柱展开图错误的是( )A B C D14.(2020江苏徐州泉山期末,7,)下面四个图形是如图所示的正方体的表面展开图的是( )A B C D15.(2020江苏淮安涟水月考,10,)如图,把某直三棱柱的表面展开图围成三棱柱后,与A重合的字母是 .16.(2021江苏泰州姜堰月考,22,)如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a= ,b= ,c= ;(2)求代数式a2-|a-b|+|b+c|的值.素养探究全练17.[空间观念](2022江苏扬州月考)(1)一长方体的长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则图①②③④中可能是该长方体表面展开图的有 (填序号);(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B的外围周长;(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.答案全解全析基础过关全练1.C 观察图形,由立体图形及其表面展开图的特点可知相应的立体图形依次是正方体、圆柱、三棱柱.2.A 动手做一做,折叠成原来的正方体时,与边a重合的是d.3.A 通过直观想象可判断.在原正方体中和“战”字相对的字是“新”.4.D A.左面的图形有“田”形,不能折成正方体,故不符合题意;B.左面的图形有两个圆,右面的圆锥的展开图中只有一个圆,不能折成圆锥,故不符合题意;C.左面的图形只有一个三角形,右面的三棱柱的展开图中有两个三角形,不能折成三棱柱,故不符合题意;D.左边的图形能折成圆柱,故符合题意.故选D.5.A 剪去①,剩下的图形可以折叠成一个长方体.故选A.6.解析 如图.7.答案 E、G解析 实际动手操作即可得出答案.8.解析 ①底面周长为8,高为20π时,V圆柱×20π=π×644π2×20π=320;②底面周长为20π,高为8时,V 圆柱×8=π×100×8=800π.答:这个圆柱的体积是320或800π.能力提升全练9.A 沿着虚线折叠得到的几何体是三棱柱.10.D 根据正方体表面展开图可知,“伏”与“化”相对,“弘”与“文”相对,“扬”与“羲”相对,故选D.11.B 根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.故选B.12.D 选项A 、B 、C 均能折叠成正方体;选项D 折叠时,1、2两个面重合,不能折叠成正方体.13.D 三棱柱的两个底面展开是三角形,侧面展开是三个四边形.选项D 折叠时,两个三角形的面重合,不能折叠成三棱柱,故选D.14.A B 、C 选项中“”与“”是相对面,与原图不符,而D 中的图形折叠后,前面为“”,上面为“”时,“”在左面,而不在右面,不符合题意.故选A.15.答案 M 和D解析 根据三棱柱表面展开图的特点可直接得出与A 重合的字母是M 和D.16.解析 (1)根据题图可知,“a”的对面是“-1”,“b”的对面是“2”,“c”的对面是“3”,又∵相对两个面上的数互为相反数,∴a=1,b=-2,c=-3.(2)由(1)知a=1,b=-2,c=-3,∴a2-|a-b|+|b+c|=1-|1-(-2)|+|-2-3|=1-3+5=3.素养探究全练17.解析 (1)①②③.(2)图B的外围周长=6×4+4×4+3×6=58.(3)外围周长最大的表面展开图如图所示(不唯一):这个表面展开图的外围周长=6×8+4×4+2×3=70.。

专题-展开与折叠测试-初中数学七年级上册同步讲练

专题-展开与折叠测试-初中数学七年级上册同步讲练

专题1.2展开与折叠一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.是正方体的展开图的是()A.B.C.D.2.下列各图中,经过折叠不能围成一个棱柱的是()A.B.C.D.3.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体4.如图是一个正方体展开图,把展开图折叠成正方体后,“抗”字一面相对面上的字是()A.新B.冠C.病D.毒5.(2020·柘城县实验中学初三二模)下列图形中为正方体的平面展开图的是()A.B.C.D.6.如图是某几何体的展开图,则该几何体是()A.四棱锥B.三棱锥C.四棱柱D.长方体7.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.8.如图是一个正方体的表面展开图,在这个正方体中,与点A重合的点为()A.点C和点N B.点B和点M C.点C和点M D.点B和点N 9.下列图形经过折叠不能围成棱柱的是()A.B.C.D.10.下列图形不可能是长方体展开图的是()A.B.C.D.11.如果有一个正方体,它的展开图可能是下列四个展开图中的()A.B.C.D.12.如图是一个正方形盒的展开图,若在其中的三个正方形a、b、c内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形a、b、c内的三个数依次为()A.3,0,4-B.0,3,4-C.3-,0,4D.3,4-,013.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4B.6C.12D.15==;F,H为CD边14.如图所示,在长方形纸片ABCD中,E,G为AB边上两点,且AE EG GB==.沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH 上两点,且DF FH HC折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.如图为某几何体的展开图,该几何体的名称是___.16.将面积为225cm2的正方形硬纸片围成圆柱的侧面,则此圆柱的底面直径为______cm(结果保留π).17.下列各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样的是____________.(填序号)18.一个小立方块的六个面分别标有数字1,-2,3,-4,5,-6,从三个不同方向看到的情形如图,则如图放置时的底面上的数字之和等于_____。

2展开与折叠同步习题有答案和解析

2展开与折叠同步习题有答案和解析

2展开与折叠第1课时正方体展开预习要点:1.(2016绍兴)如图是一个正方体,则它的表面展开图可以是()A.B.C.D.2.(2016泰州一模)将一个正方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.3.(2016大东区二模)下列各图不是正方体表面展开图的是()A.B.C.D.4.(2016丹东模拟)小红制作了一个对面图案均相同的正方体礼品盒,(如图所示),则这们礼品盒的平面展开图是()A.B.C.D.5.(2016淮阴区一模)如图是一个正方体的展开图,折叠成正方体后与“中”字相对的一面上的字是.6.(2015福建模拟)如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是.7.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.同步小题12道一.选择题1.(2016长春校级一模)下列图形是正方体表面积展开图的是()A.B.C.D.2.(2015眉山)下列四个图形中是正方体的平面展开图的是()A.B.C.D.3.(2016资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.4.(2016达州)如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来5.(2016邢台二模)如图,将正方体相邻的两个面上分别画出3×3的正方形网格,并分别用图形“”和“○”在网格内的交点处做上标记,则该正方体的表面展开图是()A.B.C.D.6.(2015吉林)如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.二.填空题7.(2016春潮南区月考)一个正方形的平面展开图如图所示,将它折成正方体后,“保”字对面的字是.8.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.9.(2016市南区一模)如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.10.(2014秋泗阳县校级期末)要把一个正方体的表面展开成平面图形,至少需要剪开条棱.三.解答题11.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).第2课时其他立体图形的展开预习要点1.(2016新乡校级模拟)下列四个图形中是三棱柱的表面展开图的是()A.B.C.D.2.(2016市北区一模)下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个3.(2016惠安县二模)下列四个图形中,是三棱锥的表面展开图的是()A.B.C.D.4.(2016海曙区一模)如图,将长方体表面展开,下列选项中错误的是()A.B.C.D.5.一个几何体的表面展开图如图所示,则这个几何体是.6.如图是某几何体的展开图,那么这个几何体是.7.如图是一个几何体的展开图,则这个几何体是.同步小题12道一.选择题1.(2016富顺县校级二模)下列不是三棱柱展开图的是()A.B.C.D.2.如图是一个长方体包装盒,则它的平面展开图是()A. B. C.D.3.(2015泰州)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.(2015金溪县模拟)下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A.B. C.D.5.如图是一个直三棱柱,则它的平面展开图中,错误的是()A.B.C.D.6.下面图形经过折叠不能围成棱柱的是()A.B.C.D.二.填空题7.如图是三个几何体的展开图,请写出这三个几何体的名称:、、.8.圆锥有个面,有个顶点,它的侧面展开图是.9.如图所示的四幅平面图中,是三棱柱的表面展开图的有.(只填序号)10.如图是一个长方体的展开图,每个面上都标注了字母,如果F面在前面,B面在左面,(字母朝外),那么在上面的字母是.三.解答题11.连一连:请在第二行图形中找到与第一行几何体相对应的表面展开图,并分别用连接线连起来.12.某长方体包装盒的展开图如图所示.如果长方体盒子的长比宽多4cm,高2cm,求这个包装盒的体积.答案:2展开与折叠第1课时正方体展开预习要点:1.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B2.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、B、上底面不可能有两个,故不是正方体的展开图;D、出现了田字格,故不能;C、可以拼成一个正方体.故选C3.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A,C,D是正方体的平面展开图,B有田字格,不是正方体的平面展开图,故选:B4.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,观察各选项,A、C、D都有同一个图案是相邻面,只有B选项的图案符合.故选B5.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“利”是相对面,“你”与“考”是相对面,“中”与“顺”是相对面.答案:顺.6.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.答案:4.7.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴做成一个无盖的盒子,盒子的底面的字母是B,周围四个字母分别是AECD,答案:B同步小题12道1.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、无法围成立方体,故此选项错误;B、无法围成立方体,故此选项错误;C、无法围成立方体,故此选项错误;D、可以围成立方体,故此选项正确.故选:D2.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、不是正方体的平面展开图;B、是正方体的平面展开图;C、不是正方体的平面展开图;D、不是正方体的平面展开图.故选:B3.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C4.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D5.【分析】根据正方体的平面展开图,与正方体的各部分对应情况,实际动手操作得出答案.【解答】解:观察图形可知,该正方体的表面展开图是.故选:C6.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B7.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“低”与“绿”是相对面,“碳”与“保”是相对面,“环”与“色”是相对面.答案:碳.8.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“E”是相对面,“B”与“D”是相对面,“C”与盒盖是相对面.答案:C9.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:故小丽总共能有4种拼接方法.答案:4.10.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12-5=7条棱,答案:7.11.【分析】根据题意可知,结合展开图中“1,4,1”格式作图,即可得出答案.【解答】解:答案如下:或或等.12.【分析】根据平面图形的折叠及正方体的展开图的特点分别画出图形即可.【解答】解:根据题意画图如下:第2课时其他立体图形的展开预习要点1.【分析】利用棱柱及其表面展开图的特点解题.【解答】解:A、是三棱柱的平面展开图;B、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱,故此选项错误;C、围成三棱柱时,缺少一个底面,故不能围成三棱柱,故此选项错误;D、围成三棱柱时,没有底面,故不能围成三棱柱,故此选项错误.故选:A2.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C3.【分析】根据三棱锥的四个面都是三角形,还要能围成一个立体图形,进而分析得出即可.【解答】解:A、能组成三棱锥,是;B、不组成三棱锥,故不是;C、组成的是三棱柱,故不是;D、组成的是四棱锥,故不是;故选A4.【分析】长方体的表面展开图的特点,有四个长方形的侧面和上下两个底面组成.【解答】解:A、是长方体平面展开图,不符合题意;B、是长方体平面展开图,不符合题意;C、有两个面重合,不是长方体平面展开图,不符合题意;D、是长方体平面展开图,不符合题意.故选:C5.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥;答案:四棱锥.6.【分析】展开图为两个圆,一个长方形,易得是圆柱的展开图.【解答】解:这个几何体是圆柱,答案:圆柱7.【分析】根据侧面为n个长方形,底边为n边形,原几何体为n棱柱,依此即可求解.【解答】解:侧面为5个长方形,底边为5边形,故原几何体为五棱柱,答案:五棱柱.同步小题12道1.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.【解答】解:∵三棱柱展开图有3个四边形,2个三角形,∴C选项不是三棱柱展开图,故选:C2.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选A3.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥.故选:A4.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、6个正方形能围成一个正方体,所以,这是正方体的展开图;故本选项错误;B、6个长方形可以围成长方体.所以,这是长方体的展开图;故本选项错误;C、一个四边形和四个三角形能围成四棱锥,所以,这是四棱锥的展开图;故本选项正确;D、三个长方形和两个三角形能围成一个三棱柱,所以,这是三棱柱的展开图;故本选项错误.故选C5.【分析】根据最宽的侧面的宽与上底的最长边相应,最窄的侧面的宽与上底的最短边相应,可得答案.【解答】解:最宽的侧面的宽与上底的最长边相应,故D错误.故选:D6.【分析】根据棱柱的特点作答.【解答】解:A、能围成四棱柱;B、能围成五棱柱;C、能围成三棱柱;D、经过折叠不能围成棱柱.故选D7.【分析】由平面展开图的特征作答.【解答】解:由平面展开图的特征可知,从左向右的三个几何体的名称分别为:五棱柱,圆柱,圆锥.8.【分析】根据圆锥的概念和特性即可求解.【解答】解:圆锥有二个面组成,有一个顶点,它的侧面展开图是扇形.答案:二,一,扇形.9.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个矩形,可得答案.【解答】解:三棱柱的两底展开是三角形,侧面展开是三个矩形,答案:①②③.10.【分析】根据展开图,可的几何体,F、B、C是邻面,F、B、E是邻面,根据F面在前面,B面在左面,可得答案.【解答】解:由组成几何体面之间的关系,得F、B、C是邻面,F、B、E是邻面.由F面在前面,B面在左面,得C面在上,E面在下,答案:C11.【分析】观察图形根据几何体和展开图的形状判定即可.【解答】解:如图所示:12.【分析】要求长方体的体积,需知长方体的长,宽,高,结合图形可知2个宽+2个高=14,依此可求长方体盒子的宽;再根据长方体盒子的长=宽+4,可求长方体盒子的长;再根据长方体的体积公式即可求解.【解答】解:(14-2×2)÷2=(14-4)÷2=10÷2=5(cm),5+4=9(cm),9×5×2=90(cm3).答:这个包装盒的体积是90cm3.。

2022年北师大版数学《展开与折叠》配套精品练习(附答案)

1.2 展开与折叠同步练习:1,如图,把左边的图形折叠起来,它会变为()2,下面图形经过折叠不能围成棱柱的是()3,如图,把左边的图形折叠起来,它会变成()4,一个几何体的边面全部展开后铺在平面上,不可能是()5,(1)侧面可以展开成一长方形的几何体有;(2)圆锥的侧面展开后是一个;(3)各个面都是长方形的几何体是;(4)棱柱两底面的形状,大小,所有侧棱长都.6,用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为cm.7,用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.8,用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?( 取3.14)9,如图,在一个正方体木块的两个相距最远的顶点外逗留着1只苍蝇和1只蜘蛛,蜘蛛沿哪条路径去捉苍蝇最快?请说明理由.第9题图第10题图10,如图,正方体a的上、前、右三个面上分别注有A,B,C三个字母,它的展开图如图b所示,请用D,E,F三个字母在展开图上分别标注下、后、左三个面.11,如图,一个长方体的底面是边长为1cm的正方形,侧棱长为2cm,现沿图中粗黑线的棱剪开,请画出展开图。

12,已知圆锥的侧面展开图是一个半圆,求它的侧面积与底面积的比.答案:1,B 2,D 3,B 4,B 5,(1)圆柱棱柱(2)扇形(3)长方体(4)相同相等相等6,1 7,250 cm329,略10,略11,略12,2第四章图形的相似测试卷一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:163.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对5.如图,△ABC 中,P 为AB 上的一点,在下列四个条件中:①∠ACP=∠B ;②∠APC=∠ACB ;③AC 2=AP•AB ;④AB•CP=AP•CB ,能满足△APC 和△ACB 相似的条件是( )A .①②④B .①③④C .②③④D .①②③6.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :FC 等于( )A .3:2B .3:1C .1:1D .1:27.四边形ABCD 与四边形A′B′C′D′位似,O 为位似中心,若OA :OA′=1:3,则S 四边形ABCD :S 四边形A´B´C´D´=( ) A .1:9 B .1:3 C .1:4 D .1:58.小刚身高,测得他站立在阳光下的影长为,紧接着他把手臂竖直举起,测得影长为,那么小刚举起手臂超出头顶( )A .0.5 mB .0.55 mC .0.6 mD .2.2 m9.如图,在△ABC 中,DE ∥BC ,=,则下列结论中正确的是( )A.=B.=C.=D.=10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.二、填空题11.若,则=.12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k=.14.在△ABC中,AB=12cm,BC=18cm,AC=24cm,另一个与它相似的△A′B′C′的周长为18cm,则△A′B′C各边长分别为.15.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.16.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.17.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为.18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE 与BD交于点F,则△AFD与四边形DEFC的面积之比是.三、解答题19.已知线段a,b,c,d成比例,且a=6dm,b=3dm,d=dm,求线段c的长度.20.(6分)若=,求的值.21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.22.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.24.某小区居民筹集资金1600元,计划在两底分别为10m、20m梯形空地上种植种植花木,如图:(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD 地带种满花后(图中阴影部分),共花了160元,计算种满△BMC地带所需费用.(2)若其余地带有玫瑰、茉莉两种可供选择,单价分别为12元/m2、10元/m2,应选哪种花木,刚好用完所筹资金?25.如图,已知在△ABC和△EBD中,.(1)若△ABC与△EBD的周长之差为60cm,求这两个三角形的周长.(2)若△ABC与△EBD的面积之和为812cm2,求这两个三角形的面积.26.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得米,小明的眼睛距地面的距离米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?答案解析一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M【考点】相似三角形的判定.【专题】压轴题;网格型;数形结合.【分析】根据两三角形三条边对应成比例,两三角形相似进行解答.【解答】解:设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16【考点】相似三角形的性质.【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.3.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.【考点】平行线分线段成比例.【分析】直接利用平行线分线段成比例定理写出答案即可.【解答】解:∵DE∥BC,∴==,故选C.【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对 C.甲对,乙不对D.甲不对,乙对【考点】相似三角形的判定;相似多边形的性质.【专题】数形结合.【分析】甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.【解答】解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选:A.【点评】此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB 相似的条件是()A.①②④B.①③④C.②③④D.①②③【考点】相似三角形的判定.【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】相似三角形的判定与性质.【专题】几何图形问题.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=,∵点E 是边AD 的中点,∴AE=DE=AD , ∴=.故选:D .【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF ∽△BCF 是解题关键.7.四边形ABCD 与四边形A′B′C′D′位似,O 为位似中心,若OA :OA′=1:3,则S 四边形ABCD :S 四边形A´B´C´D´=( ) A .1:9 B .1:3 C .1:4 D .1:5【考点】位似图形的性质.【分析】四边形ABCD 与四边形A′B′C′D′位似,四边形ABCD ∽四边形A′B′C′D′,可知AD ∥A′D′,△OAD ∽△OA′D′,求出相似比从而求得S 四边形ABCD :S 四边形A´B´C´D´的值.【解答】解:∵四边形ABCD 与四边形A′B′C′D′位似,∴四边形ABCD ∽四边形A′B′C′D′,∴AD ∥A′D′,∴△OAD ∽△OA′D′,∴OA :O′A′=AD :A′D′=1:3,∴S 四边形ABCD :S 四边形A´B´C´D´=1:9. 故选:A .【点评】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.8.小刚身高,测得他站立在阳光下的影长为,紧接着他把手臂竖直举起,测得影长为,那么小刚举起手臂超出头顶()A.0.5 m B.0.55 m C.0.6 m D.2.2 m【考点】利用影子测量物体的高度.【分析】根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x的值,再减去身高即可得出小刚举起的手臂超出头顶的高度.【解答】解:设手臂竖直举起时总高度xm,列方程得:=,解得,﹣,所以小刚举起的手臂超出头顶的高度为.故选:A.【点评】本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比.9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质.【分析】由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点评】本题主要考查的是相似三角形的判定与性质,发现+=1是解决本题的关键.二、填空题11.若,则=.【考点】比例的性质.【专题】常规题型.【分析】根据比例的性质求出的值,然后两边加1进行计算即可得解.【解答】解:∵,∴﹣2=,=2+=,∴+1=+1,即=.故答案为:.【点评】本题考查了比例的性质,根据已知条件求出的值是解题的关键.12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【考点】比例的性质.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k=.【考点】相似三角形的性质.【分析】由一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,根据相似比等于对应边的比,即可求得答案.【解答】解:∵一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,∴较小三角形与较大三角形的相似比k==.故答案为:.【点评】此题考查了相似比的定义.此题比较简单,解题的关键是熟记定义.14.在△ABC中,AB=12cm,BC=18cm,AC=24cm,另一个与它相似的△A′B′C′的周长为18cm,则△A′B′C各边长分别为4cm,6cm,8cm.【考点】相似三角形的性质.【分析】由△A′B′C′∽△ABC,根据相似三角形周长的比等于相似比,即可求得答案.【解答】解:∵△A′B′C′∽△ABC,∴△A′B′C′的周长:△ABC的周长=A′B′:AB,∵在△ABC中,AB=12cm,BC=18cm,AC=24cm,∴△ABC的周长为:54cm,∵△A′B′C′的周长为18cm,∴A′B′:AB=A′C′:AC=B′C′:BC=,∴A′B′=4cm,B′C′=6cm,A′C′=8cm.故答案为:4cm,6cm,8cm.【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.15.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为5.【考点】利用镜子的反射原理.【专题】计算题;压轴题.【分析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【解答】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=4.∴AB′=AC+CB′=AC+CB=5.即光线从点A到点B经过的路径长为5.【点评】本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键.16.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【考点】相似三角形的性质.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.17.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定,可得△ADE∽△ABC,根据相似三角形的性质,可得答案.【解答】解;∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵=,∴=()2=,,=18,∴S△ABC故答案为:18.【点评】本题考查了相似三角形判定与性质,利用了相似三角形的判定与性质.18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE 与BD交于点F,则△AFD与四边形DEFC的面积之比是9:11.【考点】相似三角形的判定与性质.【专题】压轴题.【分析】根据题意,先设CE=x ,S △BEF =a ,再求出S △ADF 的表达式,利用四部分的面积和等于正方形的面积,得到x 与a 的关系,那么两部分的面积比就可以求出来.【解答】解:设CE=x ,S △BEF =a ,∵CE=x ,BE :CE=2:1,∴BE=2x ,AD=BC=CD=AD=3x ;∵BC ∥AD ∴∠EBF=∠ADF ,又∵∠BFE=∠DFA ;∴△EBF ∽△ADF∴S △BEF :S △ADF ===,那么S △ADF =a .∵S △BCD ﹣S △BEF =S 四边形EFDC =S 正方形ABCD ﹣S △ABE ﹣S △ADF , ∴x 2﹣a=9x 2﹣×3x•2x ﹣, 化简可求出x 2=;∴S △AFD :S 四边形DEFC =:=:=9:11,故答案为9:11. 【点评】此题运用了相似三角形的判定和性质,还用到了相似三角形的面积比等于相似比的平方.三、解答题19.已知线段a ,b ,c ,d 成比例,且a=6dm ,b=3dm ,d=dm ,求线段c 的长度.【考点】成比例线段.【分析】根据比例线段的定义得出=,即=,解之可得c .【解答】解:根据题意,=,即=,解得:c=3,答:线段c 的长度为3dm .【点评】本题主要考查比例线段,掌握比例线段的定义是关键.20.若=,求的值.【考点】比例的性质.【分析】首先由已知条件可得x=,然后再代入即可求值.【解答】解:∵=,∴8x﹣6y=x﹣y,x=,∴==.【点评】此题主要考查了比例的性质,关键是掌握内项之积等于外项之积.21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.【考点】比例的性质.【专题】探究型.【分析】令=k.根据a+b+c=12,得到关于k的方程,求得k值,再进一步求得a,b,c的值,从而判定三角形的形状.【解答】解:令=k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.【点评】此题能够利用方程求得k的值,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.22.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.【考点】相似三角形的判定;平行线分线段成比例.【专题】计算题;证明题.【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.【解答】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【点评】此题考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用.24.某小区居民筹集资金1600元,计划在两底分别为10m 、20m 梯形空地上种植种植花木,如图:(1)他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后(图中阴影部分),共花了160元,计算种满△BMC 地带所需费用.(2)若其余地带有玫瑰、茉莉两种可供选择,单价分别为12元/m 2、10元/m 2,应选哪种花木,刚好用完所筹资金?【考点】相似三角形的性质.【专题】应用题.【分析】(1)易得△AMD ∽△BMC ,根据BC=2AD 可得S △BMC =4S △AMD ,据此可得种满△BMC 的花费;(2)根据每平方米8元来看,△AMD 面积为20平米方米,△BMC 面积为80平方米,因此可以得出梯形的高也就是两三角形高的和为12米,那么可得梯形面积为180平方米,还有80平方米未种,800元未用,所以要选择每平方米十元的茉莉花.【解答】解:(1)∵四边形ABCD 是梯形,∴AD ∥BC ,∴∠MAD=∠MCB ,∠MDA=∠MBC ,∴△AMD ∽△CMB ,∴S △AMD :S △BMC =(10:20 )2=1:4.∵种植△AMD 地带花费160元,单价为8元/m 2,∴S △AMD =20m 2,∴S △CMB =80m 2,∴△BMC地带所需的费用为8×80=640(元);(2)设△AMD的高为h1,△BMC的高为h2,梯形ABCD的高为h.∵S△AMD=×10h1=20,∴h1=4,∵S△BCM=×20h2=80,∴h2=8,∴S梯形ABCD=(AD+BC)•h=×(10+20)×(4+8)=180.∴S△AMB +S△DMC=180﹣20﹣80=80(m2),∵160+640+80×12=1760(元),160+640+80×10=1600(元),∴应种植茉莉花刚好用完所筹集的资金.【点评】此题主要考查了相似三角形的性质以及应用;求得梯形的高是解决本题的难点;用到的知识点为:相似三角形的面积比等于相似比的平方.25.如图,已知在△ABC和△EBD中,.(1)若△ABC与△EBD的周长之差为60cm,求这两个三角形的周长.(2)若△ABC与△EBD的面积之和为812cm2,求这两个三角形的面积.【考点】相似三角形的判定与性质.【分析】(1)根据已知条件得到△ABC∽△DBE,根据相似三角形的性质:相似三角形周长的比等于相似比即可得到结论;(2)根据已知条件得到△ABC∽△DBE,根据相似三角形的性质:相似三角形面积的比等于相似比的平方即可得到结论;【解答】解:(1)∵,∴△ABC∽△DBE,∴△ABC的周长:△EBD的周长=,设△ABC的周长为5k,△EBD的周长为2k,∴5k﹣2k=60,∴k=20,∴△ABC的周长=100cm,△EBD的周长=40cm;(2)∵,∴△ABC∽△DBE,∴=()2=,∵△ABC与△EBD的面积之和为812cm2,∴S=812×=700.△ABC【点评】本题考查了相似三角形的判定和性质,三角形的面积和周长,熟练掌握相似三角形的判定和性质是解题的关键.26.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得米,小明的眼睛距地面的距离米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?【考点】相似三角形的性质与判定.【专题】几何图形问题.【分析】根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE相似,再根据相似三角形对应边成比例列式求解即可.【解答】解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,∴=,解得.答:河宽BD是米.【点评】本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.。

图形展开、折叠与三视图专题练习含答案

《图形展开、折叠与三视图》专题练习一、选择题(每小题3分,共30分)4 .如图所示是某一几何体的三视图,则这个几何体是()主视图讲卫生 陟 病 4(第5底)5 . 一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方 体中和“毒”字相对的字是 ()A .卫C .讲 A .长方体B .圆锥C .圆柱 口.三棱柱 B .防D .生1.将一个正方体沿某些棱展开后,能够得到的平面图形是 ()2.如图,从一个斜插吸管的盒装饮料的正面看到的图形是 ()从正面看正视图6.在五棱柱、圆柱、圆锥和正方体这四个几何体中,侧面展开图是长方形的有A. 1个B. 2个C. 3个D. 4个7.如图所示是一个物体的俯视图,它所对应的物体是()A BCD8.如图所示是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表9.一个圆柱形钢块,从正中间挖去了一个长方体孔,其俯视图如图所示,则此圆柱钢块的左视图是()C D10.如图所示是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()二、填空题(每小题3分,共24分)11.桌面上放着一个三棱锥和一个圆柱(如图所示),在下图中填上它的视图的名称.门" 口oA..…他图,视图视图12.一个几何体的三视图是两个同样大小的长方形和一个直径等于长方形一边长的圆,这个几何体是.13.当下面这个图形被折起来组成一个正方体时,数字会在与数字2 所在的平面相对的平面上.14.如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着一1, 2, 3,-4, 5,一6六个数字,那么图中所有看不见的面上的数字和是.(第】4题)(第15题)15.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员画出的这堆货箱的主视图和左视图都如图,则这堆货箱至多有.16.如图所示是由四个相同小立方块组成的立体图形的主视图和左视图,那么原立体图形可能是.(把下图中正确的立体图形的序号都填在横线上)17.如图所示是一个正方体的展开图,如果正方体相对的面上标注的值相等,那么x_, y=.(第1718.如图所示是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是.三、解答题(共46分);19. (6分)两个物体叠成如图所示的几何体,请画出它的三视图口£二从正面看20. (6分)如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留n)倨视国21. (7分)请你根据下图中的三视图,想象物体的形状,画出这个物体的立体图,并数一数有多少个小立方块.22. (7分)如图,在正方体能看到的面上写上数1、2、3,而在两种展开的图中也已分别写上了两个和一个指定的数.请你在展开图的其他各面上写上适当的数,使得相对的面上两数之和等于7.23. (10分)如图所示是一个食品包装盒的侧面展开图.(1)请写出这个包装盒的多面体的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积.24. (10分)(1)一个透明的玻璃正方体内镶嵌了一条铁丝(如图①所示的粗线),请指出右边的两个图分别是从正方体的哪个方向看到的视图;(2)如图②,粗线表示嵌在玻璃正方体内的铁丝,请画出该正方体的主视图、左视图和俯视图.① ②参考答案、1. C 2. A 3. B 4. A 5. B 6. C 7. A 8. A 9. C 10. B 二、11.左俯主12.圆柱13. 5 14.-13 15. 10 16.①②④17. 4 6 18. 11 三、19.该几何体的三视图如下:20.该立体图形为圆柱.体积为250 21. 9或10. 22.如图:23. (1)这个多面体是六棱柱.(2)这个多面体的侧面由6个长为a,宽为b的长方形组成,因此它的侧面积为6ab. 24.(1)分别是从上面和正面看到的视图.(2)。

展开与折叠同步练习含试卷分析详解北师大版数学七年级上

北师大版数学七年级上册第一章第2节展开与折叠课时练习一、单选题(共15小题)1、如图是一个长方体包装盒,则它的平面展开图是()A、B、C、D、2、下列四个图形中是正方体的平面展开图的是()A、B、C、D、3、如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A、B、C、D、4、下列图形中可以作为一个三棱柱的展开图的是()A、B、C、D、5、一个几何体的表面展开图如图所示,则这个几何体是()A、四棱锥B、四棱柱C、三棱锥D、三棱柱6、下列图形中,能通过折叠围成一个三棱柱的是()A、B、C、D、7、下面图形经过折叠不能围成棱柱的是()A、B、C、D、8、如图是一个正方体纸巾盒,它的平面展开图是()A、B、C、D、9、骰子可以看做是一个小立方体(如图),它相对两面之和的点数之和是7,下面展开图中符合规则的是()A、B、C、10、如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形()A、B、C、D、11、下列图形经过折叠不能围成棱柱的是()A、B、C、D、12、下面四个图形中,经过折叠能围成如图所示的几何图形的是()B、C、D、13、如图是一个立方体图形的展开图,则这个立体图形是()A、四棱柱B、四棱锥C、三棱柱D、三棱锥14、一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A、记B、观C、心D、间15、如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A、的B、中C、国D、梦二、填空题(共5小题)16、如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是________.17、“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________.18、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第次后,骰子朝下一面的点数是________.19、如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是________.20、有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a+b的值为________.三、解答题(共5小题)21、一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?22、如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的整式的值相等,求整式(x+y)a的值.23、如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?24、解答题(1)如图:是有一些相同小正方体搭建而成的几何体的俯视图,其中小正方形中的数字表示在这个位置小立方体的个数,请画出该几何体的主视图与左视图.(2)已知、b互为相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,求:p ﹣cd+ 的值.25、回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f ,顶点个数为v ,棱数为e ,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.答案解析部分一、单选题(共15小题)1、【答案】A【考点】几何体的展开图【解析】【解答】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B.C.D.不符合长方体的展开图的特征,故不是长方体的展开图.【分析】考查了几何体的展开图,牢记长方体展开图的各种情形是解题关键.2、【答案】B【考点】几何体的展开图【解析】【解答】A.不是正方体的平面展开图;B.是正方体的平面展开图;C.不是正方体的平面展开图;D.不是正方体的平面展开图.【分析】考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.3、【答案】D【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件.【分析】考查了几何体的展开图,注意从相对面入手.4、【答案】A【考点】几何体的展开图【解析】【解答】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.【分析】查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.5、【答案】A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.【分析】考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决问题的关键.6、【答案】C【考点】几何体的展开图【解析】【解答】A.折叠后少一面,故错误;B.折叠后两侧面重叠,不能围成三棱柱,故错误;C.折叠后能围成三棱柱,故正确;D.折叠后两侧面重叠,不能围成三棱柱,故错误.【分析】三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,.7、【答案】D【考点】几何体的展开图【解析】【解答】A.能围成四棱柱;B.能围成五棱柱;C.能围成三棱柱;D.经过折叠不能围成棱柱.【分析】常见立体图形的平面展开图的特征,是解决此题的关键.8、【答案】B【考点】几何体的展开图【解析】【解答】根据正方体的展开图可得【分析】根据正方体的展开图,训练了学生空间想象能力.9、【答案】C【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是相对面,4点与6点是相对面,2点与5点是相对面,所以不可以折成符合规则的骰子,故错误;B.3点与4点是相对面,1点与5点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误;C.4点与3点是相对面,5点与2点是相对面,1点与6点是相对面,所以可以折成符合规则的骰子,故正确;D.1点与5点是相对面,3点与4点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形用排除法求解.10、【答案】B【考点】几何体的展开图【解析】【解答】圆面的相邻面是长方形,长方形不指向圆,【分析】根据相邻面、对面的关系,可得答案.11、【答案】B【考点】几何体的展开图【解析】【解答】A可以围成四棱柱,C可以围成五棱柱,D可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个三棱柱.【分析】由平面图形的折叠及棱柱的展开图解题,熟记常见立体图形的表面展开图的特征是解决此题的关键.12、【答案】B【考点】几何体的展开图【解析】【解答】根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.【分析】根据图中三角形,圆,正方形所处的位置关系可选出答案,考查了空间想象力.13、【答案】C【考点】几何体的展开图【解析】【解答】∵三棱柱的展开图侧面是长方形,上下面是三角形,∴上图应是三棱柱的展开图.【分析】根据立体图形的展开图是平面图形以及三棱柱的侧面展开图是长方形,上下面是三角形,可解此题.14、【答案】A【考点】几何体的展开图【解析】【解答】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.15、【答案】D【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.【分析】考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手作答.二、填空题(共5小题)16、【答案】4【考点】几何体的展开图【解析】【解答】这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.【分析】利用正方体及其表面展开图的特点解题.17、【答案】义【考点】几何体的展开图【解析】【解答】结合展开图可知,与“孝”相对的字是“义”.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“孝”相对的字.18、【答案】3【考点】几何体的展开图,探索图形规律【解析】【解答】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵÷4=503…2,∴滚动第次后与第二次相同,∴朝下的点数为3.【分析】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,解题的关键是发现规律.19、【答案】的【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“大”与“中”是相对面,“的”与“梦”是相对面.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形.20、【答案】7【考点】几何体的展开图【解析】【解答】由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴3的对面数字是6,∵标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,∴a=3,b=4,∴a+b=3+4=7.【分析】本题考查了正方体相对两个面上的文字,,由相邻面上的数字确定出相对面上的数字是解题的关键.三、解答题(共5小题)21、【答案】1对4,2对5,3对6.解答:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6.【考点】几何体的展开图【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对22、【答案】81解答:根据题意得:y=3,x=6,a=2,故(x+y)a=(x+y)2=92=81.【考点】代数式求值,几何体的展开图,简单几何体的三视图【解析】【分析】由正方体的展开图的相对面和已知“相对两个面上的代数式的值相等”,可求得x、y、a 的值,再根据完全平方公式求解.23、【答案】(1)2点在前面,可知5点在后面解答:正方体的平面展开图,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,(1)如果1点在上面,3点在左面,2点在前面,可知5点在后面;(2)如果5点在下面,那么2点在上面【考点】几何体的展开图【解析】【分析】本题考查了正方体的表面展开图,注意正方体的空间图形,从相对面入手,分析及解答.24、【答案】(1)解答:根据俯视图上小正方形的个数,主视图、左视图,(2)答案:0或-2解答:a、b互=相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,得a+b=0,cd=1,m=±2,p=±1,p=1时,p﹣cd+=1﹣1+0=0,当p=﹣1时,p﹣cd+=﹣1﹣1+0=﹣2,综上所述:p﹣cd+=0,或p﹣cd+=﹣2.【考点】几何体的展开图【解析】【分析】(1)根据俯视图上小正方形的个数,可的主视图、左视图;(2)根据相反数的和为零,根据倒数的积为1,根据绝对值的意义,可得答案.25、【答案】(1)长方体和五棱锥解答:图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x ,则x+x+8﹣50=2解得x=22.【考点】认识平面图形,几何体的展开图【解析】【分析】(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)考查了欧拉公式,展开图折叠成几何体.。

七年级数学上册专题第1讲图形的展开与折叠重点、考点知识总结及练习

第1讲图形的展开与折叠⎧⎪⎨⎪⎩几何体的展开图展开与折叠展开图折叠成几何体相对的面知识点1:几何体的展开图常见的几何体的展开图有圆柱、圆锥、棱柱、正方体、棱锥。

特殊:球没有展开图 圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面)。

圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)正方体的表面展开图一共有11种可能。

【典例】1.如图所示的正方体的展开图是( )A. B. C. D.【方法总结】1.判断特定正方体的展开图首先判断是否是正确的展开图模型,其次通过相邻面的位置、方向来确定正确的展开图.2.解决几何体的展开图的相关问题只需要记清楚不同立体图形的展开图的模型。

【随堂练习】1.(2018•武汉模拟)如图所示的正方体的展开图是()A. B. C. D.2.(2018•平谷区二模)如图所示是一个三棱柱纸盒.在下面四个图中,只有一个展开图是这个纸盒的展开图,那么这个展开图是()A.B.C.D.3.(2017秋•诸城市期末)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.4.(2017秋•阜宁县期末)如果有一个正方体,它的展开图可能是下面四个展开图中的()A. B. C.D.知识点2 展开图折叠成几何体【典例】1.将下面的纸片沿虚线折叠,不能折成长方体盒子的是()A. B. C. D.【方法总结】展开图折叠成几何体是将几何体展开的对应的操作,解决这类型题首先能够找到正确的几何体展开图,其次找出相邻、相对的面。

【随堂练习】1.(2018•河北二模)如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中①、②、③、④中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.①B.②C.③D.④2.(2017秋•西城区期末)某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是()A.B.C.D.3.(2017秋•彭泽县期中)将如图所示的平面图形折成立方体后可能是()A.B.C.D.知识点3:正方体的相对两个面正方体展开图找相对面的方法:(1)中间隔“一”是对面:中间相隔一个正方形的两个正方形是相对面;(2)“Z”字两端是对面:呈“Z”字形排列的四个正方形首尾两个正方形是相对面;(3)间二、拐角邻面知:中间隔两个正方形的两个正方形是相邻面,呈拐角形状的三个小正方形,只有一个相邻正方形的两个正方形是相邻面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为长方体纸盒所有棱长的和是880 cm,
所以4(a+5a+5a)=880, 解得a=20. 所以长方体纸盒的长与宽均为20×5=100(cm). 所以这个长方体纸盒的体积为 100×100×20=200 000(cm3).
返回
化折为直法
15.如图,有一个正方体盒子,在盒子内的顶点A处
有一只蚂蚁,而在对角的顶点C1处有一块糖,蚂 蚁应沿着什么路径爬行,
返回
12.(中考· 泰州)一个几何体的表面展开图如图所示, 则这个几何体是( A ) A.四棱锥 C.三棱锥 B.四棱柱 D.三棱柱
返回
题型
1
长方体表面展开图的相 关数据在计算中的应用
13.如图是一张铁皮.
(1)计算该铁皮的面积.
该铁皮的面积为 3×1×2+3×2×2+2×1×2=22(m2).
叠以后,仍然可以还原成一个长方体纸盒,你认为
他应该将剪断的纸条粘贴到①中的什么位置?请你
帮助小明在①上补全.
(3)小明说:他所剪的所有棱中,最长的一条棱是最短 的一条棱的5倍.现在已知这个长方体纸盒的底面 是一个正方形,并且这个长方体纸盒所有棱长的和 是880 cm,求这个长方体纸盒的体积. 因为长方体纸盒的底面是一个正方形, 所以设最短的棱长(高)为a cm,则长与宽相等,均 为5a cm.
144或384π . 于______________
返回
知识点
2 锥体的展开与折叠
一 个圆和____ 一 个扇形组成的; 10.圆锥的展开图是由____ 一 个多边形和几个三角形组成 棱锥的展开图是由____ 相等 . 的,且三角形的个数与多边形的边数________
返回
11.(中考•梧州)如图是一个圆锥,下列平面图形既不 是它从某个方向看到的图形,也不是它的侧面展 开图的是( D )
返回
7.如图,在长方形ABCD中,AB=1,BC=2,把长 方形ABCD绕AB所在直线旋转一 周所得圆柱的侧面积为( B ) A.10π B.4π C.2π D.2
返回
8.请你在横线上写出哪种立体图形的表面能展开成下 面的图形:
三棱柱
六棱柱
长方体
三棱柱
返回
9.(中考· 云南)如果圆柱的侧面展开图是相邻两边长 分别为6,16π的长方形,那么这个圆柱的体积等
返回
2.如图,圆柱体的表面展开后得到的平中考· 北京)如图是某个几何体的展开图,该几何 体是( A ) A.三棱柱 B.圆锥 C.四棱柱
D.圆柱
返回
4.下列图形经过折叠不能围成一个棱柱的是( B )
返回
5.把图中的三棱柱展开,所得到的展开图是( B )
返回
6.下列不是三棱柱展开图的是( C )
才能最快吃到糖?请画出
蚂蚁爬行的路线.
解:将含有点A,C1的相邻两个面展开,有6种情况, 如图①,沿AC1爬行,才能最快吃到糖.因此蚂蚁 的爬行路径如图②所示.
返回
14.小明在学习了《立体图形的展开图》这一课后,
明白了很多几何体都能展开成平面图形.于是他
在家用剪刀剪开了一个长方体纸盒,可是一不小
心多剪了一条棱,把纸盒剪成了两部分,即图中
的①和②.根据你所学的知识,完成下列各题:
8 (1)小明总共剪开了______ 条棱。
(2)现在小明想将剪断的②重新粘到①上,而且经过折
第4章 几何图形初步
4.1 几何图形
第4课时 常见几何体的展开与折叠
1
6
2
7
3
8
4
9
5
10
11
12
13
14
15
知识点
1 柱体的展开与折叠
两 个圆和______ 一 个长方 1.圆柱的展开图是由______ 两 个多边形 形组成的;棱柱的展开图是由______ 和若干个长方形组成的,且长方形的个数与多 相等 . 边形的边数__________
(2)该铁皮能否做成一个长方体盒子(底面固定,如图)?
若能,画出它的立体图形,并计算它的体积;若不 能,请说明理由. 该铁皮能做成一个长方体盒子,画立体图形略.
该长方体盒子的长为3 m,宽为2 m,高为1 m,
所以它的体积为3×2×1=6(m3).
返回
题型
2
长方体棱的条数与大小 关系在求体积中的应用
相关文档
最新文档