广东省湛江市中考模拟数学试题(四)及答案
2023届中考数学模拟考试试题(附答案)

2023年中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的相反数是()A.3B.﹣3C.D.﹣2.如图是由几个小立方块所搭成的儿何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.3.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°4.正比例函数y=﹣kx的y值随x值的增大而减小,则此函数的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.3a•3a2=3a3D.(a﹣b)2=a2﹣b26.如图,在△ABC中,AC=BC,∠C=90°,AD平分∠BAC,交BC于点D,若CD=1,则AC的长度等于()A.B.+1C.2D.+27.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)8.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE =3,则矩形ABCD的面积为()A.B.C.12D.329.如图,过⊙O外一点A引圆的两条切线,切点分别为D,C,BD为⊙O的直径,连接BC,DC.若AD=CD,BD=4,则AC的长度为()A.2B.2C.2D.410.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12二、填空题(木大题共4个小题,每小题3分,共12分)11.分解因式:a2﹣2a+1=.12.正六边形的外接圆的半径与内切圆的半径之比为.13.如图,在平面直角坐标系中菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为10,则k的值为.14.如图,已知∠BAC=45°,线段DE的两个端点在角的两边AB,AC上运动,且DE=2.以线段DE为边在DE的右侧作等边三角形DEF,则AF的最大值为.三、解答题(本大题共11小题,计78分.解答应写出过程)15.(5分)计算:+4cos260°﹣|﹣1|16.(5分)解分式方程:+3=.17.(5分)尺规作图:已知⊙O,求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).18.(5分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.19.(7分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在暑假期间阅读量(阅读本数为正整数)为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读4本及4本以上课外书者为“优秀阅读者”,据此估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有多少人?20.(7分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为60°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(≈1.4,≈1.7结果保留整数)21.(7分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A ,B 两种垃圾桶,负责人小李调查发现:购买数量种类购买数量少于100个购买数量不少于100个A 原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元.(1)求A ,B 两种垃圾桶的单价各为多少元?(2)若需要购买A ,B 两种垃圾桶共200个,且B 种垃圾桶不多于A种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.22.(7分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.23.(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB .(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.24.(10分)设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求抛物线的解析式(2)已知过点A的直线y=x+1交抛物线于另一点E,且点D(1,﹣3)在抛物线上问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.25.(12分)问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.2023年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的相反数是()A.3B.﹣3C.D.﹣【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选:C.2.如图是由几个小立方块所搭成的儿何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】由已知条件可知,左视图有3列,每列小正方形数目分别为2,3,2.据此可作出判断.【解答】解:从左面看可得到从左到右分别是3,2个正方形.故选:A.3.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°【分析】直接利用平行线的性质以及三角形的性质进而得出答案.【解答】解:由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°﹣45°﹣60°=75°.故选:C.4.正比例函数y=﹣kx的y值随x值的增大而减小,则此函数的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【分析】根据正比例函数的性质进行判断.【解答】解:∵正比例函数y=﹣kx的y值随x值的增大而减小,∴﹣k<0,∴此函数的图象经过第二、四象限.故选:D.5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.3a•3a2=3a3D.(a﹣b)2=a2﹣b2【分析】直接利用积的乘方运算法则以及整式的混合运算法则分别判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、(﹣b2)3=﹣b6,正确;C、3a•3a2=9a3,故此选项错误;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:B.6.如图,在△ABC中,AC=BC,∠C=90°,AD平分∠BAC,交BC于点D,若CD=1,则AC的长度等于()A.B.+1C.2D.+2【分析】过D作DE⊥AB于E,依据△BDE是等腰直角三角形,即可得到BD的长,进而得到BC的长,可得答案.【解答】解:如图所示,过D作DE⊥AB于E,∵AC=BC,∠C=90°,AD平分∠BAC,∴DE=CD=1,∠B=45°,∴∠BDE=∠B=45°,∴BE=DE=1,∴Rt△BDE中,BD==,∴BC=+1,∴AC=+1,故选:B.7.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.8.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE =3,则矩形ABCD的面积为()A.B.C.12D.32【分析】由矩形的性质得出OA=OC,由线段垂直平分线的性质得出AE=CE=3,求出BE=1,由勾股定理求出AB,即可得出答案.【解答】解:连接AE,如图所示:∵四边形ABCD是矩形,∴OA=OC,∠ABC=90°,BC=AD=4,∵OE⊥AC,∴AE=CE=3,∴BE=BC﹣CE=1,∴AB===2,∴矩形ABCD的面积=AB×BC=2×4=8;故选:B.9.如图,过⊙O外一点A引圆的两条切线,切点分别为D,C,BD为⊙O的直径,连接BC,DC.若AD=CD,BD=4,则AC的长度为()A.2B.2C.2D.4【分析】利用切线长定理得到AD=AC,则可判断△ADC为等边三角形,所以∠ADC=60°,再利用切线的性质得到AD⊥DB,所以∠CDB=30°,接着根据圆周角定理得到∠BCD=90°,然后根据含30度的直角三角形三边的关系求出CD即可.【解答】解:∵AD、AC为⊙O的两条切线,切点分别为D,C,∴AD=AC,而AD=CD,∴AD=CD=AC,∴△ADC为等边三角形,∴∠ADC=60°,∵AD为切线,∴AD⊥DB,∴∠CDB=90°﹣60°=30°,∵BD为⊙O的直径,∴∠BCD=90°,在Rt△BCD中,BC=BD=×4=2,∴CD=BC=2,∴AC=2.故选:C.10.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12【分析】根据对称轴求出m的值,从而得到x=﹣1、6时的函数y=x2﹣4x值,再根据一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有解相当于y=x2+mx与y=n在x的范围内有交点解答.【解答】解:∵抛物线的对称轴x=﹣=2,∴m=﹣4,则方程x2+mx﹣n=0,即x2﹣4x﹣n=0的解相当于y=x2﹣4x与直线y=n的交点的横坐标,∵方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=6时,y=36﹣24=12,又∵y=x2﹣4x=(x﹣2)2﹣4,∴当﹣4≤n<12时,在﹣1<x<6的范围内有解.∴n的取值范围是﹣4≤n<12,故选:C.二、填空题(木大题共4个小题,每小题3分,共12分)11.分解因式:a2﹣2a+1=(a﹣1)2.【分析】观察原式发现,此三项符合差的完全平方公式a2﹣2ab+b2=(a﹣b)2,即可把原式化为积的形式.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.12.正六边形的外接圆的半径与内切圆的半径之比为2:.【分析】从内切圆的圆心和外接圆的圆心向三角形的边长引垂线,构建直角三角形,解三角形i可.【解答】解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,因而是r,因而正六边形的外接圆的半径与内切圆的半径之比为2:.故答案为:2:.13.如图,在平面直角坐标系中菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为10,则k的值为.【分析】连接AC交BD于E,如图,利用菱形的性质得AC⊥BD,AE=CE,DE=BE,设A(1,k),B(4,),则BE=3,AE=k﹣=k,根据菱形的面积公式得到4××3×k=10,然后解关于k的方程即可.【解答】解:如图,连接AC交BD于E,∵四边形ABCD为菱形,∴AC⊥BD,AE=CE,DE=BE,∵BD∥x轴,设A(1,k),B(4,),∴BE=3,AE=k﹣=k,∵菱形ABCD的面积为10,=10,∴4S△ABE即4××3×k=10,解得k=.故答案为.14.如图,已知∠BAC=45°,线段DE的两个端点在角的两边AB,AC上运动,且DE=2.以线段DE为边在DE的右侧作等边三角形DEF,则AF的最大值为+1+.【分析】当AF⊥DE时,AF的值最大,设AF交DE于H,在AH上取一点M,使得AM =DM,连接DM.分别求出MH、AM、FH即可解决问题.【解答】解:如图,当AF⊥DE时,AF的值最大,设AF交DE于H,在AH上取一点M,使得AM=DM,连接DM.∵FD=FE=DE=2,AF⊥DE,∴DH=HE,AD=AE,∠DAH=∠DAE=22.5°,∵AM=DM,∴∠MAD=∠MDA=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=1,∴DM=AM=,∵FH==,∴AF=AM+MH+FH=+1+.∴AF的最大值为+1+,故答案为:+1+.三、解答题(本大题共11小题,计78分.解答应写出过程)15.(5分)计算:+4cos260°﹣|﹣1|【分析】原式利用二次根式性质,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=2+4×()2﹣(﹣1)=2+4×﹣+1=2+1﹣+1=+2.16.(5分)解分式方程:+3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+3x﹣6=x﹣1,解得:x=1.5,经检验x=1.5是分式方程的解.17.(5分)尺规作图:已知⊙O,求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).【分析】根据垂径定理即可作⊙O的内接正方形ABCD.【解答】解:如图正方形ABCD即为所求作的图形.18.(5分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.【分析】由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质就可以得出△CDF△BDE就可以得出DE=DF.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB.在△CDE和△BDF中,∴△CDF≌△BDE(AAS),∴DE=DF.19.(7分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在暑假期间阅读量(阅读本数为正整数)为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读4本及4本以上课外书者为“优秀阅读者”,据此估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有多少人?【分析】(1)根据读两本的人数除以读两本人数所占的百分比,可得抽测人数,根据中位数的定义,可得答案;(2)根据有理数的减法,可得读4本的人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)10÷20%=50,∴被调查的人数为50,被抽查学生课外阅读量的中位数3;(2)50﹣4﹣10﹣15﹣6=15,补充如图;(4)2500×1050(人),答:估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有1050人.20.(7分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为60°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(≈1.4,≈1.7结果保留整数)【分析】过E作EF⊥AB于F,得到四边形BDEF是矩形,根据矩形的性质得到EF=DB,BF=DE,解直角三角形即可得到结论.【解答】解:过E作EF⊥AB于F,则四边形BDEF是矩形,∴EF=DB,BF=DE,在Rt△CDE中,∵∠EDC=90°,CE=6m,∠DCE=30°,∴DE=3m,CD=3m,设BC=xm,∵∠AEF=45°,∴EF=AF=BD=(3+x)m,∴AB=AF+BF=(3+3+x)m,在Rt△ABC中,tan60°===,解得:x=6+3,∴AB≈19m.答:楼房AB的高度大约为19米.21.(7分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A ,B 两种垃圾桶,负责人小李调查发现:购买数量种类购买数量少于100个购买数量不少于100个A原价销售以原价的7.5折销售B 原价销售以原价的8折销售若购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元.(1)求A ,B 两种垃圾桶的单价各为多少元?(2)若需要购买A ,B 两种垃圾桶共200个,且B 种垃圾桶不多于A 种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.【分析】(1)设A 种垃圾桶的单价为x 元,B 种垃圾桶的单价为y 元,根据“购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元”列出方程组并解答;(2)设购买A 种垃圾桶为a 个,则购买B 种垃圾桶为(200﹣a)个,根据“B 种垃圾桶不多于A 种垃圾桶数量的”列出不等式并求得a 的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设A 种垃圾桶的单价为x 元,B 种垃圾桶的单价为y 元,根据题意得,解得,答:A 种垃圾桶的单价为50元,B 种垃圾桶的单价为30元;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200﹣a)个,根据题意得,解得a≥150;设购买A,B两种垃圾桶的总费用为W元,则W=0.75×50a+30(200﹣a)=7.5a+6000,∵k=7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.22.(7分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.【分析】(1)根据概率公式计算即可.(2)画树状图展示所有12种等可能的结果数,找出小红获胜的结果数,然后根据概率公式求解【解答】解:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是.故答案为.(2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.【分析】(1)连接OC、OE,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠DAC=∠OAC,根据圆周角定理、圆心角、弧、弦之间的关系定理证明结论;(2)根据勾股定理求出AB,证明△DAC∽△CAB,根据相似三角形的性质列出比例式,代入计算得到答案.【解答】(1)证明:连接OC、OE,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,由圆周角定理得,∠BOC=2∠OAC,∠EOC=2∠DAC,∴∠BOC=∠EOC,∴CE=CB;(2)解:由(1)可知,BC=CE=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB===3,∵∠DAC=∠BAC,∠ADC=∠ACB=90°,∴△DAC∽△CAB,∴=,即=,解得,DC=.24.(10分)设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求抛物线的解析式(2)已知过点A的直线y=x+1交抛物线于另一点E,且点D(1,﹣3)在抛物线上问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线的解析式可知OC=2,由于∠ACB=90°,可根据射影定理求出OB的长,即可得出B点的坐标,也就得出了m的值.然后根据A,B,C三点的坐标,用待定系数法可求出抛物线的解析式.(2)本题要分情况进行讨论,如果过E作x轴的垂线,不难得出∠DBx=135°,而∠ABE是个钝角但小于135°,因此P点只能在B点左侧.可分两种情况进行讨论:①∠DPB=∠ABE,即△DBP∽△EAB,可得出BP:AP=BD:AE,可据此来求出P点的坐标.②∠PDB=∠ABE,即△DBP∽△BAE,方法同①,只不过对应的成比例线段不一样.综上所述可求出符合条件的P点的值.【解答】解:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2∴OB===4,∴m=4,∴B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2得,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)解得,,,∴E(6,7),过E作EH⊥x轴于H,则H(6,0),∴AH=EH=7,∴∠EAH=45°,过D作DF⊥x轴于F,则F(1,0),∴BF=DF=3∴∠DBF=45°,∴∠EAH=∠DBF=45°,∴∠DBH=135°,90°<∠EBA<135°则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△BAE,则=,∴BP1===∴OP1=4﹣=,∴P1(,0);②若△DBP2∽△BAE,则=,∴BP2===∴OP2=﹣4=,∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).25.(12分)问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是等腰直角三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.【分析】(1)如图,△OP1P2是等腰直角三角形.证明OP1=OP2,∠P1OP2=90°即可.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.证明∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,构建方程求出x即可解决问题.(3)不存在.首先证明MN是定值.由题意PM+PN≥MN,推出当点P落在AB或BC 上时,PM+PN=MN=定值,此时△PMN不存在.【解答】解:(1)如图1中,△OP1P2是等腰直角三角形.理由:∵点P关于边OA、OB的对称点分别为P1,P2,∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2(∠AOP+∠BOP)=90°,∴△OP1P2是等腰直角三角形.故答案为等腰直角.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.∵AB=AC,AD⊥BC,∴∠EAC=∠BAC=15°,∵EA=EC,∴∠EAC=∠ECA=15°,∴∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,∵AD=2+,∴2x+x=2+,∴x=1,∴BC=2CD=2,=•BC•AD=×2×(2+)=2+.∴S△ABC(3)如图3中,不存在.理由:∵点P关于AB,BC的对称点分别为M,N,∴PB=BM=BN=10,∠PBA=∠ABM,∠PBC=∠CBN,∵∠ABC=60°,∴∠MBN=2(∠ABP+∠PBC)=120°,∴△BNM是顶角为120°,腰长为10的等腰三角形,∴MN为定值,∵PM+PN≥MN,∴当点P落在AB或BC上时,PM+PN=MN=定值,此时△PMN不存在,∴△PMN的周长不存在最小值.。
2023年广东省湛江市经开区中考数学二模试卷(含解析)

2023年广东省湛江市经开区中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 王老师给全班同学留了一个特色寒假作业,画一张有关兔子的图画,以下四个图形是开学后收上来的图画中的一部分,其中是轴对称图形的是( )A. B. C. D.2. 下列各数中,为无理数的是( )B. 0C. 3D. 3.5A. −3273. 函数y=x x−5中,自变量x的取值范围是( )A. x>0且x≠5B. x≥5C. x>5D. x≤54. 已知a<b<0,则点A(a−b,ab)在第象限.( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 若方程3x+1=4和方程2x+a=0的解相同,则a=( )A. 1B. 2C. −1D. −26. 下列说法中,正确的是( )①对角线垂直且互相平分的四边形是菱形;②对角线相等的四边形是矩形;③同弧或等弧所对的圆周角相等;④弧分为优弧和劣弧.A. ①④B. ①③C. ①③④D. ②③④7.如图,在△ABC中,点E,F分别是AB,BC边上的中点,连接EF,如果AC=6cm,那么EF的长是( )A. 3cmB. 4cmC. 5cmD. 6cm8. 某超市一月份的营业额为300万元,第一季度的营业额共1200万元,如果平均每月增长率为x,则由题意可列方程为( )A. 300(1+x)2=1200B. 300+300×2x=1200C. 300+300×3x=1200D. 300[1+(x+1)+(x+1)2]=12009.如图,AB是△ABC外接⊙O的直径,点D在⊙O上,且∠BDC=41°,则∠ABC=( )A. 39°B. 41°C. 49°D. 59°10. 定义:如果a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记做x=log a N.例如:因为72=49,所以log749=2;因为53=125,所以log5125=3.则下列说法正确的个数为( )①log61=0;②log323=3log32;③若log2(3−a)=log827,则a=0;④log2xy=log2x+log2y(x>0,y>0).A. 4B. 3C. 2D. 1二、填空题(本大题共5小题,共15.0分)11. 对我国“天宫空间站梦天实验舱”的零部件检查应采用的调查方式为______ .(填“普查”或“抽样调查”).12. 在平面直角坐标系中,点P(2,−3)到x轴的距离是______ .13. 已知圆锥的母线长为8,底面半径为6,则此圆锥的侧面积是.14.如图,在网格中,小正方形的边均1,点A、B、O在格点上,则∠OAB正弦是.15. 小学里我们学过梯形,如图,一个小梯形的下底长为2a,上底和两腰长都为a,用小梯形按图所示拼接,观察图形、表格,若小梯形的个数为2022,则拼接所成图形的周长是______a.梯形个数12345…n图形周长5a8a11a14a17a…三、解答题(本大题共8小题,共75.0分。
2018年广东省湛江市初中毕业生水平考试数学试题答案

2018年广东省湛江市初中毕业水平考试数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题3分,共36分.1.A 2.C 3.C 4.A 5.D 6.C 7.B8.B9.D10.A11.D12.C二、填空题:本大题共6小题,每小题4分,共24分.13.1014.2()a a b - 15.6π 16.∠DCE =∠A 或∠ECB =∠B 或∠A +∠ACE =180︒ 17.0.71 18.(6,5)三、解答题:本大题共5小题,每小题7分,共35分. 19.解:原式=112-+(4分) = 2(7分)20.解:设这个队胜了x 场,依题意得:3(145)19x x +--=(4分) 解得:5x =(6分) 答:这个队胜了5场.(7分)21.解:由题意可得:(4分)从表中可以看出,依次从甲乙两盒子中各取一张卡片,可能出现的结果有6个,它们出现的可能性相等,其中能拼成“奥运”两字的结果有1个.(5分) 所以能拼成“奥运”两字的概率为16.(7分)22.解:在Rt △ADE 中,tan ∠ADE =DEAE(2分)∵DE =10,∠ADE =40︒∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4(4分) ∴AB =AE +EB =AE +DC =8.4 1.59.9+=(6分) 答:旗杆AB 的高为9.9米. (7分) 23.解:∆ABC ≌∆DCB(2分)证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC ∴∠ABC =∠DCB(4分)在∆ABC 与∆DCB 中AB DCABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴∆ABC ≌∆DCB(7分)(注:答案不唯一)四、解答题:本大题共3小题,每小题10分,共30分. 24.解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2分) (2)15150.256912151860==++++(5分) 答:竞赛成绩在79.5~89.5这一小组的频率为0.25. (6分) (3)9200030069121518⨯=++++(9分)答:估计全校约有300人获得奖励.(10分)25.证明:(1)∵AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于E ,∴CE =ED , CB DB = (2分) ∴∠BCD =∠BAC(3分)∵OA =OC ∴∠OAC =∠OCA ∴∠ACO =∠BCD(5分)(2)设⊙O 的半径为R cm ,则OE =OB -EB =R -8CE =21CD =21⨯24=12(6分)在Rt ∆CEO 中,由勾股定理可得OC 2=OE 2+CE 2即R 2= (R -8)2+122(8分)解得 R =13 ∴2R =2⨯13=26 答:⊙O 的直径为26cm .(10分)26. 解:(1)第20天的总用水量为1000米3(3分)(2)当x ≥20时,设y kx b =+∵函数图象经过点(20,1000),(30,4000)∴⎩⎨⎧+=+=bk bk 304000201000 (5分)59.549.5 79.5 89.5 69.5 人数99.5成绩解得⎩⎨⎧-==5000300b k∴y 与x 之间的函数关系式为:y =300x -5000(7分)(3)当y =7000时有7000=300x -5000 解得x =40答:种植时间为40天时,总用水量达到7000米3. (10分)五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27.解:(1)56(3分) (2)1+n n(6分)(3)1111......133557(21)(21)n n ++++⨯⨯⨯-+=)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n(9分)由 12+n n =3517解得17=n(11分)经检验17=n 是方程的根, ∴17=n(12分)28.解:(1)令0y =,得210x -=解得1x =± 令0x =,得1y =-∴ A (1,0)- B (1,0) C (0,1)- (2分)(2)∵OA =OB =OC =1∴∠BAC =∠ACO =∠BCO =45 ∵A P ∥CB ,∴∠P AB =45过点P 作PE ⊥x 轴于E ,则∆APE 为等腰直角三角形令OE =a ,则PE =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=- 解得12a =,21a =-(不合题意,舍去)∴PE =3(4分)∴四边形ACBP 的面积S =12AB •OC +12AB •PE =112123422⨯⨯+⨯⨯= (6分)(3)假设存在.∵∠P AB =∠BAC =45 ∴P A ⊥AC∵MG ⊥x 轴于点G , ∴∠MGA =∠P AC =90 在Rt △AOC 中,OA =OC =1 ∴AC在Rt △P AE 中,AE =PE =3 ∴AP= (7分)设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <-.ⅰ)当∆AMG ∽∆PCA 时,有AG PA =MGCA∵AG =1m --,MG =21m -2= 解得11m =-(舍去) 223m =(舍去) ⅱ)当∆MAG ∽∆PCA 时,有AG CA =MGPA即2=解得:1m =-(舍去) 22m =-∴M (2,3)-(10分)②点M 在y 轴右侧时,则1m >ⅰ)当∆AMG ∽∆PCA 时,有AG PA =MGCA∵AG =1m +,MG =21m -∴2=解得11m =-(舍去) 243m =∴M 47(,)39ⅱ)当∆MAG ∽∆PCA 时,有AG CA =MGPA即2=解得:11m =-(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似. M 点的坐标为(2,3)-,47(,)39,(4,15)(13分)说明:以上各题如有其他解(证)法,请酌情给分.。
2024年广东省广州市中考三模数学试题及答案

2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025 2. 5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上.用科学记数法表示1300000是( )A 51310× B. 51.310× C. 61.310× D. 71.310× 3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形是( )A. B.C. D..的4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小 C 图象与x 轴交于()2,0− D. 图象与y 轴交于()0,47. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°8. 港珠澳大桥是世界上最长跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( ).的A 5B. C. 2.5 D. 310. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A.B. C. 23D. 第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________. 12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=) 14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l分别表示去年、今年水.费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC =18cm ,灯臂CD =33cm ,灯罩DE =20cm ,BC ⊥AB ,CD ,DE 分别可以绕点C ,D 上下调节一定的角度.经使用发现:当∠DCB =140°,且ED ∥AB 时,台灯光线最佳.求此时点D 到桌面AB 的距离.(精确到0.1cm ,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)20. 先化简,再求值:22111x x x x x +− −÷ − ,其中1x =.21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.22. 已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣m x>0的解集.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方);②连接OC ,交O 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O 的切线;(2)求AE 的长度.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点.(1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.25. 如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE 的值为 : (2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH,则BC=.2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是()A. 2025− B.12025− C. 2025 D.12025【答案】A【解析】【分析】根据相反数的定义进行求解即可.【详解】解:2025的相反数是2025−,故选A.【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.2. 5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.用科学记数法表示1300000是()A. 51310× B. 51.310× C. 61.310× D. 71.310×【答案】C【解析】【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.详解】解:61300000 1.310=×,故选:C .3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°后,能够与原图形重合,那么这个图形就叫做中心对称图形,熟练掌握中心对称图形的概念,是解题的关键.【详解】解:A 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意; B 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;C 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;D 、绕某一点旋转180°后,能够与原图形重合,故是中心对称图形,故符合题意;故选:D .4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 【答案】D【解析】【分析】本题考查同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项.根据同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项分别计算各式子,即可解答.【【详解】解:()4312a a =,A 选项:5a 与2a 不是同类项,无法合并,故计算结果与()43a 不相同; B 选项:268a a a ⋅=,故计算结果与()43a 不相同;C 选项:24222a a a ÷=,故计算结果与()43a 不相同; D 选项:()2444812a a a a a =⋅=故计算结果与()43a 相同. 故选:D5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 【答案】A【解析】【分析】两边都乘以()()11x x −+,化整式方程求解,然后检验即可. 【详解】3111x x x −=−+, 两边都乘以()()11x x −+,得()()()()13111x x x x x +−−=+−,整理,得24x −=−,∴2x =.检验:当2x =时,()()110x x −+≠,∴原方程的解为2x =.故选A .【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小C. 图象与x 轴交于()2,0−D. 图象与y 轴交于()0,4 【答案】C 为【解析】【分析】由20k =−<,40b =>,可得图象经过一、二、四象限,y 随x 的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵24y x =−+,20k =−<,4>0b =,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;当0y =时,240x −+=,解得2x =,∴图象与x 轴交于()2,0,故C 符合题意;当0x =时,4y =,∴图象与y 轴交于()0,4,故D 不符合题意;故选C .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.7. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A【解析】 【分析】根据平行得到50ABD EDC ∠=∠=°,再利用外角的性质和对顶角相等,进行求解即可.【详解】解:由题意,得:DE AB ∥,∴50ABD EDC ∠=∠=°,∵120DEF EDC DCE ∠=∠+∠=°,∴70DCE ∠=°,∴70ACB DCE ∠∠°==; 故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键. 8. 港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.【答案】B【解析】 【分析】过点A 作AD CB ⊥于点D ,先根据三角形的外角性质可得A ACB ∠=∠,从而可得160AB BC ==米,然后在Rt △ABD 中,利用锐角三角函数的定义求出AD 的长,即可解答.【详解】解:如图,过点A 作AD CB ⊥于点D ,根据题意得:60,30ABD ACB ∠=°∠=°,∵ABD A ACB ∠=∠+∠,∴30A ∠=°,∴A ACB ∠=∠,∴160AB BC ==米,在Rt △ABD 中,sin 60160AD AB =⋅°=即该主塔的高度是米. 故选:B【点睛】本题考查了解直角三角形的应用——仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( )A. 5B.C. 2.5D. 3【答案】D【解析】 【分析】根据三角形的中位线定理,可得EF =12 DN ,DN =2EF =5,利用勾股定理求出AD 的长,即得结论.【详解】解:∵点E 、F 分别为DM 、MN 的中点,∴EF =12 DN ,∵EF 最大值为2.5,∴当DN 最大,即当N 与B 重合时,有DN =2EF =5,∴5DN =,∴解得AD =3,故选:D .【点睛】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想.10. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A. B. C. 23 D. 【答案】B【解析】【分析】本题主要考查了相似三角形、等腰三角形的性质、三角形外角与内角的关系等知识点,先利用等腰三角形的性质及外角与内角的关系说明B DAC ∠=∠,再判断ABC DAC △∽△,利用相似三角形的性质用CE 表示出AC ,最后代入比例可得结论.【详解】解: AD 是ABC 的中线,∴BC CD =,CE CD =,∴CED ADC ∠=∠,∴DAC ACE B BAD ∠+∠=∠+∠,ACE BAD ∠=∠,∴DAC B ∠=∠,又 ACD BCA ∠=∠,∴ABC DAC △∽△, ∴BC AC AC CD=, ∴22222AC BC CD CD CE =⋅==, ∴AC =,∴CE AC = 故选B .第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________.【答案】(2)(2)a a a +−【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a −−+−【点睛】本题考查因式分解,掌握因式分解方法是关键.12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 【答案】6【解析】【分析】本题考查利用概率求个数,根据白球概率求出黑球概率,黑球共有4个,就可以求出球的总数,再减去黑球个数即可解答,熟练掌握简单概率公式是解决问题的关键. 【详解】解:∵摇匀后随机摸出一个,摸到白球的概率为35, ∴摸到黑球的概率为25, ∵袋子中有4个黑球和n 个白球, ∴由简单概率公式可得4245n =+,解得6n =, ∴白球有6个,故答案为:6.13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=)【答案】<【解析】【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上,又()011−−=,303−=,13<,∴1y 2y <故答案为:<14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】43π##43π 【解析】【分析】延长F A 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠F AB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长F A 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠F AB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.【答案】210.【解析】【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当120x >时,2l 对应的函数解析式为y kx b =+, 120480160720k b k b += +=,得6240k b = =− , 即当120x >时,2l 对应的函数解析式为6240y x =−, 当150x =时,6150240660y =×−=, 由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450×=(元), 660450210−=(元), 即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元,故答案为210.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.【答案】80【解析】【分析】首先根据折叠的性质得到90DFC C ∠=∠=°,然后根据同角的余角相等得到DFA BEF ∠=∠,进而得到4sin sin 5BEF DFA ∠=∠=,设4BF x =,5EF x =,则3BE x =,5CE FE x ==,根据定理求出88AD x ==,1010DC DF x ===,最后利用矩形面积公式求解即可.【详解】解:∵矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,∴90DFC C ∠=∠=°,∴90DFA BFE ∠+∠=°,∵四边形ABCD 是矩形,∴90A B ∠=∠=°,∴90BEF BFE∠+∠=°, ∴DFA BEF ∠=∠, ∴4sin sin 5BEF DFA ∠=∠=, ∴设4BF x =,5EF x =,则3BE x =,5CE FE x ==,∴8AD BC x ==, ∵4sin 5DFA ∠=, ∴10DF x =,∵90DFC C ∠=∠=°,DE =∴222DF EF DE +=,即()()(222105x x +, ∴解得:1x =,负值舍去,∴88AD x ==,1010DC DF x ===,∴矩形ABCD 面积81080AD CD =⋅=×=.故答案为:80的三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 【答案】不等式组的解集为1−<2x ≤,正整数解为1,2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:12(23)5133x x x x −<+ +≥+①② 解不等式①,得:x >﹣1,解不等式②,得:2x ≤,∴不等式组的解集为1−<2x ≤,则不等式组的正整数解为1,2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.【答案】见解析【解析】【分析】先根据平行四边形的性质得到AB CD =,AB CD ∥,再证明ABE CDF ∠=∠,即可利用SAS 证明C ABE DF ≌△△,即可证明AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,∴ABE CDF ∠=∠∵BE DF =,∴()SAS ABE CDF △△≌,∴AE CF =.【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,熟知平行四边形对边相等且平行是解题的关键19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=33cm,灯罩DE=20cm,BC⊥AB,CD,DE分别可以绕点C,D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【答案】点D到桌面AB的距离约为43.4cm【解析】【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【详解】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=33cm,∠DFC=90°,∴DF=CD•sin50°≈33×0.77=25.41(cm),∴DG ≈25.41+18≈43.4(cm ),答:点D 到桌面AB 的距离约为43.4cm .【点睛】本题考查的是矩形的判定与性质,解直角三角形的应用,掌握作出适当的辅助线构建直角三角形是解题的关键.20. 先化简,再求值:22111x x x x x +− −÷ −,其中1x =.【答案】11x −+, 【解析】【分析】先根据分式的混合运算法则化简,然后再将1x=−代入计算即可解答.【详解】解:22111x x x x x +− −÷ − 22111x x xx x +− =−⋅ −()()()()1111x x x x xx x −+−⋅+−11xx x =−⋅+11x =−+.当1x =−时,原式 【点睛】本题主要考查了分式的基本性质及其运算、分母有理化,正确的化简分式是解答本题的关键. 21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.【答案】(1)1,2;(2)72°;(3)见解析;(4)见解析,1 4【解析】【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据2部对应的人数,即可将条形统计图补充完整;(4)根据列表所得的结果,可判断他们选中同一名著的概率.【详解】解:(1)调查的总人数为:10÷25%=40,∴2部对应的人数为40-2-14-10-8=6,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部.故答案为:1,2(2)扇形统计图中“4部”所在扇形的圆心角为:8360?=72? 40×故答案为:72°.(3)2部对应的人数为:40-2-14-10-8=6人补全统计图如图所示.(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:由图可知,共有16种等可能结果,其中选中同一名著的有4种,()41 164P∴==选中同一部.故答案为:14.【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22. 已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.的【答案】(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2. 【解析】【分析】(1)先把点A 的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B 的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x ﹣2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <﹣4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】(1)把A (﹣4,2)代入my x=,得m=2×(﹣4)=﹣8, 所以反比例函数解析式为8y x=−, 把B (n ,﹣4)代入8y x=−, 得﹣4n=﹣8 解得n=2,把A (﹣4,2)和B (2,﹣4)代入y=kx+b ,得: 4224k b k b −+= +=− ,解得:12k b =− =− , 所以一次函数的解析式为y=﹣x ﹣2; (2)y=﹣x ﹣2中,令y=0,则x=﹣2, 即直线y=﹣x ﹣2与x 轴交于点C (﹣2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6; (3)由图可得,不等式kx +b−mx>0的解集为:x <−4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方); ②连接OC ,交O 于点D ; ③连接BD ,与AC 交于点E . (1)求证:BD 为O 的切线; (2)求AE 的长度.【答案】(1)画图见解析,证明见解析 (2)32AE = 【解析】【分析】(1)根据题意作图,首先根据勾股定理得到5OC ==,然后证明出()SAS AOC DOB ≌,得到90OAC ODB ∠=∠=°,即可证明出BD 为O 的切线;(2)首先根据全等三角形的性质得到4BD AC ==,然后证明出BAE BDO ∽,利用相似三角形的性质求解即可. 【小问1详解】 如图所示,∵AC 是O 的切线, ∴OA AC ⊥, ∵3OA =,4AC =,∴5OC ==,∵3OA =,2AB =, ∴5OB OA AB =+=, ∴OB OC =,又∵3==OD OA ,AOC DOB ∠=∠, ∴()SAS AOC DOB ≌, ∴90OAC ODB ∠=∠=°, ∴OD BD ⊥, ∵点D 在O 上, ∴BD 为O 的切线; 【小问2详解】 ∵AOC DOB ≌, ∴4BD AC ==,∵ABE DBO ∠=∠,BAE BDO ∠=∠,∴BAE BDO ∽,∴AE ABOD BD =,即234AE =, ∴解得32AE =.【点睛】此题考查了格点作图,圆切线的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点. (1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.【答案】(1)1b =-;(2)1;(3)a<0或45a >. 【解析】【分析】(1)将点()()2,1,2,3−−代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;(3)分a<0和0a >两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得. 【详解】解:(1)将点()()2,1,2,3−−代入2y ax bx c ++得:421423a b c a b c −+=++=− , 两式相减得:44b −=, 解得1b =-;(2)由题意得:0a ≠,由(1)得:2211()24yax x c a x c a a=−+=−+−, 则此函数的顶点的纵坐标为14c a−, 将点()2,3−代入2y ax x c =−+得:423a c −+=−, 解得41a c −=+, 则1141c c a c −=++,下面证明对于任意的两个正数00,x y ,都有00x y +≥2000x y =+−≥ ,00x y ∴+≥(当且仅当00x y =时,等号成立),当1c >−时,10c +>,则11111111c c c c +=++−≥−=++(当且仅当111c c +=+,即0c =时,等号成立), 即114c a−≥, 故当1c >−时,该函数的图像的顶点的纵坐标的最小值是1; (3)由423a c −+=−得:41c a =−−,则二次函数的解析式为241(0)y ax x a a =−−−≠, 由题意,分以下两种情况:①如图,当a<0时,则当=1x −时,0y >;当3x =时,0y <,即141093410a a a a +−−>−−−<,解得a<0;②如图,当0a >时,当=1x −时,14130y a a a =+−−=−<,∴当3x =时,93410y a a =−−−>,解得45a >, 综上,a 的取值范围为a<0或45a >. 【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.25. 如图(1),已知点G 在正方形ABCD 对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 :的(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG =6,GH ,则BC = .【答案】(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为AG BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合90BCD ∠= 可得四边形CEGF 是矩形,再由45ECG ∠= 即可得证;②由正方形性质知90CEG B ∠∠== 、45ECG ∠= ,据此可得CGCE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽BCE 即可得;(3)证AHG ∽CHA 得AGGH AH ACAH CH ==,设BC CD AD a ===,知AC =,由AG GHAC AH=得23AH a =、13DH a =、CH ,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD =90°,∠BCA =45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°, ∴EG =EC ,∴四边形CEGF 是正方形;。
2008年广东省湛江市中考数学试题及答案

22. 如图 6 所示, 课外活动中, 小明在离旗杆 AB 10 米的 C 处, 用测角仪测得旗杆顶部 A 的仰角为 40 ,已知测角仪器的高 CD = 1.5米,求旗杆 AB 的高. ( 精确到 0.1 米 )
(供选用的数据: sin 40 0.64 , cos40 0.77 , tan 40 0.84 )
∴ ABC= DCB
( 4 分)
在 ABC 与 DCB 中
唯一)
∴ ABC ≌ DCB ( 7 分)(注: 答案不
四、解答题:本大题共 3 小题,每小题 10 分,
共 30 分.
24. 解: (1) 总体是某校 名学生参加环保知 识竞赛的成绩. ( 2 分)
( 2) ( 5 分)
为 . ( 6 分)
1
1 ......
1
的值为 17 ,求 n 的值.
13 35 57
(2 n 1)(2n 1)
35
知识改变命运
精品文档 你我共享
28. 如图 11 所示,已知抛物线 y x2 1 与 x 轴交于 A、 B 两点,与 y 轴交于点 C.
( 1)求 A、 B、C 三点的坐标.
( 2)过点 A 作 AP∥ CB 交抛物线于点 P,求四边形 ACBP 的面积.
)
A . 0.86 104
B. 8.6 102
C. 8.6 103
D . 86 102
x1
3. 不等式组
的解集为(
)
x3
A. x 1
B. x 3
C. 1 x 3
D .无解
4. ⊙ O 的半径为 5 ,圆心 O 到直线 l 的距离为 3 ,则直线 l 与⊙ O 的位置关系是(
)
A . 相交
中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。
人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
广东省湛江市中考模拟数学试题(五)及答案

1 / 11一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求。
把所选答案的编号写在题目后面的括号内) 1.4的平方根是( ) A .2 B .2- C .2± D . 2±2.世界文化遗产长城总长约6700000m ,用科学记数法可表示为( )A .6.7510⨯m B .6.7510-⨯m C .6.7610⨯m D .6.7610-⨯m3.将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )4.方程x (x -2)+x -2=0的解是( ) A .2 B . -2, 1 C .-1D .2, -15.一组数据4,3,6,9,6,5的中位数和众数分别是( )A .5和5.5B .5.5和6C .5和6D .6和66.下列计算正确的是( )A .a 2+a 4=a 6B .2a +3b =5abC .(a 2)3=a 6D .a 6÷a 3=a 27.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴 上,若以点A 为圆心,对角线AC 的长为半径作弧 交数轴的正半轴于M ,则点M 的坐标为( ) A .(2,0)B .(2.5,0)C .(51,0-)D .(101,0-)8.已知等腰三角形的两条边长分别为2和5,则它的周长为( )A . 9B . 12C . 9或12D . 5 9.如图,在ABC ∆中,AD 、BE 是两条中线,则EDC S ∆∶ABC S ∆=( )A .1∶2B .2∶3C .1∶3D .1∶410.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( )A .15πcm 2B .30πcm 2C .60πcm 2D .391cm 2A BC M1 2 第7题图ABC D E 第9题图图1 A B C D2 / 1111.A 、B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的2倍,结果甲比乙早到13小时.设乙的速度为x 千米/时,则可列方程为( ) A .1010123x x -= B .1010123x x -= C . 101123x x += D .1011032x x+=12.如图2,点P 是等边△ABC 的边上的一个作匀速运动的动点,其由点A 开始沿AB 边运动到B ,再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 13.分解因式:23a a -= . 14.不等式x +2>6的解集为 .15.如图,△ABC 内接于⊙O ,AB 、CD 为⊙O 直径,DE ⊥AB 于点E ,sinA=12,则∠D 的度数是 . 16.如图,在△ABC 中,∠ACB=90°,∠A=60°,AC=a ,作斜边AB 边中线CD ,得到第一个三角形ACD ;DE ⊥BC 于点E ,作Rt △BDE 斜边DB 上中线EF ,得到第二个 三角形DEF ;依此作下去……,则第n 个三角形的面积 等于 .三、解答题(本大题共10小题,共86分.解答要写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分6分)计算: 0120133229+--⨯--||.18.(本小题满分6分)先化简,再求值:1)1111(2-÷+--x x x x ,其中=x 2.C第15题图ABDEO(1)(2)(3)C第16题图ABDEFN3 / 114 / 1119.(本小题满分8分)已知:如图,AB//DE ,且AB=DE . (l )请你只添加一个条件,使△ABC ≌△DEF , 你添加的条件是 ; (2)添加条件后,证明△ABC ≌△DEF .20.(本小题满分8分)如图,已知一次函数3y kx =-的图象与反比例函数)0(>=x xmy 的图象交于P (1,2). (1)求k 、m 的值;(2)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值.21.(本小题满分8分) 如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;22.(本小题满分8分)如图,某飞机于空中探测某座山的高度,在点A 处飞机的飞行高度1 2x y O P (1, 2) ABEDCF5 / 11是AF =3700米,从飞机上观测山顶目标C 的俯角是45°,飞机继续以相同的高度飞行300米到B 处,此时观测目标C 的俯角是50°,求这座山的高度CD . (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈l .20)23.(本小题满分10分)某市根据统计局发布的国民经济和社会发展的相关数据,社会消费品总额按城乡划分绘制统计图①,与社会消费品销售额按行业划分绘制条形统计图②,根据图中信息回答下列问题:(1)图①中“乡村消费品销售额”的圆心角是 度,乡村消费品销售额为 亿元; (2)到间,在批发业、零售业、餐饮住宿业中销售额增长的百分数最大的是哪个行业?说明理由;CF D50°45°6 / 1124. (本小题满分10分)已知:如图,在Rt △ABC 中,∠C=90°,sinA=35,AB=10.点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC ,AB 分别交于点D ,E ,连接BD . (1)求AC 的长;(2)当OA 为多少时,BD 与⊙O 相切?并说明理由.25. (本小题满分10分)请阅读下列材料:问题:已知方程012=-+x x ,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =,所以2y x =,把2yx =代入已知方程,得21022y y ⎛⎫+-= ⎪⎝⎭,化简,得:0422=-+y y ,故所求方程为0422=-+y y .这种利用方程根的代换求新方程的方法,我们称为“换根法”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 9 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求。把所选答案的编号写在题目后面的括号内) 1.-3的相反数等于( )
A.-3 B.3 C.31 D.31 2.湛江市的陆地面积大约12490平方千米,这个数据用科学计数法表示为( ) A.5101249.0 B.31049.12 C.410249.1 D.510249.1 3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的大小是( ) A.50° B.100° C.130° D.200° 4.已知∠1=35°,则∠1的余角的度数是( ) A.55° B.45° C.145° D.135° 5.下列图形中,是轴对称图形的为( )
A B C D 6.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( )
A.1 B.21 C.31 D.41 7.下列不等式组的解集,在数轴上表示为如图所示的是( )
A.12xx≥ B.12xx≤ C.12xx≥ D.12xx≤ 8.为筹备班级的初中毕业联欢会, 班长对全班同学爱吃哪几种水果作民意调查, 从而最终决定买什么水果。下列调查数据中最值得关注的是( ) A.平均数 B.中位数 C.众数 D.方差 9.如图,已知:45°<A<90°,则下列各式成立的是( ) A.sinA=cosA B.sinA>cosA
A B C O ·
甲 丁 丙
乙
A B C 2 / 9
C.sinA>tanA D.sinA<cosA 10.圆柱的主视图是( )
A B C D 11.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间
12.为庆祝儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示: 按照上面的规律,摆n个“金鱼”需用火柴棒的根数为( ) A.26n B.86n C.44n D.8n
二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 13. 函数1xy中,自变量x的取值范围是 . 14. 分解因式:xxy92 = . 15. 圆锥侧面展开图的面积为10,母线长为2,则圆锥的底面周长是 .
16. 将1,12,13 ,14,15,16,……按一定规律排列如下: 第1行 1 第2行 12 13
第3行 14 15 16
① ② ③ …… 3 / 9
第4行 17 18 19 110 …… 请你写出第6行从左至右第3个数是 . 三、解答题(本大题共10小题,共86分.解答要写出必要的文字说明、证明过程或演算步骤.)
17.(本小题满分6分)计算:02201323.
18.(本小题满分6分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名同学购票恰好用去750元,甲、乙两种票各买了多少张?
20.(本小题满分8分) 如图,△ABC是等边三角形, (1)用直尺和圆规作边BC的高线AD交BC于点D(保留作图痕迹,不要求写作法); (2)若△ABC的边长为2,求△ABC的面积. A
B C 4 / 9
21.(本小题满分8分)不透明的口袋里装有红、蓝两种颜色的小球(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表的方法,求两次摸到不同颜色球的概率.
22.(本小题满分8分)3月28是第18个全国中小学生安全教育日。某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制了如下“频数分布直方图”.请回答: (1)参加全校安全知识测试的学生有 名同学. (2)中位数落在 分数段内. (3)若用各分数段的中间值(如5.5~10.5的 中间值为8)来代替本段均分,请你估算 本次测试成绩全校平均分约是多少? 4.0
3.1 2.8
1.3 0.7 0.1 0.5 5.5 10.5 15.5 20.5 25.5 30.5 分数(分)
人数(百人) 5 / 9
24.(本小题满分10分)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点 E.分别连接AC,AE,CE.
25.(本小题满分10分)同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为2222123n.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道: 1011223(1)(1)(1)3nnnnn时,我们可以这样做:
(1)观察并猜想: 2212=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
222123
=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3 =(1+2+3)+(0×1+1×2+2×3) 22221234
=(1+0)×1+(1+1)×2+(l+2)×3+ ___________
=1+0×1+2+1×2+3+2×3+ ___________ =(1+2+3+4)+(___________) … (2)归纳结论: 2222123n
=(1+0)×1+(1+1)×2+(1+2)×3+…+[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n =(___________)+[ ___________] = ___________+ ___________
=16×___________ (3)实践应用: 6 / 9
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________.
26.(本小题满分12分) 已知:如图一次函数xy211的图象与x轴交于点A(-2,0),
与y轴交于点B(0,1);二次函数cbxxy221的图象与一次函数xy211的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0). (1)求二次函数的解析式; (2)求四边形BDEC的面积S; 7 / 9 湛江市中考模拟试题数学(四)参考答案与评分意见
三、解答题(本大题共10小题,共86分) 17. 【答案】 解:原式143 ……………………………………………………………4分 0. …………………………………………………………………6分 18. 【答案】 解:设买甲种票x张,买乙种票y张,依题意得: …………………………1分
750182435yxyx
…………………………………………………………………3分
解得:1520yx ………………………………………………………………………5分 答:买甲种票20张,买乙种票15张. ………………………………………………6分 19. 【答案】 解:由题可知∠ABC=30°. ………………………………………………1分
在RtABC中,BCACABCtan.………………………………………………3分
36033180ABCtanBCAC . …………………………………7分
答:河的宽度为360米. ……………………8分 20.【答案】解:(1)如图;…………………………4分 (2)∵ AD是等边△ABC边BC的高线, ∴∠ADC=90°,∠C=60°,
在RtADC中,ACADCsin,
∴3232sinCACAD, ∴3322121ADBCSABC.…………8分
A B C D 8 / 9
从上表可知共有6种可能结果,每种结果发生的可能性相等;其中两次摸到不同颜色球包含其中4种结果,所以两次摸到不同颜色球的概率为32.…………………………8分 22.【答案】(1)1200 …………2分 (2)15.5~20.5………4分
(3)0.131.383.1134.0182.8230.72812x ………………5分 20717.2512(分) ………………………………………………………7分
所以全校平均分约为17.25分.………………………………………………………8分 23.【答案】解:(1)设函数解析式是bkxy,得
20202515bkbk , 解得140kb .…………………………………………4分 ∴销售量y(件)是销售价x(元)的函数解析式为40xy.…………………5分 (2)设每日的利润为w元,得 225)25(40050)40)(10()10(22xxxxxyxw.……8分 当x=25时,w有最大值225, ∴要使每日的销售利润最大,每件产品的销售价应为25元. 此时每日的销售利润是225元. ………………………………………………………………10分
25.【答案】解:(1)观察并猜想:(1+3)×4;4+3×4;0×1+1×2+2×3+3×4;……………3分