石油脱硫技术经验

石油脱硫技术经验
石油脱硫技术经验

精心整理

石油生物催化脱硫

石油及其产品的燃烧产生大量的有毒气体SO 2进入大气,造成严重的空气污染,同时也是产生酸雨的主要原因,因此需要对含硫量高的石油燃料进行脱硫处理。化学脱硫方法——加氢脱硫(hydrodesulfurizationHDS )法通过催化过程将有机硫化物转化成H 2S 气体,反应在高温高压下进行,费用较高,而且难以脱除石油燃料中的噻吩类物质,而生物催化脱硫(biodesulfurizationBDS )在常温常压就可以进行,并且具有高度专一性,因此发展石油生物催化脱硫方法是十分必要的。

由于世界范围内可开发的低硫原油日益减少,人们不得不重视对高硫石油的利用。因此对石油中含硫化合物的化学分析也随之越来越被重视起来。石油中的硫是以有机硫和无机硫两种形式存在的,其中主要是有机硫,也存在少量元素硫、H 2S 、FeS 等溶解或悬浮在油中。有人对4种不同产。

吩、BHT 1 洗,对环 DMSOD 用3效益和社会效益。福建炼油化工公司把萃取与碱洗两种工艺结合起来,采用甲醇-碱洗复合溶剂萃取法显著提高了催化裂化(FCC )柴油的储存安定性,色度由18号降到8号,萃取溶剂经蒸馏回收甲醇后可循环使用。此方法投资不高,脱硫效率较高,对一般炼油厂是可行的。

1.3络合法

用金属氯化物的DMF 溶液处理含硫的石油产品[4],可使有机硫化物与金属氯化物作用,生成水溶性的络合物而加以去除。能与有机硫化物生成络合物的金属离子很多,而其中以CdCl 2的效果最佳,但由于Cd 2+的毒性较大,也可用CoCl 2或NiCl 2来代替。不同金属氯化物与有机硫化物的络合反应活性依次为[5]:Cd 2+>Co 2+>Ni 2+>Mn 2+>Cr 3+>Cu 2+>Zn 2+>Li +>Fe 3+。络合法脱硫无法脱除油品中的酸性组分,而剩余的氮化物、硫化物可在酸性物质的催化作用下聚合、氧化。因此工业上采用络合萃取与碱洗精制相结合的办法,可使油品的安定性最好。在经济上,与萃取法同样具有较好经济效益。

1.4吸附法

KonyukhovaT.P.[6]把一些天然沸石(如丝光沸石、钙十字石、斜发沸石等)经酸性活化后,可用于吸附去除成品油中的乙基硫醇和二甲基硫,而ZSM-5和NaX沸石则分别适用于对硫醚和硫醇的去除。徐志达、陈冰[7]等用聚丙烯腈基活性炭纤维(NACF)吸附汽油中的硫醇,但只能把汽油中一部分硫醇脱除,不能把硫醇硫的含量降到10 g/g以下。吸附法脱硫效率不高,而且若吸附剂上吸附了胶质等物质,其脱硫效率更低,所以大多炼油厂不采用此种方法。

1.5催化法

催化法去除有机硫化合物的方法主要有以下三种:(1)用沉积在碳纤维或石墨纤维上的酞菁催化剂,在碱性水溶液中对石油馏分进行氧化处理,可以去除其中的硫醇[8]。在这一体系中,如果不加碱性溶液,而改用碱性多孔性固体催化剂[9](由碱性硅酸铝、活性碳、金属螯合剂、有机或矿物粘合剂等物质组成),也能有效地去除成品油中的有机硫化物。(2)用一个固体碱固定床和一个载体于非碱性固体上的金属螯合剂组成的处理系统[10]对含硫成品油进行处理,在处理时,使含有硫

1.6

费用。(

压超过

FCC 1.7

小的有机硫化合物较为有效。对于带有硫杂环的芳香族化合物,据报导[1213]迄今只有少数几个细菌菌株能够将其代谢为水溶性的化合物,如亚臭假单胞菌和P.alcaligens等,这样就大大地限制了MDS法的商业利用价值。

在细菌脱硫法基础上90年代国外迅速发展起来了石油的生物催化脱(Biodesulfurization,BDS)技术。BDS技术是利用微生物所产生的酶催化特定的C-S断键反应,释放出可溶性硫,而留下碳氢化合物,也就是酶催化反应基本不破坏石油的骨架烃链。BDS与HDS相比较,具有如下优点:(1)可在低温低压下操作;(2)成本较低BDS比HDS投资少50%、操作费用少10%~15%;(3)灵活性好,可用于处理各种油品,如原油、石脑油、中馏分油、FCC汽油、残渣燃料油等;(4)不需要氢气,节省能源,减少CO2排放量,对环境保护极为有利;(5)能有效脱除HDS装置难于处理的含硫杂环化合物,而这是传统的脱硫技术HDS很难解决。因此,酶催化反应脱硫法是一种很有前途的脱硫方法。

2生物催化脱硫代谢途径

2.1以二苯并噻吩表征的生物脱硫代谢途径

由于加氢脱硫难以除去二苯并噻吩(DBT)及其衍生物,而DBT又广泛存在于化石颜料中,所以生物脱硫多以DBT作为模型化合物来进行研究。目前公认的BDS脱硫的有效性是以二苯并噻吩(DBT)为模型化合物来表征的,并且搞清楚了它们的作用机制是由于微生物酶的作用,因此,对于酶脱硫路线,研究者进行了深入的研究确定了其脱硫路线,并且发现此路线与其它脱硫路线相比,最具有商业化应用价值。

酶脱硫路线主要有两种,一种是还原路线,另一种是氧化路线。在还原路线脱硫过程中,有机硫被转化成H2S,然后进一步被氧化成为单质硫。此过程由于没有氧的存在,可以防止烃类物质的氧化,减少油品热值的损失。但是这种方法脱硫能力比较差,很难把它应用于工业化生产。因此,常常采用氧化路线脱硫。

在氧化路线中其代谢途径有以下几种:

(1

)[16]

相(油/3个或4

若油中

约损失

(2

4S”

砜,DBT-

所示),

2-

清楚。

内;

性基质(如苯并噻吩或二苯并噻吩)相互作用;后一途径则要求微生物必须具有所需要的胞外酶。苯并噻吩在细胞内主要沉积在细胞中,而在酵母中主要沉积在线粒体中。同样,二苯并噻吩降解及进入细胞与细胞脂质和脂蛋白有关,二苯并噻吩的氧化可发生在膜结构上。芳环在细菌细胞中的解离可能通过酶的作用发生羟基化,起诱导作用的加氧酶可能是细胞素P450或依赖性黄素。

2.2其它含硫化合物的代谢过程

2.2.1苯并噻吩的代谢过程

苯并噻吩是FCC汽油中的主要含硫化合物。早在198年就有人对苯并噻吩中硫的去除进行了研究[22],1994年,Kropp经过实验发现一些假单胞菌属细菌可以把苯并噻吩代谢为苯并噻吩亚砜、苯并噻吩砜和苯甲酸萘噻吩[23]。这些隔离种群从在苯环上含有甲基取代物的甲基苯并噻吩中生成了类甲基取代苯甲酸萘噻吩,该反应是一个Diels-Alder二分子的亚砜缩合反应,反应同时失去了二原子的氢、氧和一原子的硫,其中,亚砜分子来自于被细菌分解的苯并噻吩、当亚砜分子被带有细胞色素c和氢过氧化物的苯并噻吩酶化合成时,也可得到上述缩和产物。

2.2.2噻吩的代谢过程

噻吩是最简单的硫杂环化合物,目前没有多少微生物能够对噻吩进行分解。Amphlett[24]和Cripps[25]研究发现只有一种自发的反应可以对噻吩完全降解,该反应可以把噻吩中的碳和硫分别转化成二氧化碳和硫酸盐,因此反应由于损失了部分碳而损失了部分热量。对噻吩的生物脱硫技术还在继续研究之中。

2.2.3硫醇和烷基硫醇的代谢过程

某些需氧和厌氧微生物可以对硫醇和其它的有机硫化物进行代谢,例如:噬硫杆菌(thiobacillusthioparus)生丝微菌(hyphomicrobium)都可以通过甲基硫醇氧化酶把甲基硫醇氧化为甲醛、硫单质和氢过氧化物[26]。

3生物脱硫技术的实际应用

3.1生化反应器的设计

3.1.1

VEB公

菌脱除

美国EBS

Eric

3.1.2

BDS

BDS技术的经济可行性有重要影响。为了提高脱硫反应速率和脱硫效率,一般脱硫反应要求在高催化剂浓度和高油水比条件下运行,这进一步增加了乳化液分离难度。

YuLi一Qun等(1998)开发了一种很有效的油/水/生物催化剂三相分离方法和设备,采用水力旋流器来进行多相分离。该水力旋流器是一种高lm直径5-10cm的圆锥形管。流体加入旋流管中开始旋转,由于油和水的密度不同,密度轻的油相会从管的顶部或者宽的一端溢出,密度大的将会从管的底部或窄的一端溢出。主要步骤有:①将来自乳化液罐中以水为连续相的油/水/生物催化剂乳化液送入第一水力旋流器,②转化来自第一水力旋流器顶部的富油乳化液,形成以油为连续相的乳化液,③使以油为连续相的乳化液通过一个或多个串联的水力旋流器;④收集水相和油相。步骤②中的相转化可采用静态在线搅拌器或在乳化液进入水力旋流器前用泵加压形成压降来实现。在加压条件下可以得到体积百分数为9.999%~100%的高纯度的油,采用静态在线搅拌器也可回收体积百分数为90%的油。也可将以水为连续相的乳化液儿次通过旋流器,得到含油1%-3%的生物催化剂水溶液。该分离方法能回收高纯度的油,生物催化剂可以循环使用,系统效率高,泵是唯一的传动设备,

操作简单,运行费用低,很有工业化应用前景。对于高催化剂的系统,利用反应器中乳化现象的优势,还可以加入化学试剂使乳化液暂时失稳,来实现高催化剂浓度下的乳化液相分离。

乳化液相接触器能产生很小的水/油/生物催化剂的液滴,从而减少水进入油相,然而这种系统的脱硫效率很低(MFcarlnad等,1998)。

图3-2EPC结构示意图

Erie等(1998)采用一种电力驱动的乳化液相接触器(emulsionphaseeonatcter,EPC)作为反应器进行生物脱硫过程研究,有机油相为连续相,含催化剂的水相为分散相。该反应器采用两个不同的电极区提高处理能力,结构如图2一8所示。上面是喷嘴区,在喷口处产生分散液滴进入连续油相;下面部分是操作管道,通过平行金属板间的水平振荡电场控制分散相的停留时间,并不断连续的分散液滴,使液滴在反应器中曲折流动。这样就为两相之间的接触提供了足够的表面积。以这种方式,液滴又不断结合,在相界面的分离能力也得到提高。该装置与搅拌反应器相比,能耗减小,形成直径为5

面,

3.1.3

内循环

意义。

3.2

近年来,国外生物催化处理工艺发展得很快,下面是几个由EBC公司研制运行的处理

工艺(Pahcec。,1999),从中可以看出生物脱硫技术的一些优点。

(l)HDS顺流连接BDS

图3-3为HDS顺流连接BDS脱硫工艺。在处理含20%轻质催化循环油(LCCO)的进料混合物时,通过在HDS装置后串接BDS装置不仅大大减少了深度脱硫所需的氢气、避免了过饱和芳香族化合物同加氢脱硫后产生的沸腾燃料混合物相结合,而且减少了燃料的损耗和COZ的排放量。该工艺可使柴油脱硫率达到65一70%,硫排放含量低于50μg/ml。

图3-3HDS顺流连接BDS工艺

(2)BDS代替HDs

图3-4为BDS代替HDS直接脱硫工艺。使用该工艺处理中度含硫燃料,其脱硫率在40-70%之间。该工艺不仅节省了氢气、减少了燃料的损耗和CO:的排放量。而且不需要二段脱硫和尾气处理装置,大大降低了成本,适用于小型炼油厂使用。

图3-4BDS单独脱硫工艺

(3)BDs去除高含硫裂化原料中的硫

图3-5为高含硫裂化原料的BDS脱硫工艺。在此工艺中进料多为高含硫轻质催化循环油(Hs 一Lcco),若BDs顺流连接HDs,不仅节省了大量的氢气、改善了加氢脱硫和脱氮率以及芳香族化合物的饱和度A(SAT),而且与()l相比还减少BDs装置的规模。产物主要为可在表面活性剂和其它化学产品中作为化学中间体的亚磺酸盐,该工艺的总脱硫效率可达到75-90%。

图3-5BDS高含硫裂化原料脱硫

上述的3种工艺代表了国外BDS_J几艺目前研究发展的基本情况,对BDS在炼油厂的工艺组合及最优化的设计研究还在进行之中。

4生物脱硫实现工业化的关键技术

4.1生物催化剂性能的改善

EBC 公司从年优化

DszA,B,C倍,进

年开始,EBC

4.2

养7一

h)上升

2.1g/L,

10d,

利用x7B

使硫含量从275ppm降低到54ppm。

4.3生物反应器和分离工程

要使生物脱硫技术得以在工业应用中扩大,必须设计适用于生物过程的反应器。反应器的设计原则之一是使生物催化剂与油相流体充分混合,保证含硫有机化合物迅速而充分地反应。另外,增加单位反应器体积的反应速率、降低反应器成本或体积、减少反应器的维护和操作费用也是设计中主要考虑的问题。应用于生物过程的反应器主要有搅拌釜反应器、气升式反应器、流化床反应器、固定床反应器和膜反应器,这些反应器各有优缺点。由于生物脱硫的研究大多处在基础研究阶段,对于反应器的研究很少。EBC公司对生物脱硫反应器的设计经历了从搅拌釜反应器一3级连续搅拌釜反应器~气升式反应器的发展过程。

BDS过程的产物一般由脱硫后的油相、含有微生物的水相以及油、水及生物催化剂三相组成的乳化液组成。实现BDS工艺的经济性要求从乳化液中回收高纯度的油。EBC公司最早使用水力旋流器分别处理以油或水为连续相的乳化液。该工艺油回收率高,纯度高;乳化液中的水和生物催化剂

循环使用;设备简单,易于维护。但要求生物催化剂的浓度不超过6g/L。针对生物催化剂浓度较高的BDS新工艺,EBS设计了新的分离流程,该流程使用破乳剂使生成的乳化液失稳,无需离心设备,建设、操作和维修费用大大降低。最近也有研究利用PTFE管式膜从油水混合物中回收油,虽然通量速度会随着过滤时间而降低,但是通过反复回洗可以提高两倍左右的流通性能。

目前最常用的几种烟气脱硫技术的优缺点

目前最常用的几种烟气脱硫技术的优缺点 我国的能源以燃煤为主,占煤炭产量75%的原煤用于直接燃烧,煤燃烧过程中产生严重污染,如烟气中CO2是温室气体,SO x可导致酸雨形成,NO X也是引起酸雨元凶之一,同时在一定条件下还可破坏臭氧层以及产生光化学烟雾等,伦敦正是由于光化学烟雾的原因,整天被雾所笼罩着,所以才会有雾都之称。总之燃煤产生的烟气是造成中国生态环境破坏的最大污染源之一。 中国的能源消费占世界的8%~9%,SO2的排放量占到世界的15.1%,燃煤所排放的SO2又占全国总排放量的87%。中国煤炭一年的产量和消费高达12亿吨,SO2的年排放量为2000多吨,预计到2010年中国煤炭量将达18亿吨,如果不采用控制措施,SO2的排放量将达到3300万吨。据估算,每削减1万吨SO2的费用大约在1亿元左右,到2010年,要保持中国目前的SO2排放量,投资接近1千亿元,如果想进一步降低排放量,投资将更大。为此1995年国家颁布了新的《大气污染防治法》,并划定了SO2污染控制区及酸雨控制区。各地对SO2的排放控制越来越严格,并且开始实行SO2排放收费制度。 随着人们环境意识的不断增强,减少污染源、净化大气、保护人类生存环境的问题正在被亿万人们所关心和重视,寻求解决这一污染措施,已成为当代科技研究的重要课题之一。因此控制SO2的排放量,既需要国家的合理规划,更需要适合中国国情的低费用、低耗本的脱硫技术。 正文: 烟气脱硫经过了近30年的发展已经成为一种成熟稳定的技术,在世界各国的燃煤电厂中各种类型的烟气脱硫装置已经得到了广泛的应用。从烟气脱硫技术的种类来看,除了湿式洗涤工艺得到了进一步的发展和完善外,其他许多脱硫工艺也进行了研究,并有一部分工艺在燃煤电厂得到了使用。烟气脱硫技术是控制SO2和酸雨的有效手段之一,根据脱硫工艺脱硫率的高低,可以分为高脱硫率工艺、中等脱硫率工艺和低脱硫率工艺;最常用是按照吸收剂和脱硫产物的状态进行分类可以分为三种:湿法烟气脱硫、半干法烟气脱硫和干法烟气脱硫。 湿法烟气脱硫工艺是采用液体吸收剂洗涤SO2烟气以脱除SO2。常用方法为石灰/石灰石吸收法、钠碱法、铝法、催化氧化还原法等,湿法烟气脱硫技术以其脱硫效率高、适应范围广、钙硫比低、技术成熟、副产物石膏可做商品出售等优点成为世界上占统治地位的烟气脱硫方法。但由于湿法烟气脱硫技术具有投资大、动力消耗大、占地面积大、设备复杂、运行费用和技术要求高等缺点,所以限制了它的发展速度。 半干法烟气脱硫工艺是采用吸收剂以浆液状态进入吸收塔(洗涤塔),脱硫后所产生的脱硫副产品是干态的工艺流程。 干法烟气脱硫工艺是采用吸收剂进入吸收塔,脱硫后所产生的脱硫副产品是干态的工艺流程,干法脱硫技术与湿法相比具有投资少、占地面积小、运行费用低、设备简单、维修方便、烟气无需再热等优点,但存在着钙硫比高、脱硫效率低、副产物不能商品化等缺点。 自20世纪80年代末,经过对干法脱硫技术中存在的主要问题的大量研究和不断的改进,现在已取得突破性进展。有代表性的喷雾干燥法、活性炭法、电子射线辐射法、填充电晕法、荷电干式吸收剂喷射脱硫技术、炉内喷钙尾部增湿法、烟气循环流化床技术、炉内喷钙循环流化床技术等一批新的烟气脱硫技术

石油化工废气处理

石油化工废气处理 论文摘要: 石油化工生产过程中产生的废气是大气污染的主要污染源之一,对自然环境和人类健康造成了极大的危害。为了经济发展与环境保护的双赢,在石油化工生产过程中更加注重废气废水的处理。针对石油化工废气成分相对复杂的情况,本文从污染源及其种类入手分析石油化工废气处理的主要方法并总结其在应用中的有益经验和取得的良好效果。 关键词:石油化工;废气;处理技术 论文正文 一、石油废气中的污染源及种类 石油化工企业生产过程中产生的废气成分相对复杂,主要有粒子类物质、含硫化合物、含氮化合物和一氧化碳及有机化合物等,它们通过一定的排列组合构成了主要的大气污染源。就废气中各种物质及化合物的产生有着不同的来源。一般而言粒子类物质主要产生于电力、建材、轻工业、石油化工、冶金等行业工业生产过程中所产生的烟雾、烟尘及生产性的粉末等。按照粒子类物资粒径的大小被分为粗粒粉尘、细粒粉尘、烟、雾等。 含硫化合物主要由二氧化硫和硫化氢两种,这两种物质排放到空气中达到一定浓度时会对人类的健康产生不利影响,同时也是酸雨形成的重要物质。大气中的二氧化硫主要来源于燃烧的矿物燃料,而硫

化氢多半来源于炼油、硫化染料等行业的生产。就石油化工行业而言,其生产过程由炼油到下游人造丝等石化产品的生产制造会产生一定 的硫化氢对大气造成污染。 有机化合物的主要组成部分是碳氢化合物,如烷烃、烯烃、芳香烃等,此外还有一些含硫或含氮的有机化合物。这些有机化合物的主要来源是石油化工厂或者炼油厂的生产过程,这些污染源有着恶臭或者刺激性的气味,会对人体器官产生毒害影响,常含有一定的致癌物质。 废气中的含氮化合物主要成分是一氧化氮和二氧化氮,它们多数由于煤炭或者石油制品的燃烧而产生,同时也可能产生于硝酸、炸药或者氮肥的生产制作过程中。含碳物质的完全燃烧和不完全氧化都会有一氧化碳的产生,比如汽车尾气、石油化工生产中的催化裂化过程中所产生的烟气等中都含有大量的一氧化碳。 卤素和它的化合物也是一种常见的大气污染物,它的主要来源是含有氯和氯化氢的废气是氯碱厂以及利用其作为工业原料的工厂,氯化氢则来源于磷肥生产的过程和电解铝工业等。 二、常用废气处理技术种类 针对石油化工生产过程中产生的不同污染源,通过对其分类,有针对性的重点处理某种具体的污染物,能够有效的减少大气污染提高环境质量。具体而言,石油化工产业废气处理技术主要有以下几种。 1.废气的催化燃烧技术。该种技术又被成为催化氧化技术或者接触氧化技术,是在较低的温度下降反应器在中的催化剂予以催化,使

液化气脱硫醇培训资料

液化气脱硫醇培训资料 1.1.1脱硫醇技术原理 其原理依据硫醇的弱酸性和硫醇负离子易被氧化生成二硫化合物这两个特性,反应方程式如下: RSH + NaOH RSNa + H2O (从油品中脱除硫醇硫)油相 (从碱中脱硫醇负离子)水相油相 首先由强碱(NaOH)与硫醇反应生成硫醇钠,硫醇钠溶于碱液中,从而从液化气中脱除;带有硫醇的碱液在焦化剂作用下通入空气使硫醇氧化为二硫化物脱除再生,再生脱除了硫醇后的碱液循环使用,可以避免大量碱渣的产生。 1.1.2深度脱硫的原理、措施及效果 深度脱硫技术是在深入分析传统技术原理、原料中硫化物的分布规律以及硫醇和二硫化物是导致精制后总硫高的主要原因等理论和事实基础上,为了解决炼油液化气总硫高的问题而提出的。(专利申请号:200910250279.8) 深度脱硫技术主要包括功能强化助剂、三相混合氧化再生、再生催化剂与抽提剂分离等工艺设备措施。功能强化助剂的加入可提高循环溶剂抽提和再生的综合性能,提高循环剂对硫醇的抽提能力、羰基硫的溶解性和溶剂再生的活性;三相混合氧化再生反应,使再生反应形成的二硫化物能够及时转移到反抽提油中,强化了再生反应推动力,从而大大提高了再生效果,还实现了常温再生,并延长了碱液的使用寿命,简化了流程和控制,降低了投资和操作费用;固定床催化剂技术,将氧化催化剂固定在再生塔内,从而明显减弱了溶解氧的影响,消除了抽提反应时发生再生副反应的主要因素,减少或避免在抽提时形成二硫化物,从而实现了深度脱硫。 深度脱硫技术综合以上措施,在实现焦化液化气深度降总硫目标

的同时,还可取得节能、降耗、减排和防止脱后铜片腐蚀等效果。碱耗和排渣减少至原有排渣量的四分之一,常温再生节能降耗。经济效益和社会环保效益都非常可观。 2.2 主要工艺操作条件 2.2.1 预碱洗操作参数 表2.1 预碱洗部分操作参数 2.2.2 硫醇抽提部分操作参数 表2.2 硫醇抽提部分操作参数 2.2.3 碱液再生部分操作参数 表2.3 剂碱再生部分操作参数

烟气脱硫基本原理及方法

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。

目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

各种湿法脱硫工艺比较

各种湿法脱硫工艺比较标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电厂各种湿法脱硫技术对比优劣一目了然 来源:化工707微信作者:小工匠2016/1/18 8:48:31 所属频道:关键词: :随着我国环境压力逐年增大,国家排放要求进一步收紧,电厂技术也得到了快速发展。目前烟气种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。目前,湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于技术,一般单想电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法烟气脱硫技术脱硫率高,但不适合大容量燃烧设备。不同的工况选择最符合的脱硫方法才会得到最大的经济效益,接来下小七根据电厂脱硫技术的选择原则来分析各种工艺的优缺点、适用条件。 电厂脱硫技术的选择原则: 1、脱硫技术相对成熟,脱硫效率高,能达到环保控制要求,已经得到推广与应用。 2、脱硫成本比较经济合理,包括前期投资和后期运营。 3、脱硫所产生的副产品是否好处理,最好不造成二次污染,或者具有可回收利用价值。 4、对发电燃煤煤质不受影响,及对硫含量适用范围广。 5、脱硫剂的能够长期的供应,且价格要低廉 湿法烟气脱硫技术 湿法烟气脱硫技术是指吸收剂为液体或浆液的脱硫技术,最大的优点是反应速度快、脱硫效率高,最大的缺点就是前期投资、后期运行成本高和副产品处理困难。湿法烟气脱硫技术是目前技术最为成熟,也是我国使用最广泛的,据不完全统计, 已建和在建火电厂的烟气脱硫项目中, 90 % 以上采用湿法烟气脱硫技术。

液化气脱硫装置操作规程

目录一.装置概况 二.脱硫原理 三.工艺流程简述 四.装置检查与介质引进五.开、停工方案 六.液化气脱硫岗位操作法七.事故状态下操作法八.碱洗操作法及注意事项九.焚烧炉操作注意事项

液化气脱硫装置操作规程 一.装置概况 本装置于2004年9月竣工9月28日投料生产,一次成功按设计能力每小时处理液化气12×104T/H.该装置采用二乙醇胺脱硫工艺,二塔流程。设计中严格工艺控制脱硫塔及再生塔的温度、压力,使之有利于H2S、CO2的吸收及胺液再生。 本装置为连续性生产装置,年开工时数为8000小时生产制度为三班制。 二.脱硫原理 1.任务:将外购及本厂催化生产的液化气从罐区送至本装置与脱硫剂在脱硫塔中逆向接触,脱除其中的H2S和部分CO2。 2.本装置的脱硫剂主要是以N—甲基二乙醇胺为主,脱硫剂中添加了消泡剂、缓冲剂和稳定剂。 3.反应如下: CH2ON CH2ON CH2 CN2 CH2—N﹢H2S [CH2—N—H]﹢HS CH2CH2 CH2ON CH2ON

CH2ON CH2ON CH2 CN2 CH2—N﹢H2S﹢CO[CH2—N—H]﹢HCOS CH2CH2 CH2ON CN2OH 因反应是可逆反应,吸收H2S和CO2的脱硫剂,在溶剂再生塔中的高温低压下又释放出所吸收的H2S和CO2,并得以再生,再生后的脱硫剂可供循环使用。 4.脱硫剂性质 化学名称N—甲基二乙醇胺 分子式C2H13HO2 分子量119119 外观无色或浅黄油状液体 含量95% 可溶性可与水和醇相溶、微溶于酸 折光率 1.46—1.47 比重 1.04—1.05 沸点≈410℃ 三.工艺流程简述 1.自催化裂化装置含硫液化气和外购含硫液化气通过液化气站。在1.5Mpa,40℃压力下,首先进入液化脱硫塔C—3101下部,塔内设9层筛孔塔板。液化气由下而上与塔顶自上而下(浓度为20~30%)的N—甲基二乙醇胺贫液逆向接

石油化工脱硫方法

石油化工脱硫方法 随着环保和市场对石化产品中硫含量要求越来越苛刻,石油化工中硫化物脱除,尤其是较难脱除的有机硫化物脱除方法已成为各石化企业和研究者关注的热点。本文就近年来有机硫化物脱除方法的研究进展进行综述,介绍了加氢转化、生物脱除技术、超生婆脱硫、沸石脱硫、液相吸附脱硫、离子液脱硫等,展望了有机硫脱除技术发展远景。 关键词:有机硫;脱除;石油化工 随着世界范围环保要求日益严格,人们对石油产品质量要求也越来越苛刻,尤其是对燃烧后形成SO2、SO3继而与大气中水结合形成酸雾、酸雨严重影响生态环境和人们日常生活的硫化物含量限制。世界各国对燃油中的硫提出了越来越严格的限制,以汽油为例,2005年欧美要求含硫质量分数降低到30×10-6~50×10-6,至2006年,欧洲、德国、日本、美国等国家和地区要求汽油中硫含量低于10~50μg/g,甚至提出生产含硫质量分数为5×10-6~10×10-6的“无硫汽油;”自2005年起,我国供应北京、上海的汽油招待相当于欧洲Ⅲ排放标准的汽油规格,即含硫质量分数低于150×10-6。为了满足人们对石油产品高质量的要求和维护生产安全稳定进行,石油化工各生产企业不断改进生产过程中的脱硫工气。石油化工生产过程中涉及到的硫化物可分为无机硫化物和有机硫化物,无机硫化物较容易脱除,本文就比较难脱除的有机硫脱除技术新进展进行综述。 1 加氢转化脱硫

天然气、液化气、炼厂气、石脑油及重油中常含有二硫化碳、硫醇、硫醚、羰基硫和噻吩等有机硫化物,热分解温度较高,且不易脱除。加氢转化脱硫技术是最有效的脱除手段之一。有机硫在加氢转化催化剂作用下加氢分解生成硫化氢(H2S)和相应的烷烃或芳烃,生成的H2S可由氧化锌等脱硫剂脱除达到很好的脱除效果。近年来,国外开发出几种典型的催化裂化(FCC)汽油脱硫新工艺,如ExxonMobil公司的SCANFining工艺和OCTGAIN工艺、LFP公司的Prime-G+工艺和UOP公司的ISAL工艺;在中内,中国石化抚顺石油化工研究院(FRIPP)针对我国FCC汽油的不同特点,开发出了OCT-M、FRS和催化裂化(FCC)汽油加氢脱硫/降烯烃技术并在国内石化企业得到成功应用;还开发了FH-DS柴油深度加氢脱硫催化剂,成功应用于福建炼油化工有限公司柴油加氢装置[1,2],此外洛阳石油化工工程公司工程研究院开发出催化裂化汽油加氢脱硫及芳构化工气技术Hydro-GAP[3]。但加氢脱硫技术存在设备投资大,操作费用高,需要大量氢等局限,对于一些没有氢气或氢气资源紧张的中小型炼油企业而言,投资成本太大,转而寻求非加氢脱硫技术。 2 生物脱硫技术 加氢脱硫法对化石燃料中含有的典型有机硫化合物—二笨并噻吩(DBT)及其衍生物无能为力。许多研究人员认为生物脱硫技术是化石燃料精度技术的替代或补充,可以运用需氧或厌氧细菌来完成微生物脱硫工艺过程。生物催化的操作温度比较温和,大多数条件下都可以实现,具有很高的选择性,可降低能耗,减少排放物,不产生

几种最常用烟气脱硫技术的优缺点

几种最常用烟气脱硫技术的优缺点 中脱硫率工艺脱硫率70%~90% 路博环保中等脱硫技术包括三种工艺:炉内喷钙加增湿活化工艺(LIFAC),烟气循环流化床(CFB,包括喷钙和常规)和喷雾干燥工艺。与低脱硫效率的工艺相比,脱硫效率有所提高,运行费用相对减少,设备较复杂,因而投资费用增加。与高效率的湿法工艺相比具有启停方便,负荷跟踪能力强的特点。适用于燃用中低含硫量的现有机组的脱硫改造。 (1)LIFAC脱硫技术是由芬兰的Tampella公司和IVO公司首先开发成功并投入商业应用的该技术是将石灰石于锅炉的800℃~1150℃部位喷入,起到部分固硫作用,在尾部烟道的适当部位(一般在空气预热器与除尘器之间)装设增湿活化反应器,使炉内未反应的CaO和水反应生成Ca(OH)2,进一步吸收SO2,提高脱硫率。 LIFAC技术是将循环流化床技术引入到烟气脱硫中来,是其开创性工作,目前该技术脱硫率可达90%以上,这已在德国和奥地利电厂的商业运行中得到实现。 LIFAC技术具有占地小、系统简单、投资和运行费用相对较、无废水排放等优点,脱硫率为60%~80%;但该技术需要改动锅炉,会对锅炉的运行产生一定影响。我国南京下关电厂和绍兴钱清电厂从芬兰引进的LIFAC脱硫技术和设备目前已投入运行。 (2)炉内喷钙循环流化床反应器脱硫技术是由德国Sim-meringGrazPauker/LurgiGmbH公司开发的。该技术的基本原理是:在锅炉炉膛适当部位喷入石灰石,起到部分固硫作用,在尾部烟道电除尘器前装设循环流化床反应器,炉内未反应的CaO随着飞灰输送到循环流化床反应器内,在循环硫化床反应器中大颗粒CaO 被其中湍流破碎,为SO2反应提供更大的表面积,从而提高了整个系统的脱硫率。 该技术将循环流化床技术引入到烟气脱硫中来,是其开创性工作,目前该技术脱硫率可达90%以上,这已在德国和奥地利电厂的商业运行中得到证实。在此基础上,美国EEC(EnviromentalElementsCorporation)和德国Lurgi公司进一步合作开发了一种新型烟气的脱硫装置。在该工艺中粉状的Ca(OH)2和水分别被喷入循环流化床反应器内,以此代替了炉内喷钙。在循环流化床反应器内,吸收剂被增湿活化,并且能充分的循环利用,而大颗粒吸收剂被其余粒子碰撞破碎,为脱硫反应提供更大反应表面积。 本工艺流程的脱硫效率可达95%以上,造价较低,运行费用相对不高,是一种较有前途的脱硫工艺。 (3)喷雾干燥法烟气脱硫技术是一项发展最成熟的烟道气脱硫技术之一。该技术采用了旋转喷雾器,投资低于湿法工艺,在全世界范围内得到广泛应用,在西欧的德国、意大利等国家利用较多。对中高硫燃料的SO2脱硫率能达到80-90%。 该技术的基本原理是由空气加热器出来的烟道气进入喷雾式干燥器中,与高速旋转喷嘴喷出的充分雾化的石灰、副产品泥浆液相接触,并与其中SOX反应,生成粉状钙化合物的混合物,再经过除尘器和吸风机,然后再将干净的烟气通过烟囱排出,其反应方程式为:SO2+Ca(OH)2CaSO3+H2O SO3+Ca(OH)2CaSO4+H2O 该技术一般可分为吸收剂雾化、混合流动、反应吸收、水汽蒸发、固性物的分离五个阶段,与其它干燥技术相比其独特之处就在于吸收剂与高温烟气接触前首先被雾化成了细小的雾滴,这样便极大增加了吸收剂的比表面积,使得反应吸收及传热得以快速进行。其工艺流程如图1所示【3】。该技术安装费用相对较低,一般是同等规模的石膏法烟气脱硫系统的70%左右。但存在着石灰石用量大、吸收剂利用率低及脱硫后的副产品不能够再利用的难题,故该技术意味着要承担双倍的额外费用,即必须购买更多的石灰石和处理脱硫后的

液化石油气脱硫

液化石油气脱硫研究进展 摘要:综述了国内外液化石油气脱硫技术,特别是Merox抽提-氧化工艺、纤维膜接触器碱处理技术、无碱固定床催化氧化-吸附结合法等脱硫技术发展现状,并对液化气脱硫技术发展前景作出展望。 关键词:液化气;脱硫;有机硫 中图分类号:TQ203.2文献标识码:A 石油炼制过程中,焦化、常减压、催化裂化等装臵产生的液化石油气(liquefied petroleum gas,LPG),含有大量的硫化物[1~3],除H2S 外,还有各种形态的有机硫,如COS,CH3SH,C2H5SH,CH3SCH3等,其中主要是CH3SH。硫化物会造成后续加工过程中催化剂的中毒和失活,而元素硫和硫化氢对管路及储存容器腐蚀大,作为民用燃料时会生成SOx,污染环境,形成酸雨等。目前,国内外对LPG作为燃料时,其总硫含量和铜片腐蚀级别有所要求;如果作为化工原料,则要求更严。我国的液化气标准(GB 1174-1997)规定,LPG中总硫质量分数小于343 mg/m3,铜片腐蚀的级别小于1级。因此,深度脱除LPG中的硫化物,具有重要的经济和环保意义。 1 LPG脱硫工艺研究 传统的LPG脱硫精制有干法和湿法两种方法[3~6],一般根据其硫含量及净化要求而定,对于硫含量低或处理量小的LPG采用干法,如用氧化锌、氧化铝、活性炭吸附或者用简单的碱法吸收。对于硫含量高、处理量大的LPG的处理包括两部分:第一步利用醇胺溶液脱除LPG中的硫化氢,或将COS水解后一并脱除,常用的醇胺[7,8]有

MEA,DI-PA,MDEA,DEA及相应的复配溶液,该工艺已非常成熟;第二步则是用碱洗或精脱硫催化剂进行精制。另外,欧美少数公司采用分子筛法,具有同时脱H2S,COS,水和有机硫的能力;也有学者研究[9]利用等离子体破坏硫醇结构来脱硫。 液化气脱硫醇的方法最早是由美国环球油品公司(UOP)1958年提出的,发展至今形成了成熟的液液抽提、氧化再生工艺,即Merox 抽提氧化法。目前国内外应用最广泛的是美国UOP公司的梅洛克斯(Merox)脱硫醇技术和美利肯(Merichem Co.)公司的纤维薄膜(Fiber-Film)接触器碱处理技术,即硫醇提净(ThiolexSM)技术[3,10]。LPG 脱COS、硫醇等有机硫是脱硫的难点,是国内外研究的重点。 1.1 湿法脱硫醇 传统湿法工艺中,液化气首先通过MDEA吸收塔脱H2S,CO2等,再用10% NaOH溶液洗脱残余的H2S,然后用溶解了磺化酞菁钴的碱液脱除LPG中的硫醇,脱后LPG去气分装臵;脱硫塔底碱液进再生塔,经通风在磺化酞菁钴催化剂作用下,将硫醇钠氧化成二硫化物,使碱液得到再生后循环使用。其反应原理如下: 碱液加助剂可显著提高高分子硫醇在碱液中的溶解度,提高硫醇脱除率。研究表明[6,11],液化气用磺化酞菁钴脱硫醇时,MEA、氯化铵、吗啉、尿素、烷基氢氧化钠等助催化剂,可显著提高脱硫醇效率。 该法缺点如下:(1)酞菁钴类催化剂处于碱相,易聚集失活[12],

石油炼化企业烟气脱硫技术研究综述

石油炼化企业烟气脱硫技术研究综述 摘要:当前人们在环保等方面要求有明显提高,对石油炼化企业烟气脱硫技术要求也更为严格。本文就当前石油炼化企业烟气脱硫技术发表了一些建议看法,希望可以对石油炼化企业烟氣脱硫技术有清楚全面认识,明确各个技术的优势和适用范围,更好的满足烟气脱硫需要,提高烟气脱硫有效性。 石油炼化企业生产过程中需要排放大量二氧化硫,涉及各个加工工艺,各个企业在排放特征以及减排工程方面存在有明显区别。目前石油炼化企业生产过程中所产生的二氧化硫主要来自锅炉烟气、脱硫装置尾气和催化再生烟气等途径,必须要结合具体排放途径有针对性的选择减排技术。因此,必须要做好电厂等成熟行业二氧化硫减排技术研究,明确各个施工工艺在实际应用中存在的优势和不足,同时与烟气排特点相结合,选择最佳烟气脱硫工艺,本文就此展开了研究分析。 1 湿法烟气脱硫技术 湿法烟气脱硫技术主要是液态吸收剂与SO2发生相应反应,其产物同样为液态,湿法烟气脱硫技术不仅有着非常高脱硫效率,同时整个系统运行相对较为稳定,但是具体应用中需要较高的运行费用和投资费用,同时脱硫后产物处理存在有较大难度,容易有二次污染等问题出现。 常见湿法烟气脱硫技术有石灰-石膏湿法、氧化镁法、双碱法、氨法、海水法等。 (1)石灰-石膏湿法,脱硫吸收剂选择石灰,价格低廉,破碎为粉末状与水混合,制成吸收浆,在吸收塔充分混合烟气,吸收浆中的碳酸钙成分能够与烟气中二氧化硫及氧气发生反应出去,生存石膏产物。脱硫后烟气经过换热器处理后排出,石膏脱水后可回收,脱硫吸收剂利用率高。这一烟气脱硫技术属于目前世界上应用最为广泛的脱硫工艺,技术成熟,我国燃煤电厂脱硫中石灰-石膏湿法同样有广泛应用,但是该工艺在实际应用中需要做好防腐工作,同时管道容易出现堵塞,会有大量CO2产生,导致其发展和应用受到限制。 (2)氧化镁法,氧化镁法与石灰-石膏湿法原理基本相同,使用氧化镁代替石灰,氧化镁与二氧化硫在反应塔发生化学反应,会生成亚硫酸镁和水,亚硫酸镁可与氧气反应生成硫酸镁,硫酸镁易溶于水,不会堵塞管路,同时能够重复性使用。但是氧化镁的制备相对较为复杂,同时需要较高承担,导致其实际应用受到限制。 (3)双碱法,双碱法指的是利用钠碱将烟气中存在的二氧化硫吸收干净,反应后液体使用石灰处理,综合碱法和石灰法两种施工工艺,整个工艺可分为吸收、再生以及固体

常用脱硫技术

常用脱硫技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(一)湿法脱硫技术 1)、石灰石-石膏湿法 采用石灰石或石灰作为脱硫吸收剂。吸收塔内吸收浆液与烟气接触混合,烟气中二氧化硫与吸收浆液中碳酸钙以及鼓入的氧化空气发生反应,最终反应产物为石膏。脱硫后的烟气经除雾器排入烟囱。脱硫石膏浆经脱水装置脱水后回收。吸收浆液可循环利用。工艺流程 湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。工艺流程如下: 烟气经降温后进入吸收塔,吸收塔内烟气向上流动且被向下流动的循环浆液与逆流方式洗涤,循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可是气体和液体得以充分接触,以便脱除SO2、SO3、HCL和HF,最终被空气氧化为石膏 (CaSO4.2H2O)。

经过净化处理的烟气经除雾器去除清洁烟气中携带的浆液后进入烟囱排向大气。同时按特定程序不时用工艺水对除雾器进行冲洗(两个目的:一、防止除雾器堵塞,二、作为补充水稳定吸收塔液位)。 石灰石与二氧化硫反应生成的石膏通过石膏浆液泵排出,进入石膏脱水系统。 脱硫过程反应 SO2 + H2O → H2SO3吸收 CaCO3 + H2SO3→ CaSO3 + CO2 + H2O 中和 CaSO3 + 1/2 O2→ CaSO4氧化 CaSO3 + 1/2 H2O → CaSO3?1/2H2O 结晶 CaSO4 + 2H2O → CaSO4?2H2O 结晶 CaSO3 + H2SO3→Ca(HSO3)2 pH 控制 烟气中的HCL、HF和CaCO3反应生成CaCl2和CaF2,吸收塔中pH 值大小通过石灰石浆液进行调节与控制,pH值在5.5~6.2 脱硫效率控制的主要方法 1、控制吸收塔浆液的pH值(新石灰石浆液的投加) 2、增加烟气在吸收塔内部的停留时间 3、控制石膏晶体 技术特点 1、技术成熟,设备运行可靠性高; 2、适用于任何含硫量的烟气脱硫; 3、设备布置紧凑减少场地需求; 4、吸收剂资源丰富,价廉易得; 5、脱硫副产物便于综合利用,经济效益显著。

各种脱硫工艺比较

一、煤化工中各种脱硫工艺比较 1、AS煤气净化工艺 AS流程就是以煤气中自身的NH3。为碱源,吸收煤气中的H2S,吸收了NH3。和H2S的富液到脱酸蒸氨工段,解析出NH3。和H2S气体,贫液返回洗涤工段循环使用,氨气送氨分解炉生产低热值煤气后返回吸煤气管线,酸气送克劳斯焚烧炉生产硫磺。 优点:环保效果好、工艺流程短、脱硫效率高、煤气中的氨得到充分利用、加碱效果明显、热能利用高 缺点:洗氨塔后煤气含氨量高、洗液温度对脱硫影响较大、富液含焦油粉尘高、硫回收系统易堵塞(克劳斯焚烧炉生产硫磺) 2、低温甲醇洗(Rectisol,音译为勒克梯索尔法) 低温甲醇洗与NHD法都属于物理吸收法,可以脱硫和脱碳。 低温甲醇洗所选择的洗涤剂是甲醇,在温度低于273 K下操作,因为甲醇的吸收能力在温度降低的情况下会大幅度地增加,并能保持洗涤剂损失量最少。低温甲醇洗适合于分离和脱除酸性气体组分CO2、H2S及COS,因为这些组分在甲醇中具有不同的溶解度,而这种选择性能得到无硫的尾气。例如有尿素合成工序的话,如果遵守环境保护规则,就可以直接排人大气或用于生产CO2。 低温甲醇洗在大型化装置中的生产业绩、工艺气的净化指标、溶剂损耗、消耗和能耗、CO2产品质量有其优势. 3、NHD法脱硫 NHD化学名为聚乙二醇二甲醚是一种新型高效物理吸收溶剂。 NHD法脱硫原理:NHD法脱硫过程具有典型的物理吸收特征。H2S、CO2在NHD中溶解度较好的服从亨利定律,它们岁压力升高、温度降低而增大。因此宜在高压、低温下进行 H2S和CO2的吸收过程,当系统压力降低、温度升高时,溶液中溶解的气体释放出来,实现溶剂的再生过程。 NHD法脱硫工艺特点:能选择性吸收H2S、CO2、COS且吸收能力强;溶剂具有良好的化学稳定性和热稳定性;NHD不起泡,不需要消泡剂;溶剂腐蚀性小;溶剂的蒸汽压极低,挥发损失低;NHD工艺不需添加活化剂,因此流程短。 4、PDS法脱硫(PDS催化剂) 原理:煤气依次进入2台串联的脱硫塔底部,与塔顶喷淋的脱硫液逆向接触,脱除煤气中的大部分H2S。在PDS催化剂的作用下,可脱除无机硫与有机硫,同时促使NaHCO3进一步参加反应。 从2台脱硫塔底排出的脱硫液经液封槽进入溶液循环槽,用循环泵将脱硫液分别送入2台再生塔底部,与再生塔底部鼓入的压缩空气接触使脱硫液再生。再生后的脱硫液从塔上部经液位调节器流回脱硫塔循环使用,浮于再生塔顶部扩大部分的硫泡沫靠液位差自流入硫泡沫槽,用泵将硫泡沫连续送往离心机,离心后的硫膏外运,离心液经过低位槽返回脱硫系统。 脱硫影响因素:煤气及脱硫液的温度控制;脱硫吸收液的碱含量。PDS法脱硫过程的实质就是酸碱中和反应;液气比对脱硫效率的影响;二氧化碳的影响;再生空气量与再生时间;煤气中杂质对脱硫效率的影响。

石油化工催化裂化装置工艺流程图.docx

炼油生产安全技术一催化裂化的装置简介类型及工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应--再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370 C左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650 C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化 剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催 化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650 C ~68 0 C )。再生器维持0.15MPa~0?25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经 淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部 分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO 为了利用其热量,不少装置设有Co锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的 装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电 能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分 馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应--再生系统进 行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走 分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460 C以上的带有催化 剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油 气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。 ㈢吸收--稳定系统: 从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3 C4甚至C2 组分。吸收--稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气 (≤ C2)、液化气(C3、C4)和蒸汽压合格的稳定汽油。 一、装置简介 (一)装置发展及其类型

液化气脱硫技术的发展现状研究

2019年第19卷第3期气体净化?5? 液化气脱硫技术的发展现状研究 龚伟 (贵州省产品质量监督检验院,贵州贵阳550016) 摘要:阐述了Merox抽提-氧化脱臭技术、吸附脱硫技术、纤维膜脱硫技术、络合脱硫技术等液化气脱硫技术的发展现状,最后对液化气脱硫技术前景进行了展望。 关键词:液化气脱硫技术吸附纤维膜 根据液化气中硫含量及净化程度要求,分为干法脱硫与湿法脱硫。湿法脱硫针对硫含量较高且处理量大的液化气,常用方式为抽提与纤维膜脱硫技术。干法脱硫针对含硫量低、处理量较少的液化气,常用活性炭吸附、氧化铝及氧化锌等⑷。 1Merox抽提-氧化脱臭技术 液化气脱硫技术从酸碱精制、醇胺精制、萃取精制,到Merox抽提-氧化脱臭精制、加氢精制⑷。由美国UOP公司于1958年研发,形成2种工业生产形式:液-液脱臭法与固定床脱臭法⑶。国内以液-液脱臭法为主,原理:液化气先经醇胺洗,进行预碱洗除去残存少量H2S及硫醇,随碱液抽提入塔,硫醇与NaOH在磺化猷菁钻催化下生成硫醇钠,再进入氧化再生塔,硫醇钠在催化剂作用下与氧气发生反应生成二硫化物,经分离除去二硫化物的再生碱液,经沉降和水洗得精制液化气⑷。 液-液脱臭技术优点:脱硫醇容量大、耗碱量低;缺陷:废碱液排放量大,硫脱除率与传质效率低,催化剂稳定性不高,环境污染等⑴。 固定床脱臭法的脱硫原理同液-液脱臭法,将液化气中的硫醇通过酸碱反应生成硫醇钠,与氧气生成二硫化物,于精憎塔内与C3分离⑷。该技术缺点:成本高、能耗大、催化剂适应性差。 2吸附脱硫技术 与传统脱硫技术相比,吸附脱硫具有无碱脱硫、污染小、吸附物循环利用、脱硫程度高等优势。该技术主要用于脱硫的吸附物有活性炭、金属氧化物、分子筛等"1。 活性炭与吸附物间形成络合反应,可除去液化气中的硫醇⑻。其原理:水蒸气在活性炭微孔内形成水膜,催化出S与。2反应生成单质硫,提高脱硫效率⑼。国内研发的T101-T103系列活性炭穿透硫容提高4~8倍,国外研究,在孔径0.7nm活性炭上负载PdCJ与CuCl,穿透硫容最大何。单一金属氧化物成本较高,硫容量低。Baird1111与Wangle]分别研发了复合金属氧化物与再生介质辅助脱硫,极大的提高了金属氧化物吸附脱硫能力。金属有机骨架材料(MOFs)由金属阳离子与多官能团组成,具有结构多样、化学可修饰等特点⑴),可通过其特殊的配位金属与硫化物发生络合作用,达到脱硫的目的。MOFs材料目前通过加热法与溶剂冲洗法完成循环再生[⑷。分子筛根据其孔道大小及围数,孔口的形状与尺寸,孔壁的性质等,选择性吸附多种硫化物问。 吸附脱硫技术虽然有诸多优点,但也存在很多缺陷:循环回收成本高、回收吸附物吸附容量有损失、再生条件苛刻及吸附时易受其他物质影响等。 3纤维膜脱硫技术 1975年,美国Merichem1161公司研发岀纤维膜脱硫技术。该技术用多条直径微小的玻璃纤维或钢丝纤维组成纤维束,碱液在纤维束表面流动高度分散成薄液膜。油相进入后,与碱液同向流动并发生酸碱反应。因碱液表面张力与密度均大于油相,会在沉降罐中完全分离。罐内经脱硫处理的油品抽出,罐底碱相再次循环进入接触器顶部W纤维膜脱硫技术具有设备占地少、节省投资与操作费用、降低传质过程中的能量消耗、在炼油和化工行业中应用前景突出问。 4无碱固定床脱硫技术 无碱固定床脱硫技术利用固定床流程替换传

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

各种湿法脱硫工艺比较

电厂各种湿法脱硫技术对比优劣一目了然 北极星电力网新闻中心来源:化工707微信作者:小工匠2016/1/18 8:48:31 我要投稿 北极星火力发电网讯:随着我国环境压力逐年增大,国家排放要求进一步收紧,电厂烟气脱硫技术也得到了快速发展。目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。目前,湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于湿法脱硫技术,一般单想电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法烟气脱硫技术脱硫率高,但不适合大容量燃烧设备。不同的工况选择最符合的脱硫方法才会得到最大的经济效益,接来下小七根据电厂脱硫技术的选择原则来分析各种工艺的优缺点、适用条件。 电厂脱硫技术的选择原则: 1、脱硫技术相对成熟,脱硫效率高,能达到环保控制要求,已经得到推广与应用。 2、脱硫成本比较经济合理,包括前期投资和后期运营。 3、脱硫所产生的副产品是否好处理,最好不造成二次污染,或者具有可回收利用价值。 4、对发电燃煤煤质不受影响,及对硫含量适用范围广。 5、脱硫剂的能够长期的供应,且价格要低廉 湿法烟气脱硫技术 湿法烟气脱硫技术是指吸收剂为液体或浆液的脱硫技术,最大的优点是反应速度快、脱硫效率高,最大的缺点就是前期投资、后期运行成本高和副产品处理困难。湿法烟气脱硫技术是目前技术最为成熟,也是我国使用最广泛的,据不完全统计, 已建和在建火电厂的烟气脱硫项目中, 90 % 以上采用湿法烟气脱硫技术。 1 石灰石—石膏湿法脱硫工艺 工艺流程

石油脱硫

石油脱硫技术 随着环保和市场对石化产品中硫含量要求越来越苛刻,石油化工中硫化物脱除,尤其是较难脱除的有机硫化物脱除方法已成为各石化企业和研究者关注的热点。通过此次在齐鲁石化的社会实践活动以及相关文献的查阅,我们对整个石油脱硫有了一个大概的认识,以下我就对近年来应用较多的有机硫化物脱除的方法进行一个简要的叙述。 众所周知,石油是一种混合物,其直接燃烧会产生许多有害物质,如硫会形成SO2、SO3,,它们会进一步与大气中水结合形成酸雾、酸雨进而严重影响生态环境和人们日常生活,因而石油脱硫是炼制过程中的重要一环。石油化工生产过程中涉及到的硫化物可分为无机硫化物和有机硫化物,无机硫化物较容易脱除,本文就比较难脱除的有机硫脱除技术进行综述。 就实际应用而言,应用较广的石油脱硫技术主要有,加氢转化、生物脱除技术、沸石脱硫、超生婆脱硫、液相吸附脱硫、离子液脱硫等,以下我就对前三种进行一下描述。 1 加氢转化脱硫 在我们社会实践的齐鲁石化主要采用的就是这种脱硫方法,由于其操作简单,所需设备相对简单的特点,加氢转化脱硫技术是最有效且应用最广的脱除手段之一。有机硫在加氢转化催化剂作用下加氢分解生成硫化氢(H2S)和相应的烷烃或芳烃,生成的H2S可由氧化锌等脱硫剂脱除达到很好的脱除效果。在国内,中国石化抚顺石油化工研究院(FRIPP)针对我国FCC汽油的不同特点,开发出了OCT-M、FRS和催化裂化(FCC)汽油加氢脱硫/降烯烃技术并在国内石化企业得到成功应用;还开发了FH-DS柴油深度加氢脱硫催化剂,成功应用于福建炼油化工有限公司柴油加氢装置[1,2],此外洛阳石油化工工程公司工程研究院开发出催化裂化汽油加氢脱硫及芳构化工气技术Hydro-GAP[3]。但加氢脱硫技术存在设备投资大,需要大量氢等局限,对于一些没有氢气或氢气资源紧张的中小型炼油企业而言,投资成本太大,转而寻求非加氢脱硫技术。 2 生物脱硫技术 加氢脱硫法对化石燃料中含有的典型有机硫化合物—二笨并噻吩(DBT)及其衍生物无能为力。许多研究人员认为生物脱硫技术是化石燃料精度技术的替代或补充,可以运用需氧或厌氧细菌来完成微生物脱硫工艺过程。生物催化的操作温度比较温和,大多数条件下都可以实现,具有很高的选择性,可降低能耗,减少排放物,不产生杂质副产物。林军章等从土壤中分离纯化得到能高效降解二笨并噻吩的高效菌,鉴定为红球菌[4]。在一定的发酵条件下对抚顺石油二厂重油催化裂化柴油和南油催化裂化柴油中硫的脱除率分别达到24.5%和31.19%。国外,Ohshiro T等也从Bacillus subtilis WU-S2B的野生型及其重组菌株中分离纯化出具有脱DBT活性的酶[5]。 3沸石脱硫 对于氢脱硫工艺难脱除的含硫芳香族单酚和噻吩衍生物来说,一种新脱除方法是使用吸收操作,在常温常压下利用含Cu+和Ag+沸石Y从工业燃料油中有选择性地脱除硫化物。经此处理的工业柴油总硫含量可由430×10-6降低至0.2×10-6。脱除机理是亚铜Cu+或银阳离子Ag+通过π轨道络合有选择性地吸附噻吩物,研究表明该类物质比笨(笨是针对噻吩硫化物所使用的典型芳香族脱硫剂)对噻吩有更强的吸附力[9]。 但就以上几种石油脱硫技术而言,虽然加氢脱硫在大企业应用十分广泛,但随着氢气原料价格的大幅上涨,以及其设备的昂贵,其在世界范围内广泛应用的可能性并不大。我个人觉得倒是生物脱硫技术有很大的应用前景,虽然现在还没有实际应用的生物脱硫的工业装置,但我就了解,在中石化中石油的一些大型综合炼油厂,BDS已经可以和已有的HDS装置有机结合,很大限度地减少了氢气的生产费用,并改善了装置的操作。而且由于其相对较低的价格,它可以有效的以较低的价格满足日益严格的环保要求。我相信,一旦菌种寿命这个生

相关文档
最新文档