精选高考物理易错题专题复习法拉第电磁感应定律及详细答案

精选高考物理易错题专题复习法拉第电磁感应定律及详细答案
精选高考物理易错题专题复习法拉第电磁感应定律及详细答案

一、法拉第电磁感应定律

1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求:

(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00

mB S

BLt

【解析】 【详解】

(1)由法拉第电磁感应定律得 :

010

B S

BS E t t t ?Φ?=

==?? 所以此时回路中的电流为:

()

1

00B S E I R r R r t =

=++ 根据右手螺旋定则知电流方向为a 到b.

因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:

()

00==BB SL

F F BIL R t r =

+安

由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:

2E BLv =

由题意知:

12E E =

所以联立解得:

00

B

S

v BLt =

所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:

00

0mB S

I mv BLt =-=

答:(1)0~t 0时间内导体棒ab 所受水平外力为()

00=

BB SL

t F R r +,方向水平向左.

(2)t 0时刻给导体棒的瞬时冲量的大小

00

mB S

BLt

2.如图甲所示,一个圆形线圈的匝数n =100,线圈面积S =200cm 2,线圈的电阻r =1Ω,线圈外接一个阻值R =4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求:

(1)线圈中的感应电流的大小和方向; (2)电阻R 两端电压及消耗的功率; (3)前4s 内通过R 的电荷量。

【答案】(1)0﹣4s 内,线圈中的感应电流的大小为0.02A ,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A ,方向沿顺时针方向;(2)0﹣4s 内,R 两端的电压是0.08V ;4﹣6s 内,R 两端的电压是0.32V ,R 消耗的总功率为0.0272W ;(3)前4s 内通过R 的电荷量是8×10﹣2C 。 【解析】 【详解】

(1)0﹣4s 内,由法拉第电磁感应定律有:

线圈中的感应电流大小为:

由楞次定律知感应电流方向沿逆时针方向。 4﹣6s 内,由法拉第电磁感应定律有:

线圈中的感应电流大小为:,方向沿顺时针方向。

(2)0﹣4s 内,R 两端的电压为:

消耗的功率为:

4﹣6s内,R两端的电压为:

消耗的功率为:

故R消耗的总功率为:

(3)前4s内通过R的电荷量为:

3.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:

(1)金属棒匀速运动的速度大小;

(2)金属棒与金属导轨间的动摩擦因数μ;

(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。

【答案】(1);(2);(3)mgL2。

【解析】

【分析】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;

(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;

(3)根据功能关系结合焦耳定律求解。

【详解】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,

由于

解得:;

(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区

域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;

根据平衡条件可得:mg=μF A,

通过导体棒的电流I′=,则F A=BI′L1,

解得μ=;

(3)金属棒经过efgh区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;

根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W克=mgL2,

则Q总=mgL2,

定值电阻R上产生的焦耳热Q R=Q总=mgL2。

【点睛】

对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

4.如图所示,两根相距为L的光滑平行金属导轨CD、EF固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R的定值电阻,将质量为m、电阻可忽略不计的金属棒MN垂直放置在导轨上,可以认为MN棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v向右运动过程中,假设磁感应强度大小为B且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.

(1)请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;

(2)在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN中的感应电动势E.

(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.

【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】

(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量?Φ ,再由法拉第电磁感应定律求得E 的表达式;

(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义

W

E q

=

计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】

(1)如图所示,在一小段时间?t 内,金属棒MN 的位移 x v t ?=?

这个过程中线框的面积的变化量S L x Lv t ?=?=? 穿过闭合电路的磁通量的变化量

B S BLv t ?Φ=?=?

根据法拉第电磁感应定律 E t

=? 解得 E BLv =

(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力

1v f e B =,f 1即非静电力

在f 的作用下,电子从N 移动到M 的过程中,非静电力做功

v W e BL =

根据电动势定义 W E q

= 解得 v E BL =

(3)自由电荷受洛伦兹力如图所示.

设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .

如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =?=v 垂直棒方向的洛伦兹力2f quB =,做负功

22ΔΔW f v t quBv t =-?=-

所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.

1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电

动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】

本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.

5.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)

(1)求导体棒下滑的最大速度;

(2)求当速度达到5m/s 时导体棒的加速度;

(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).

【答案】(1)18.75m/s (2)a=4.4m/s 2

(32

22mgs mv Rt

-

【解析】

【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;

解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I

R R

θ==, 解得: 222sin 18.75cos mgR v B L θ

θ

=

=;

(2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R

θ

=

=, 0.2F BIL N ==, 24.4/a m s =;

(3)根据能量守恒有:22012

mgs mv I Rt =

+ , 解得: 2

02mgs mv

I Rt

-=

6.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求

(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .

【答案】(1)2020n B r E t π=(2)2

0120

3n B t r q Rt π=

【解析】 【详解】

(1)由法拉第电磁感应定律E n t

φ

?=?有2020n B r B E n S t t π?==? ① (2)由题意可知总电阻 R 总=R +2R =3 R ②

由闭合电路的欧姆定律有电阻R 1中的电流E

I R =

③ 0~t 1时间内通过电阻R1的电荷量1q It = ④

由①②③④式得2

01203n B t r q Rt π=

7.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

(1)对导体棒ab 施加水平向右的力,使其从图示位置开始运动并穿过n 个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R 的电荷量q 。

(2)对导体棒ab 施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运动距离为时做匀速运动,求棒通过磁场区1所用的时间t 。

(3)对导体棒ab 施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab 进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab 保持该匀速运动穿过整个磁场区,求棒ab 通过第i 磁场区时的水平拉力Fi 和棒ab 通过整个磁场区过程中回路产生的电热Q 。

【答案】⑴;⑵;⑶

【解析】

试题分析:⑴电路中产生的感应电动势。通过电阻的电荷量。

导体棒穿过1区过程

。解得

(2)棒匀速运动的速度为v ,则

设棒在前x0/2距离运动的时间为t1,则 由动量定律:F0 t 1-BqL=mv ;解得:

设棒在后x0/2匀速运动的时间为t2,则

所以棒通过区域1所用的总时间:

(3)进入1区时拉力为,速度,则有

解得;

。进入i 区时的拉力

导体棒以后通过每区都以速度做匀速运动,由功能关系有

解得

考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化

8.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的位置由静止释放,金属棒恰好能运动到NQ 边界处.

(1)刚进入磁场时回路的电流强度i 0;

(2)棒从MP 运动到NQ 所用的时间为t ,求导轨MN 、PQ 的长度s ;

(3)棒到达NQ 后,施加一外力使棒以恒定的加速度a 继续向右运动,求此后回路中电功率的最大值p max .

【答案】06(23)B gh

i r

=+;023(2)m gh umgt r

S ++=();22max 4(23)P r =+ 【解析】 【详解】

解:(1)金属棒从光滑绝缘曲面向下运动,机械能守恒,设刚进入MP 边界时,速度大小为

0v ,则:2

012

mgh mv =

解得:0v 2gh =

刚进入磁场时产生的感应电动势:10e Bdv =

导轨宽度:d =

回路电阻:(2R Lr =+

联立可得:0i =

(2)设长度为S ,从MP 到NQ 过程中的任一时刻,速度为i v ,在此后无穷小的t ?时间内,

根据动量定理:22()i

i B d v umg t m v R

∑+?=∑?

22

i t umg t m v +∑?=∑?

2

i i v t umg t m v ?+∑?=∑?

2

00umgt mv +=

得:S =

(3)金属棒匀加速运动,v at =

切割磁感线的有效长度为:0

2

1'2cos60)tan 602

l L at =?-?( 产生感应电动势:E Bl v '=

221

2(cos60)tan 60()2

E B L at at L at t =??-??=-

回路的瞬时电阻:

202

20

121[2(cos60)tan 60(cos60)(2()2cos602

R r L at L at r L at =?-+?-=+- 功率:

22222222222422

2

)()]24E L L P at Lt a t R a a ===-+=--+ 金属棒运动到D 点,所需的时间设为t ',则有: 211

22

L at '=

解得:t '=

t t '=

<时, 22max P =

9.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接

有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.

(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22

mR

t B L =停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;

(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.

【答案】(1)22B L v

f R

=;(2)22

mvR x B L = 2Q mv =;(3)丙图正确 【解析】 【详解】

(1)根据右手定则,感应电流方向a 至b

依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A

又有F A =BI 1L ,1BLv

I R

=

联立解得:22B L v

f R

=

(2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-

又有F BIL =,

BLv

I R

=,x vt = 联立得:22mvR

x B L

=

根据动能定理有:()2

1022

A fx W m v --=- 根据功能关系有:Q =W A

得:Q=mv2

(3)丙图正确

当磁场速度小于v时,棒ab静止不动;

当磁场速度大于v时,E=BLΔv,棒ab的加速度从零开始增加,a棒

10.如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L=0.4m,上端接有电阻R=0.3Ω,虚线OO′下方是垂直于导轨平面的匀强磁场,磁感强度B=0.5T。现将质量

m=0.05kg、电阻r=0.1Ω的金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v-t图像如图乙所示,0-1s内的v-t图像为过原点的直线,2s后的v-t图像为平行于t轴的横线,不计空气阻力,g取10m/s2,求:

(1)金属杆ab刚进入磁场时感应电流的大小;

(2)已知金属杆ab在t=2s时在磁场中下落了h=6.65m,则杆从静止下落2s的过程中电阻R 产生的热量是多少?

【答案】(1)I1=5A (2)Q R=3.9J

【解析】

【分析】

本题首先通过对图像的分析,得到金属杆刚开始做匀加速直线运动,可以利用运动学公式与闭合电路的相关知识求解,其次抓住图中匀速可以列出平衡式子,对于非匀变速可以从能量角度列示求解。

【详解】

(1)由图乙可知,t=1s时,金属杆进入磁场

v1=gt E1=BLv1

联立以上各式,代入数据得 I1=5A

(2)由第1问,v1=10m/s,2s后金属杆匀速运动,由:mg=BI2L

E2 = BLv2,代入数据得:v2=5m/s

金属杆下落过程有:

代入数据得Q R =3.9J 【点睛】

本题强化对图像的认识,图像中两段运动比较特殊,一段是匀加速,一段是匀速,这个是解题的突破口,可以用运动学公式结合电路相关公式求解问题。对于非匀变速突出从能量角度找突破口列示求解。

11.如图甲所示,水平放置的电阻不计的光滑平行金属导轨相距L=0.5m ,左端连接R=0.4Ω的电阻,右端紧靠在绝缘墙壁边,导轨间虚线右边与墙壁之间的区域内存在方向垂直导轨平面的磁场,虚线与墙壁间的距离为s=10m ,磁感应强度B 随时间t 变化的图象如图乙所示。一电阻r=0.1Ω、质量为m=0.5kg 的金属棒ab 垂直导轨放置于距离磁场左边界d= 2.5m 处,在t=0时刻金属棒受水平向右的大小F=2.5N 的恒力作用由静止开始运动,棒与导轨始终接触良好,棒滑至墙壁边后就保持静止不动。求:

(1)棒进入磁场时受到的安培力F ; (2) 在0~4s 时间内通过电阻R 的电荷量q ; (3)在0~5s 时间内金属棒ab 产生的焦耳热Q 。 【答案】(1) =2.5F N 安 (2) 10q c = (3)15Q J = 【解析】(1)棒进入磁场之前对ab 受力分析由牛顿第二定律得25m/s F

a m

== 由匀变速直线位移与时间关系2112

d at = 则11s t =

由匀变速直线运动速度与时间关系得15m/s v at ==

金属棒受到的安培力22= 2.5N B L v

F BIL R

==安 (2)由上知,棒进人磁场时=F F 安,则金属棒作匀速运动,匀速运动时间22s s

t v

== 3~4s 棒在绝缘墙壁处静止不动

则在0~4s 时间内通过电阻R 的电量2210C +BLv

q It t R r

==

= (3)由上知在金属棒在匀强磁场中匀速运动过程中产生的2

125J Q I rt ==

4~5s 由楞次定律得感应电流方向为顺时针,由左手定则知金属棒受到的安培力水平向右,则金属棒仍在绝缘墙壁处静止不动, 由法拉第电磁感应定律得5V BLs

E t t

???=

==?? 焦耳热2

2

23310J E Q I rt rt R r ??

=== ?+?

'?

在0~5s 时间内金属棒ab 产生的焦耳热1215J Q Q Q =+=

【点睛】本题根据牛顿第二定律和运动学公式结合分析棒的运动情况,关键是求解安培力.当棒静止后磁场均匀变化,回路中产生恒定电流,由焦耳定律求解热量.

12.如图所示,一无限长的光滑金属平行导轨置于匀强磁场B 中,磁场方向垂直导轨平面,导轨平面竖直且与地面绝缘,导轨上M 、N 间接一电阻R ,P 、Q 端接一对沿水平方向的平行金属板,导体棒ab 置于导轨上,其电阻为3R ,导轨电阻不计,棒长为L ,平行金属板间距为d .今导体棒通过定滑轮在一物块拉动下开始运动,稳定后棒的速度为v ,不计一切摩擦阻力.此时有一带电量为q 的液滴恰能在两板间做半径为r 的匀速圆周运动,且速率也为v .求: (1)速度v 的大小; (2)物块的质量m .

【答案】(1)gdr

L

222B l dLr

R g

【解析】 【详解】

(1)设平行金属板间电压为U .液滴在平行金属板间做匀速圆周运动,重力与电场力必定平衡,则有:

U

q

mg d

= 由2

v qvB m r

=

得mv r qB

=

联立解得gdrB

U v

=

则棒产生的感应电动势为: ·(3)4U gdrB B R R R v

=+= 由E BLv =棒, 得 4gdr

v vL

=

棒 (2)棒中电流为:U gdrB I R vR

=

= ab 棒匀速运动,外力与安培力平衡,则有 2

gdrLB F BIL vR

==

而外力等于物块的重力,即为 2

gdrLB mg vR

=

解得2

drLB m vR

=

13.如图所示,两根互相平行的金属导轨MN 、PQ 水平放置,相距d=1m 、且足够长、不计电阻。AC 、BD 区域光滑,其它区域粗糙且动摩擦因数μ=0.2,并在AB 的左侧和CD 的右侧存在着竖直向下的匀强磁场,磁感应强度B=2T 。在导轨中央放置着两根质量均为m=1kg ,电阻均为R=2Ω的金属棒a 、b ,用一锁定装置将一弹簧压缩在金属棒a 、b 之间(弹簧与a 、b 不栓连),此时弹簧具有的弹性势能E=9J 。现解除锁定,当弹簧恢复原长时,a 、b 棒刚好进入磁场,且b 棒向右运动x=0.8m 后停止,g 取10m/s 2,求:

(1)a 、b 棒刚进入磁场时的速度大小; (2)金属棒b 刚进入磁场时的加速度大小 (3)整个运动过程中电路中产生的焦耳热。 【答案】(1)3m/s (2)8m/s 2(3)5.8J 【解析】 【分析】

对ab 系统,所受的合外力为零,则动量守恒,根据动量守恒定律和能量关系列式求解速度;(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,求解感应电流,根据牛顿第二定律求解b 刚进入磁场时的加速度;(3)由能量守恒求解产生的热量. 【详解】

(1)对ab 系统,由动量守恒:0=mv a -mv b 由能量关系:221122

P a b E mv mv =+ 解得v a =v b =3m/s

(2)当ab棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,则有:

E a=E b=Bdv a=6V又:

2

3

2

a

E

I A

R

==

对b,由牛顿第二定律:BId+μmg=ma b

解得a b=8m/s2

(3)由动量守恒可知,ab棒速率时刻相同,即两者移动相同距离后停止,则对系统,由能量守恒:E P=2μmgx+Q

解得Q=5.8J

【点睛】

此题是力、电磁综合题目,关键是分析两棒的受力情况和运动情况,运用动量守恒定律和能量守恒关系列式求解.

14.如图甲所示,平行金属导轨MN、PQ放置于同一水平面内,导轨电阻不计,两导轨间距d=10cm,导体棒ab、cd放在导轨上,并与导轨垂直,每根棒在导轨间的部分电阻均为

R=1.0Ω.用长为l=20cm的绝缘丝线将两棒系住,整个装置处在匀强磁场中.t=0时刻,磁场方向竖直向下,丝线刚好处于未被拉伸的自然状态,此后磁感应强度B随时间t的变化规律如图乙所示.不计感应电流磁场的影响,整个过程,丝线未被拉断.求:

(1)0~2.0s时间内电路中感应电流的大小与方向;

(2)t=1.0s时刻丝线的拉力大小.

甲乙

【答案】(1)A a→c→d→b→a (2)N

【解析】

【分析】

(1) 根据法拉第电磁感应定律求出感应电动势,从而求出感应电流;

(2)对导体棒进行受力分析,在水平方向上受拉力和安培力,根据F=BIL求出安培力的大小,从而求出拉力的大小。

【详解】

(1) 从图象可知,

故电路中感应电流的大小为0.001A,根据楞次定律可知,方向是acdba;

(2) 导体棒在水平方向上受拉力和安培力平衡

T=F A=BIL=0.1×0.001×0.1N=1×10-5N.

故t=1.0s 的时刻丝线的拉力大小1×10-5N 。 【点睛】

解决本题的关键掌握法拉第电磁感应定律

以及安培力的大小公式F=BIL 。

15.如图甲所示的螺线管,匝数n =1500匝,横截面积S =20cm 2,方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化。则

(1)2s 内穿过线圈的磁通量的变化量是多少? (2)磁通量的变化率多大? (3)线圈中感应电动势大小为多少?

【答案】(1)8×10-3Wb (2)4×10-3Wb/s (3)6.0V 【解析】 【详解】

(1)磁通量的变化量是由磁感应强度的变化引起的, 则11B S Φ=,22B S Φ=,21?Φ=Φ-Φ。

43(62)2010Wb 810Wb BS --?Φ?=-??=?=

(2)磁通量的变化率为:

33810Wb/s 410Wb/s 2

t --?Φ?==?? (3)根据法拉第电磁感应定律得感应电动势的大小:

31500410V 6.0V E n

t

-==??=?Φ

? 答:(1)2s 内穿过线圈的磁通量的变化量8×

10-3Wb (2)磁通量的变化率为4×

10-3Wb/s (3)线圈中感应电动势大小为6.0V

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

高考物理最新电磁学知识点之电磁感应易错题汇编含答案(2)

高考物理最新电磁学知识点之电磁感应易错题汇编含答案(2) 一、选择题 1.目前,我国正在大力推行ETC系统,ETC(ElectronicTallCollection)是全自动电子收费系统,车辆通过收费站时无须停车,这种收费系统每车收费耗时不到两秒,其收费通道的通行能力是人工收费通道的5至10倍,如图甲所示,在收费站自动栏杆前,后的地面各自铺设完全相同的传感器线圈A、B,两线圈各自接入相同的电路,如图乙所示,电路a、b端与电压有效值恒定的交变电源连接,回路中流过交变电流,当汽车接近或远离线圈时,线圈的自感系数发生变化,线圈对交变电流的阻碍作用发生变化,使得定值电阻R的c、d两端电压就会有所变化,这一变化的电压输入控制系统,控制系统就能做出抬杆或落杆的动作,下列说法正确的是() A.汽车接近线圈A时,c、d两端电压升高 B.汽车离开线圈A时,c、d两端电压升高 C.汽车接近线圈B时,c、d两端电压升高 D.汽车离开线圈B时,c、d两端电压降低 2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力所做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则( ) A.W1W2,q1=q2D.W1>W2,q1>q2 3.如图所示,电源的电动势为E,内阻为r不可忽略.A、B是两个相同的小灯泡,L是一个自感系数较大的线圈.关于这个电路的说法中正确的是 A.闭合开关,A灯立刻亮,而后逐渐变暗,最后亮度稳定 B.闭合开关,B灯立刻亮,而后逐渐变暗,最后亮度稳定 C.开关由闭合至断开,在断开瞬间,A灯闪亮一下再熄灭

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

高考物理电磁学知识点之电磁感应易错题汇编含答案

高考物理电磁学知识点之电磁感应易错题汇编含答案 一、选择题 1.如图所示的区域内有垂直于纸面的匀强磁场,磁感应强度为B.电阻为R、半径为L、圆心角为45°的扇形闭合导线框绕垂直于纸面的O轴以角速度ω匀速转动(O轴位于磁场边界).则线框内产生的感应电流的有效值为 A. 2 2 BL R ω B. 2 2BLωC . 2 2BLωD . 2 4 BL R ω 2.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。A和B是两个完全相同的小灯泡。下列说法正确的是() A.接通开关S瞬间,A灯先亮,B灯不亮 B.接通开关S后,B灯慢慢变亮 C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下 D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下 3.如图所示,把金属圆环在纸面内拉出磁场,下列叙述正确的是() A.将金属圆环向左拉出磁场时,感应电流方向为逆时针 B.不管沿什么方向将金属圆环拉出磁场时,感应电流方向都是顺时针 C.将金属圆环向右匀速拉出磁场时,磁通量变化率不变 D.将金属圆环向右加速拉出磁场时,受到向右的安培力 4.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。A中通入电流i(俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()

A . B . C . D . 5.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在0t =时刻闭合开关S ,经过一段时间后,在1t t =时刻断开S ,下列表示灯D 中的电流(规定电流方向A B →为正)随时间t 变化的图像中,正确的是( ) A . B . C . D . 6.如图所示,abcd 是边长为L ,每边电阻均相同的正方形导体框,今维持线框以恒定的速度v 沿x 轴运动,并穿过倾角为45°的三角形匀强磁场区域,磁场的磁感应强度为B ,方向垂直纸面向里。线框b 点在O 位置时开始计时,则在2L t v = 时间内,a 、b 两点的电势差U 随时间t 的变化图线为( )

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

《法拉第电磁感应定律》教学案例

法拉第电磁感应定律教学设计 鹿城中学理化生教研组田存群 课程背景: “法拉第电磁感应定律”是高二物理选修(3-2)中的第四章第4节内容,是电磁学的核心内容。从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。 鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,使同学们利用已掌握的旧知识,来理解所要学习的新概念。力求通过明显的实验现象诱发同学们真正的主动起来,从而激发兴趣,变被动记忆为主动认识。 课程详述: 一.教学目标: 1.知道感应电动势,能区分磁通量的变化Δφ和磁通量的变化率Δφ/Δt。 通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。 2.通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律.使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用。 3.通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。 二.教学重点: 法拉第电磁感应定律的建立过程及规律理解。 三.教学难点: 1.磁通量、磁通量的变化量、磁通量的变化率三者的区别。 2.理解E=nΔφ/Δt是普遍意义的公式,而E=BLv是特殊情况下导线在切割磁感线情况下的计算公式。 四.教具:

高考物理电磁学知识点之电磁感应易错题汇编附解析(4)

高考物理电磁学知识点之电磁感应易错题汇编附解析(4) 一、选择题 1.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a、b两点间电势差绝对值最大的是() A.B. C.D. 2.如图所示,有一正方形闭合线圈,在足够大的匀强磁场中运动。下列四个图中能产生感应电流的是 A.B. C.D. 3.如图所示,L1和L2为直流电阻可忽略的电感线圈。A1、A2和A3分别为三个相同的小灯泡。下列说法正确的是() A.图甲中,闭合S1瞬间和断开S1瞬间,通过A1的电流方向不同 B.图甲中,闭合S1,随着电路稳定后,A1会再次亮起 C.图乙中,断开S2瞬间,灯A3立刻熄灭 D.图乙中,断开S2瞬间,灯A2立刻熄灭 4.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力所做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则( )

A .W 1W 2,q 1=q 2 D .W 1>W 2,q 1>q 2 5.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是 A .磁感应强度 B 竖直向上且正增强,t φ?=dmg nq B .磁感应强度B 竖直向下且正增强,t φ?=dmg nq C .磁感应强度B 竖直向上且正减弱,t φ?=()dmg R r nqR + D .磁感应强度B 竖直向下且正减弱, t φ?=()dmgr R r nqR + 6.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a 、b ,垂直放置在磁感应强度为B 的匀强磁场中,a 的边长为L ,b 的边长为2L 。当磁感应强度均匀增加时,不考虑线圈a 、b 之间的影响,下列说法正确的是( ) A .线圈a 、b 中感应电动势之比为E 1∶E 2=1∶2 B .线圈a 、b 中的感应电流之比为I 1∶I 2=1∶2 C .相同时间内,线圈a 、b 中产生的焦耳热之比Q 1∶Q 2=1∶4 D .相同时间内,通过线圈a 、b 某截面的电荷量之比q 1∶q 2=1∶4 7.如图所示,把金属圆环在纸面内拉出磁场,下列叙述正确的是( )

高中物理易错题精选 电磁感应错题集

第十一章电磁感应错题集 一、主要内容:电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 二、基本方法:要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 三、错解分析:错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1 长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[] 错解:t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。 错解原因:磁通量Φ=BS⊥BS(S⊥是线圈垂直磁场的面积),磁通量的变化ΔΦ=Φ2-Φ1,两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。 分析解答:实际上,线圈在匀强磁场中绕垂直于磁场的轴转动时,产生交变电动势e=εm cosωt=Babωcosωt。当t=0时,cosωt=1,虽然磁通量 可知当电动势为最大值时,对应的磁通量的变化率也最大,即 评析:弄清概念之间的联系和区别,是正确解题的前提条件。在电磁感应中要弄清 磁通量Φ、磁通量的变化ΔΦ以及磁通量的变化率ΔΦ/Δt之间的联系和区别。 例2 在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向 下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的 哪一端是正极?

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

历年高考物理易错题汇编-电磁感应现象的两类情况练习题附答案解析

历年高考物理易错题汇编-电磁感应现象的两类情况练习题附答案解析 一、电磁感应现象的两类情况 1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=?,间距为d =0.2m ,且电阻不计。导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求: (1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。 【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】 (1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。 由平衡条件 sin mg BId θ=① 导体棒切割磁感线产生的电动势为 E =Bdv ② 由闭合电路欧姆定律得 E I R r = +③ 联立①②③得 v =20m/s ④ 由欧姆定律得 U =IR ⑤ 联立①⑤得 U =7V ⑥ (2)由电流定义式得 Q It =⑦ 由法拉第电磁感应定律得 E t ?Φ = ?⑧

B ld ?Φ=?⑨ 由欧姆定律得 E I R r = +⑩ 由⑦⑧⑨⑩得 Q =0.02C ? 2.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v =

高考物理电磁学知识点之电磁感应易错题汇编附答案解析

高考物理电磁学知识点之电磁感应易错题汇编附答案解析 一、选择题 1.在水平桌面上,一个圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度 B1随时间t的变化关系如图甲所示,0~1 s内磁场方向垂直线框平面向下,圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,且与导轨接触良好,导体棒处于另一匀强磁场B2中,如图乙所示,导体棒始终保持静止,则其所受的摩擦力F f随时间变化的图像是下图中的(设向右的方向为摩擦力的正方向) ( ) A.B. C.D. 2.如图所示,A和B是电阻为R的电灯,L是自感系数较大的线圈,当S1闭合、S2断开且电路稳定时,A、B亮度相同,再闭合S2,待电路稳定后将S1断开,下列说法中,正确的是() A.B灯逐渐熄灭 B.A灯将比原来更亮一些后再熄灭 C.有电流通过B灯,方向为c→d D.有电流通过A灯,方向为b→a 3.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力所做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则( )

A.W1W2,q1=q2D.W1>W2,q1>q2 4.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.4m,电阻不计。导轨所在平面与磁感应强度B为0.5T的匀强磁场垂直。质量m为6.0×10-3kg电阻为1Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器R2和阻值为3.0Ω的电阻R1。当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W。则() A.ab稳定状态时的速率v=0.4m/s B.ab稳定状态时的速率v=0.6m/s C.滑动变阻器接入电路部分的阻值R2=4.0Ω D.滑动变阻器接入电路部分的阻值R2=6.0Ω 5.如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下。一飞机在北半球的上空以速度v水平飞行,飞机机身长为a,翼展为b;该空间地磁场磁感应强度的水平分量为B1,竖直分量为B2;驾驶员左侧机翼的端点用A表示,右侧机翼的端点用B表示,用E表示飞机产生的感应电动势,则 A.E=B2vb,且A点电势高于B点电势 B.E=B1vb,且A点电势高于B点电势 C.E=B2vb,且A点电势低于B点电势 D.E=B1vb,且A点电势低于B点电势 6.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。A中通入电流i(俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

法拉第的电磁感应实验

法拉第的电磁感应实验 作者:不详日期:2006-11-2 来源:本站点击: 我们现在生活在一个电气时代里:电动机在工厂里轰鸣,电车在飞驰,电灯照亮了千家万户,电视机在播放节目,电脑在运作……由于有了电,旧时代许多令人神往的幻想已变成了现实。如今电气业给我们创造的这一切福利和文明,都起源于1831年10月17日法拉第的一次具有划时代意义和意外的电磁实验成功。由于这次成功,法拉第制造了世界上第一台电磁感应发电机;由于这次成功,人类制造出今天的发电机、电动机、水电站,以及一切电力站网。 法拉第(1791~1867)出生于英国伦敦一个铁匠家里。由于家庭贫困,他12岁时就到一家书店当学徒。由于经常接触图书,他发现书里有许多自己从不知道的事物,书籍简直是知识的海洋。从此以后他开始刻苦自学,认真读书,发奋要成为一个有学识的人。他不仅认真阅读电学、化学方面的书籍,而且用平日节约下来的一点钱买了几件实验仪器,按书中所说的做起实验来。 法拉第不仅向书本学习,还利用一切机会向当时著名的科学家学习,买票听他们的讲演,认真做记录。1810年春天,法拉第凑钱去听科学家塔特林讲解自然科学。他每晚都将所做的记录整理誊清。特别对法拉第人生具有重大转折意义的是,他于1812年时到英国皇家学院去听著名科学家戴维的化学讲演。正是从此开始,他踏上了献身科学的道路。 他大胆地给戴维先生写了封信,而且将听讲的记录全寄去了。他在信中说明了自己对科学的热爱,并且渴望能在皇家学会得到一份工作。戴维看到了他的严肃认真和对科学的热情,竟然答应了他的请求,介绍他到皇家学院当助理员,担任了戴维的实验助手。 实验室的工作为法拉第提供了优越的条件。他可以自由地利用图书馆,获得各种资料,从而可以发展各方面的知识。作为戴维的助手和随从,法拉第又获得了到欧洲大陆进行科学考察的机会。尽管在旅行中受到戴维夫人的凌辱,以及其他不公正的待遇,但法拉第借这次机会却增长了知识,结交了朋友,了解了当时各国的科学状况。

相关文档
最新文档