自适应光学波前传感技术
自适应光学概述

自适应光学系统
• 自适应光学(AO)是由大气引起的波面误差由一个可变形的镜面 进行实时校正的光学技术,是一个快速增长的多学科领域,包括物理、 化学、电子和计算机科学。AO系统用于校正(形成)一束光的波前。 历史上,该系统起源于天文学和国防,它可产生高分辨率的天文 图像;更清晰的图像产生对比度的额外增益,这对天文学家也有好处, 因为这意味着他们可以探测到其他方法无法观察到的暗淡的天体。当 天文学家在努力克服大气湍流的模糊效应时,国防承包商们却关心如 何保证他们的高功率激光器的光子可正确导向,从而击毁战略目标。 最近,由于在AO组件的精密度和简单化方面的改进,研究人员 已经利用这些系统在飞秒脉冲整形、显微镜、激光通信、视力矫正以 及视网膜成像等领域取得突破。虽然这些领域相差很大,由于不需要 的时变效应的存在,这些领域都将从自适应光学系统中受益。 通常,AO系统由3部分组成:(1)波前传感器,用于测量波前 偏移,(2)可变形镜片,可改变形状以校正高度畸变的波前,及(3) 实时控制软件,用波前传感器收集到的信息计算可变形镜片应该采用 的合适的形状,以抵消畸变的波前。 •
自适应光学控制系统的有效带宽分 析
• 自适应光学技术用在透过大气的目标成像或激光 大气传输的光学系统中,实时校正由大气湍流扰 动引起的随机波前相位畸变,提高光束质量。由 于大气湍流的变化速度较快,要求自适应光学系 统有足够高的控制带宽。目前国际上的自适应光 学系统普遍采用简单的比例积分(PI)控制器, 并且用闭环带宽作为衡量自适应光学系统对大气 湍流校正能力的主要指标。作者认为,有必要研 究自适应光学控制系统的带宽特点,分析限制控 制系统带宽的因素,并且在不加大硬件复杂性的 情况下,研究合理的高带宽控制器。
•
•
自适应光学系统的构成
自适应光学技术

自适应光学技术姜文汉中国工程院院士,中国科学院光电技术研究所,成都610209关键词 自适应光学 波前探测 波前控制 波前校正 高分辨力成像 激光核聚变 人眼视网膜动态光学波前误差是困扰光学界几百年的老问题,自适应光学技术提供了解决这一难题的途径。
自适应光学通过对动态波前误差的实时探测 控制 校正,使光学系统能够自动克服外界扰动,保持系统良好性能。
本文在说明自适应光学技术的基本原理后,介绍由中国科学院光电技术研究所研制的三套自适应光学系统及其使用结果:1.2m 望远镜天体目标自适应光学系统, 神光I 激光核聚变波前校正系统和人眼视网膜高分辨力成像系统。
1自适应光学 自动校正光学波前误差的技术从1608年利普赛(L i ppers hey)发明光学望远镜,1609年伽里略(G alileo)第一次用望远镜观察天体以来已经过去了近400年了,望远镜大大提高了人类观察遥远目标的能力,但是望远镜发明后不久,人们就发现大气湍流的动态干扰对光学观测有影响。
大气湍流的动态扰动会使大口径望远镜所观测到的星像不断抖动而且不断改变成像光斑的形状。
1704年牛顿(I.N e w ton)在他写的《光学》[1]一书中,就已经描述了大气湍流使像斑模糊和抖动的现象,他认为没有什么办法来克服这一现象,他说: 唯一的良方是寻找宁静的大气,云层之上的高山之巅也许能找到这样的大气 。
天文学家们以极大的努力寻找大气特别宁静的观测站址。
但即使在地球上最好的观测站,大气湍流仍然是一个制约观测分辨率的重要因素。
无论多大口径的光学望远镜通过大气进行观察时,因受限于大气湍流,其分辨力并不比0.1~0.2m的望远镜高。
从望远镜发明到20世纪50年代的350来年中,天文学家和光学家像谈论天气一样谈论大气湍流,而且还创造了Seei ng这个名词来描述大气湍流造成星像模糊和抖动的现象,但是对Seei ng的影响还是无能为力。
图1是有无波前误差时点光源成像光斑的比较。
AO系统操作指南

AO系统操作指南AO系统,即Adaptive Optics(自适应光学)系统,是一种用来对抗大气湍流所引起的光学图像失真的技术。
它被广泛应用于天文学、激光通信以及医学成像等领域。
本文将提供一个详细的AO系统操作指南,以帮助用户更好地理解和使用该系统。
1.AO系统简介AO系统主要由两部分组成:波前传感器(Wavefront Sensor)和校正系统(Correction System)。
波前传感器用于检测到来光波前的畸变,而校正系统则根据传感器的反馈信息来实时调整光学元件,以消除畸变。
2.AO系统操作前准备在使用AO系统之前,需要先进行一些准备工作。
首先,确保系统处于稳定状态,将其中涉及的光学元件进行校准和调试。
此外,还需根据实际需求配置相应的参数和设置。
3.波前传感器操作波前传感器的主要任务是检测光波的畸变情况,并将结果反馈给校正系统。
其操作主要包括以下几个步骤:3.1.对齐波前传感器在操作之前,需要保证波前传感器与光源之间的光路处于准确对齐状态。
对齐主要包括纵向对齐和横向对齐两个方向的调整。
调整完毕后,使用针孔板或其他适当的方法进行验证。
3.2.获取波前畸变信息确保波前传感器与待测对象之间的光路相通后,开始获取波前的畸变信息。
通过激发光源,记录光波前传感器上的图像,并转换为波前相位误差的信息。
3.3.反馈校正信息将波前畸变信息传输给校正系统。
通常,波前畸变信息被处理成Zernike模态系数的形式,并通过协议传输到校正系统。
4.校正系统操作校正系统的主要任务是根据波前传感器的反馈信息来进行实时的光学校正。
其操作主要包括以下几个步骤:4.1.解算校正信息校正系统接收到波前传感器传来的畸变信息后,需要进行解算。
解算的目的是根据畸变信息确定如何调整光学元件,以最小化波前畸变。
4.2.实时调整光学元件根据解算出的校正信息,实时调整光学系统中的元件。
这些元件可以是变形镜、液晶调制器或偏振转换器等,用于调整波前的形状和相位,以消除光学畸变。
自适应光学概述及光学质量评价

第3章自适应光学概述及波面的数值模拟3.1 自适应光学的发展史自适应光学的基本概念是巴布科克(H.W.Babkoc)于1953年首先提出来的。
他提出用波前传感器来探测波前畸变的信息,再用任意变形的光学器件产生可控的光学相移,来补偿波前畸变。
1956年莱顿(B.Leighton)研制了补偿天文望远镜影像运动的一阶主动光学系统。
这个系统带宽为5Hz的由电磁控制的倾斜跟踪系统,补偿像晃动,得到了当时的最佳照片。
60年代初期,微波领域出现了对电磁波进行自适应控制的技术,1964年斯科尔尼克(M.I.Skolnik)和金(D.D.King)提出了“相位共轭”原理。
目前已成为自适应光学实现的基本原理。
对于相位共轭的原理,若存在相位误差的光场可表示为1iE E eφ=其中φ是由于扰动造成的光相位起伏。
自适应光学系统的作用是在系统中产生与入射光场共轭的调制2iE E eφ-=于是,上述两个光场叠加的结果使相位误差得以补偿输出近似平面波光场。
根据光学原理,一束无像差的平面波经理想光学系统后,可以得到达衍射极限分辨率的像。
自适应光学通常只是校正相位的误差,对于远场光斑的振幅没有影响。
在某些振幅误差也较大的场合,校正效果会受到影响,但是对于大多数的应用,仅仅是校正相位误差就已经满足实际的需要了。
1972年,B.Y.Zedovich观察到填充C S的光波导产生布里渊后向散射过程中展现12出一种极为奇特的性能。
如果将这一课引起畸变的原件放在C S盒的前面,畸变12被“消除”了。
这就使非线性光学的相位共轭现象(NOPC),利用它可以自动校正光波的波前畸变。
经过持续研究,前苏联学者们在其他受激非弹性过程,如喇曼散射和瑞利散射中也发现了相位共轭波,在这一领域中做出重要贡献的有亚里夫(Yariv)和赫尔沃契(Hellwarth)等。
这样,就出现了非线性光学式自适应系统。
目前这种系统只适用于发射激光等小范围,而且当前适用的非线性介质时间常数较大,限制了它的应用范围,目前只是停留在理论研究阶段。
自适应光学仪器的设计原理

自适应光学仪器的设计原理自适应光学(Adaptive Optics, AO)是一种先进的技术,用于补偿和校正由于大气湍流或其他因素造成的波前畸变,从而提高光学系统的成像质量。
这项技术广泛应用于天文观测、医学成像、激光通信和激光武器等领域。
本文将介绍自适应光学仪器的设计原理。
1. 光学系统的工作原理光学系统主要由光源、透镜、反射镜、分束器、探测器等组成。
光学系统的工作原理是利用光源发出的光经过透镜、反射镜等光学元件的传输、聚焦、成像,最终被探测器接收并转化为电信号,以便进行图像重建或数据传输。
2. 自适应光学的基本原理自适应光学的基本原理是通过测量和补偿波前畸变,使光学系统输出的图像质量达到最优。
波前畸变是由于光学系统中的各种因素(如大气湍流、光学元件的加工误差、热变形等)导致的。
自适应光学系统通过实时测量波前畸变,然后采用特定的算法对光学系统中的元件进行调整,从而补偿波前畸变,提高成像质量。
3. 自适应光学仪器的设计要素自适应光学仪器的设计主要包括以下几个要素:(1)波前传感器:用于测量波前畸变的装置。
常用的波前传感器有夏克-哈特曼波前传感器、液晶光调制器等。
(2)控制器:根据波前传感器的测量结果,对光学系统中的元件进行调整,以补偿波前畸变。
控制器通常采用数字信号处理器(DSP)或FPGA等硬件实现。
(3)光学元件:用于校正波前畸变的装置。
常用的光学元件有变形镜、反射镜等。
(4)激光器或光源:提供稳定的光源,用于产生待测波前。
(5)图像探测器:用于接收补偿后的图像,评估成像质量。
4. 自适应光学仪器的设计流程自适应光学仪器的设计流程主要包括以下几个步骤:(1)确定光学系统的应用场景和性能指标:如视场角、分辨率、成像质量等。
(2)分析光学系统中的波前畸变来源:如大气湍流、光学元件的加工误差等。
(3)选择合适的波前传感器、控制器和光学元件。
(4)搭建实验系统,进行波前测量和补偿实验。
(5)优化系统参数,提高成像质量。
自适应光学系统中的智能变焦算法

自适应光学系统中的智能变焦算法一、自适应光学系统概述自适应光学系统是一种先进的光学技术,旨在改善光学成像质量,特别是在大气扰动、光学系统自身缺陷或动态变化环境下。
这种系统通过实时调整光学元件的形状或位置来补偿这些扰动,从而实现更清晰的图像。
自适应光学系统的核心在于其智能变焦算法,该算法能够根据实时反馈调整系统参数,以达到最优的成像效果。
1.1 自适应光学系统的基本组成自适应光学系统通常由以下几个基本部分组成:波前传感器、控制器、执行器和光学元件。
波前传感器用于检测波前畸变,控制器根据传感器的反馈信息计算出需要的调整量,执行器则负责实际调整光学元件的形状或位置。
1.2 自适应光学系统的关键技术自适应光学系统的关键技术包括波前检测技术、控制算法和执行器技术。
波前检测技术能够精确测量光学波前的畸变情况;控制算法是系统智能的核心,负责处理波前传感器的数据并计算出最优调整策略;执行器技术则涉及到如何快速且精确地调整光学元件。
二、智能变焦算法的原理与实现智能变焦算法是自适应光学系统中用于动态调整焦距以补偿各种扰动的算法。
这种算法能够根据实时的波前检测数据,自动调整光学系统参数,以实现最佳的成像效果。
2.1 智能变焦算法的基本原理智能变焦算法的基本原理是通过分析波前传感器收集的数据,确定波前畸变的程度和类型,然后计算出需要调整的焦距值。
算法需要考虑多种因素,包括系统的动态响应、调整速度和精度等。
2.2 智能变焦算法的分类智能变焦算法可以分为几种类型,包括基于模型的算法、基于数据的算法和混合算法。
基于模型的算法依赖于对光学系统的精确数学模型;基于数据的算法则利用历史数据进行学习和预测;混合算法结合了两者的优点。
2.3 智能变焦算法的实现步骤实现智能变焦算法通常包括以下几个步骤:数据采集、波前重建、算法设计、参数优化和执行器控制。
数据采集是算法的起点,波前重建是将传感器数据转换为波前畸变的数学表示;算法设计是核心过程,需要根据系统特性和要求设计出合适的控制策略;参数优化是为了提高算法的性能和稳定性;执行器控制则是将算法的输出转化为实际的光学调整。
光学测试技术中的自适应光学研究
光学测试技术中的自适应光学研究1.概述自适应光学技术是在光学仪器和设备中广泛应用的一种新型光学测试技术。
它基于光波前调节技术,将一个实时的光学系统和控制系统结合起来,能够根据任意不规则形状的光波前实现光学成像。
自适应光学技术可以用于望远镜、激光测距仪、激光核聚变实验等领域,具有丰富的物理学、光学学、信息学和计算机科学等学科背景。
下面将分别从自适应光学技术的原理、研究方法、应用领域和未来发展等方面进行阐述。
2.自适应光学技术的原理自适应光学技术最根本的原理是:通过光学元件和控制系统,实时调节光波前的相位、形状和幅度,以此减少光线传输过程中的畸变和像差,从而实现对物体高清晰度的成像。
一般来说,自适应光学技术有两个关键步骤:第一步是记录探测位于物体后面的参考光波前,第二步是对探测到的参考光波前进行分析处理,并通过反馈控制系统实时地调节薄膜形状或晶格变化来实现对物体信号的优化。
自适应光学技术最重要的创新之处在于,它可以用反馈控制系统实时调节光学系统的操作参数,以快速响应和应对随机环境的多种变化,从而实现高质量、高稳定性的光学成像。
3. 自适应光学技术的研究方法在自适应光学技术的研究中,主要有两种方法:基于单薄膜自适应光学技术和基于多薄膜自适应光学技术。
第一种方法采用单个反射或透过薄膜,将被测物体与参考光波前合并,对通过的光进行冷却处理,并加入位移测量元件,最后进行图像重建,以获得更加清晰、高分辨率的图像。
第二种方法则是同时采用多个反射和透过薄膜,形成多通道自适应光学系统,利用多薄膜间的反应耦合,进行更加精确、更加准确的光学测试。
多通道自适应光学系统需要精密调谐,利用反馈控制系统同步调整多路光线的波前形状,以最大程度地提高图像分辨率和信噪比。
4. 自适应光学技术的应用领域目前,自适应光学技术已经被广泛应用于不同的领域,如天文观测、医学成像、工业制造、环境监测、军事侦察等多个领域。
举例来说,在天文观测领域,自适应光学技术被应用于望远镜,可根据大气折射率的不断变化,及时补偿大气波前畸变,大幅提升天文观测的清晰度。
激光 自适应 光学
激光自适应光学
激光自适应光学是一种先进的光学技术,旨在根据环境条件对激
光系统进行自动调整和优化。
该技术利用传感器和反馈系统,实时检
测和分析外部光学环境的变化,以及设备本身的性能变化,并对激光
发射参数进行实时调整。
激光自适应光学技术具有许多应用领域,包括医疗、通信、材料
加工和军事等。
在医疗领域,激光自适应光学可用于眼科手术中,通
过实时调整激光束来提高激光手术的精确度和安全性。
在通信领域,
激光自适应光学可用于光纤通信中,实时调整激光信号的波长和强度,以提高通信质量和传输速度。
激光自适应光学技术的关键部件包括传感器、控制系统和调整装置。
传感器用于检测光学环境中的参数,如光强、相位和波前畸变等。
控制系统利用传感器提供的数据,对激光系统进行实时调整和控制。
调整装置可以根据控制系统的指令,实现激光束的波前调整、聚焦和
定位等。
激光自适应光学技术的优势在于其高度自动化和实时性。
通过实
时监测和调整光学系统,可以实现更精确、更稳定的激光输出。
此外,激光自适应光学技术还可以有效地抵消光学系统中出现的各种干扰和
扰动,提高设备的鲁棒性和性能。
总之,激光自适应光学技术是一种具有广泛应用前景的先进光学
技术。
随着技术的不断发展和成熟,相信它将在各个领域的光学系统
中发挥越来越重要的作用。
先进光学波前传感技术及其应用
先进光学波前传感技术及其应用Optical wavefront sensing technology and its application光学波前传感技术是指利用光学系统来检测和测量波前形状的技术。
它是光学系统控制和调整的关键技术,可以用于各种光学系统的设计、制造和测试。
Optical wavefront sensing technology refers to the technology of using optical system to detect and measure the wavefront shape. It is the key technology for optical system control and adjustment, which can be used for design, manufacturing and testing of various optical systems.光学波前传感技术可以分为两种:一种是基于激光的波前传感技术,另一种是基于普通光源的波前传感技术。
激光波前传感技术可以检测和测量激光束的波前形状,而普通光源波前传感技术可以检测和测量普通光源的波前形状。
Optical wavefront sensing technology can be divided into two types: one is based on laser wavefront sensing technology, the other is based on ordinary light source wavefront sensing technology. Laser wavefront sensing technology can detect and measure the wavefront shape of laser beam, while ordinary light source wavefront sensing technology can detect and measure the wavefront shape of ordinary light source.光学波前传感技术的应用非常广泛,可以应用于激光加工、激光投影、光学成像、光学测量、光学检测、光学通信等领域。
自适应光学
自适应光学自适应光学是20世纪50年代以来迅速发展起来的光学新技术,在高分辨率天文观测、高能激光武器、激光通讯,激光核聚变,医学等方面的应用越来越广泛。
自适应光学系统能实时探测由大气扰动、环境温度起伏、光轴抖动等因素造成的波面畸变,并通过光学校正系统实时补偿波面误差,现代地基、天基大型望远镜几乎都采用了自适应光学系统。
近年来,随着自适应光学理论与技术的发展,它已被广泛地应用于军事及民用领域,如用于光学遥感载荷多种误差源的实时校正以提高载荷的成像分辨率;用于激光通信的大气扰动补偿;用于激光可控热核聚变实验,提高靶标上的光功率密度;用于医用光学仪器,实现人眼视网膜的高分辨率成像等。
由于大气的湍流运动,大气温度的随机变化产生大气密度的随机变化,从而导致大气折射率的随机变化,这些变化的累积效应导致大气折射率的明显不均匀性,大气折射率微小变化的作用类似于处在大气中的小“透镜”,它们使传输光束出现聚焦、偏折等现象,从而导致光闪烁和光抖动等效应。
这些“透镜”的大小近似于湍流漩涡的尺度。
大气湍流对光传播的影响,最早反映在天文观测中。
湍流的影响严重地限制了大口径天文望远镜分辨率的提高。
1953年,美国天文学家巴布科克提出用实时测量波面误差并实时加以校正的方法来解决大气湍流等动态干扰的设想,如果这一过程足够快,就可以克服动态误差的影响而使光学系统能够自动适应环境变化,保持理想性能,就是自适应光学((Adaptive OpticsAO)思想的形成,但在当时还没有实现这一设想的现成技术。
本世纪60年代出现了激光,激光的高方向性和高亮度的特点推动人们去进行用强激光作为武器的研究。
与观测系统一样,激光武器系统也面临着大气干扰使能量分散的问题。
用直径4m的发射系统通过大气发射波长1um的强激光到目标上,即使没有其他误差,只有大气湍流的影响,光斑中心的能量密度只有衍射极限的千分之一,动态干扰也成了实现激光武器的一个重大技术障碍。