二极管、三极管地性能检测

二极管、三极管地性能检测
二极管、三极管地性能检测

二极管、三极管的性能检测

1.二极管性能的检测 1)普通二极管性能的检测

晶体二极管具有单向导电特性。 用万用表的欧姆挡测量二极管的正、 反向电阻,

就可以判断出二极管管脚的极性,还可以粗略地判断二极管的好坏。

用万用表欧姆挡测量二极管的正、反向电阻原理如图 4.1所示。

对于稳定电压 U Z 小于万用表欧姆挡高阻挡表内电池电压

U Z 误差越大): U R x R x nR

用万用表欧姆挡测二极管

Q,已知 U o=15V, R o=10 Q,则

2)发光二极管性能的检测

发光二极管除测量正、反向电阻外,还应进一步检查其是否发光。发光二极管

的工作电压一般在 1.6 V 左右,工作电流在 1 mA 以上时才发光。用 R X 10

k Q 挡测量正向电阻时,有些发光二极管能发光即可说明其正常。对于工 作电流较大的发光二极管亦可用

实训图 4.2所示电路进行检测。

发光二极管测试电路

3)光电(敏)二极管性能的检测

U o 的稳压二极管, 可通过测量稳压二极管的反向电阻,用下式估算出

U Z (U Z 越接近 U o ,估算出的

例如:用某万用表 2CW55 二极管,

U Z U R x

R x nR 15 70 103 3 4 70 10 10 10 R X 10 k Q 挡测一只

6.2V 实测反向电阻 Rx 为70 k

光电二极管的反向电阻随着从窗口射入光线的强弱而发生显著变化。在没有光

照时,光电二极管的正、反向电阻测量以及极性判别与普通二极管一样。

光电二极管光电特性的测量方法:用万用表R X100 k Q挡或R X1 k Q挡测它的

反向电阻时,用手电筒照射光电二极管顶端的窗口,万用表指示的电阻值应明显减小。光线越强,光电二极管的反向电阻越小,甚至只有几百Q。关掉手电筒,电阻读数应立即恢复到原来的阻值。这表明被测光电二极管是良好的。

3.三极管的管脚和类型的判别

三极管内部由两个PN结构成,因此其管脚、类型都可通过万用表的欧姆挡进行检

测。

1)基极和三极管类型的判别

首先将万用表置于R X1 k Q挡。对于普通指针式万用表,黑表笔(为万用表内

部直流电源的正极)接到某一假设的三极管“基极”管脚上,红表笔(为万用表内部直流电源的负极)先后接到另外两个管脚,如果两次测得电阻值都很大(或都很小),而且对换表笔后两个电阻值又都很小(或很大),则可确定假设的“基极”是正确的。

若以上步骤在另两个管脚上所测得电阻值一大一小,则假设的“基极”是错误的,此时,要重新假设一个管脚为“基极”,重复上述过程。基极( B )确定后,

用黑表笔接基极,红表笔接另外两极,如果测得电阻值都很小,则三极管为NPN

型,反之为PNP型。

2)集电极(C)和发射极(E)的判别

以NPN型三极管为例,在基极以外的两个电极中任意假设一个为

“集电极”,并在已确定的基极和假设的“集电极”中接入一个大电

黑表笔阻R ,如实训图4.3 所示(实测中也可用大拇指和食指接触两极,用人体电阻替代电阻R)。红表笔^3-

三极管电极和发射极的判别方法

(一)普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN 结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。

1 ?极性的判别将万用表置于R X100档或R X1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。

2 ?单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1k Q左右,

反向电阻值为300左右。硅材料二极管的电阻值为 5 k Q左右,反向电阻值为g(无穷大)。

正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。若测得二极管的正、反向电阻值均接近0 或阻值较小,则说明该二极管

内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。

3 ?反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测

量。其方法是:测量二极管时,应将测试表的“ NPN/PNP ”选择键设置为NPN 状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“ e”插孔,然后按下“ V

(BR)”键,测试表即可指示出二极管的反向击穿电压值。也可用兆欧表和万用表来测

量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极

与兆欧表的负极相连,同时用万用表 (置于合适的直流电压档)监测二极管两端的电压。如

图4-71所示,摇动兆欧表手柄(应由慢逐渐加快) ,待二极管两端电压稳定而不再上升时,

此电压值即是二极管的反向击穿电压。

(二)稳压二极管的检测

1 ?正、负电极的判别 从外形上看,金属封装稳压二极管管体

的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管 体上印有彩色标记

的一端为负极,另一端为正极。对标志不清楚 的稳压二极管,也可以用万用表判别

其极性,测量的方法与普通 二极管相同,即用万用表 R X 1k 档,将两表笔分别接

稳压二极管 的两个电极,测出一个结果后,再对调两表笔进行测量。在两次 测量

结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,

的负极。

若测得稳压二极管的正、 反向电阻均很小或均为无穷大, 则说明该二极管已击 穿或开路损坏。 2 ?稳压值的测量 用0?30V 连续可调直流电源, 对于13V 以下的稳压二极

管,可将稳压电源的输出电压调至 15V ,将

电源正极串接1只1.5k Q 限流电阻后与被测稳压二极管的负 极相连接,电源负极与稳压二极管的正极相接, 再用万

用表测

量稳压二极管两端的电压值, 所测的读数即为稳压二极管的稳 压值。若稳压二

极管的稳压值高于 15V ,则应将稳压电源调

至20V 以上。也可用低于1000V 的兆欧表为稳压二极管提供 测试电源。其方

法是:将兆欧表正端与稳压二极管的负极相接, 兆欧表的负端与稳压二极管的正

极相接后, 按规定匀速摇动兆 欧表手

柄, 同时用万用表监测稳压二极管两端电压值 (万用表的电压档应视稳定电压

值的大 小而定),待万用表的指示电压指示稳定时,此电压值便是稳压二极管的红表笔接的是稳压二极管

1-JUJ

图4-72

压值的测就方拡 町方袪之一bi 力捲七二

稳定电压值。若测量稳压二极管的稳定电压值忽高忽低,则说明该二极管的性不稳定。图4-72 是稳压二极管稳压值的测量方法。

(三)双向触发二极管的检测

1 ?正、反向电阻值的测量用万用表R X1k或R X IOk档,测量双向触发二极管正、反

向电阻值。正常时其正、反向电阻值均应为无穷大。若测得正、反向电阻值均很小或为0,

则说明该二极管已击穿损坏。

2 .测量转折电压测量双向触发二极管的转折电压有三种方法。

第一种方法是:将兆欧表的正极(E)和负极(L)分别接双向触发二极管的两端,用兆

欧表提供击穿电压,同时用万用表的直流电压档测量出电压值,将双向触发二极管的两极对调后再测量一次。比较一下两次测量的电压值的偏差(一般为3?6V )。此偏差值越小,说

明此二极管的性能越好。

第二种方法是:先用万用表测出市电电压U,然后将被测双向触发二极管串入万用表的交

流电压测量回路后,接入市电电压,读出电压值U1 ,再将双向触发二极管的两极对调连接后并读出电压值U2。若U1与U2的电压值相同,但与U的电压值不同,则说明该双向触发二极管的导通性能对称性良好。若U1 与U2 的电压值相差较大时,则说明该双向触发二极管的导通性不对称。若U1 、U2 电压值均与市电U 相同时,则说明该双向触发二极管内部已短路损坏。若U1、U2的电压值均为0V ,则说明该双向触发二极管内部已开路损坏。

第三种方法是:用 0~50V 连续可调直流电源,将

电源的正 极串接1只20k Q 电阻器后与双 向触发二极

管的一端相接, 将电 源的负极串接万用表电流档(将

其置于1mA 档)后与双向触发二极管的另一端相接。逐渐增加电源电压,当电流表指针有

较明显摆动时(几十微安以上),则说明此双向触发二

极管已导通,此时电源的电压值即是 双向触发二极管的转折电压。 图4-73是双向触发二极管转折电压的检测方法。

(四)发光二极管的检测

1 .正、负极的判别 将发光二极管放在一个光源下,观察两个金属片的大小,通常金属片

大的一端为负极,金属片小的一端为正极。

2 ?性能好坏的判断 用万用表R X 10k 档,测量发光二极管的正、 反向电阻值。正常时,

正向电阻值(黑表笔接正极时)约为 10~20k Q,反向电阻值为 250k Q ~无穷大)。较

高灵敏度的发光二极管,在测量正向电阻值时,管内会发微

光。若用万用表R X 1k 档测量发光二极管的正、 反向电阻值,

则会发现其正、反向电阻值均接近8(无穷大) ,这是因为发

光二极管的正向压降大于 1.6V (高于万用表 R X 1k 档内电池 的电压值1.5V )

的缘故。 用万用表的R X 10k 档对一只220

(1F/25V 电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极)

再将充电后的电 容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,

则说明该发光二极管完好。 也可用3V 直流电源,在电源的正极串接 1只33 Q 电阻后

接发光二极管的正极, 将电源的负极接发光二极管的负极 (见图4-74 ),正常的发光二极管 —(E H

1MV

IW d 73 CTfarMMTWWHtrr^ffiWW* 詁对 IU±1 b)

fl-R ±= <) *?fc±~

应发光。或将1节1.5V 电池串接在万用表的黑表笔(将万用表置于 R X 10或R X 100档, 黑表笔接电池负极,等于与表内的 1.5V 电池串联),将电池的正极接发光二极管的正极,

红表笔接发光二极管的负极,正常的发光二极管应发光。

(五)红外发光二极管的检测

1 ?正、负极性的判别 红外发光二极管多采用透明树脂封装,管心下部有一个浅盘,管内

电极宽大的为负极, 而电极窄小的为正极。也可从管身形状和引脚的长短来判断。 通常,靠 近管身侧向小平面的电极为负极,另一端引脚为正极。长引脚为正极,短引脚为负极。

2 .性能好坏的测量 用万用表R X IOk 档测量红外发光管有正、反向电阻。正常时,正向

电阻值约为15~40k Q (此值越小越好);反向电阻大于 500k Q (用R X 10k 档测量,反向 电阻大于200 k Q )o 若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击 穿损坏。若测得正、 反向电阻值均为无穷大, 则说明该二极管已开路损坏。 若测得的反向电

阻值远远小于500k Q,则说明该二极管已漏电损坏。

(六)红外光敏二极管的检测

将万用表置于 R X 1k 档,测量红外光 敏二极管

的正、反向电阻值。正常时,正 向电阻值(黑表笔所接

引脚为正极)为 3~10 k Q 左右,反向电阻值为 500 k

Q 以 上。若测得其正、反向电阻值均为 0或均

在测量红外光敏二极管反向电阻值的

(见图4-75 )。正常的红外光敏

500 k Q 以上减小至 50?100 k Q 之间。

(七)其他光敏二极管的检测

1 ?电阻测量法 用黑纸或黑布遮住光敏二极管的光信号接收窗口,

然后用万用表R x ik 档

同时,用电视机遥控器对着被测红外光敏二极管的接收窗口 二极管,在按动遥控器上按键时, 其反向电阻值会由 阻值下降越多,说

明红外光敏二极管的灵敏度越高。

为无穷大,则说明该光敏二极管已击穿或开路损坏。

测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10?20k Q之间,反向电阻值为8(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路

损坏。再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向

电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。

2 ?电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2 ?0.4V 电压(其电压与光照强度成正比)。

3 .电流测量法将万用表置于50小或500小电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。

(八)激光二极管的检测

1 .阻值测量法拆下激光二极管,用万用表R X1k或R X10k档测量其正、反向电阻值。

正常时,正向电阻值为20?40k Q之间,反向电阻值为s(无穷大)。若测得正向电阻值已超过50k Q,则说明激光二极管的性能已下降。若测得的正向电阻值大于90k Q,则说明该

二极管已严重老化,不能再使用了。

2 ?电流测量法用万用表测量激光二极管驱动电路中负载电阻两端的电压降,再根据欧姆定律估算出流过该管的电流值,当电流超过100mA 时,若调节激光功率电位器(见图4-76 ),而电流无明显的变化,则可判断激光二极管严重老化。若电流剧增而失控,则说明

损坏。

(九)变容二极管的检测

1 .正、负极的判别有的变容二极管的一端涂有黑色标记,这一端即是负极,而另一端为正极。还有的变容二极管的管壳两端分别涂有黄色环和红色环,红色环的一端为正极,黄色环的一端为负极也可以用数字万用表的二极管档,通过测量变容二极管的正、反向电压降来判断出其正、负极性。正常的变容二极管,在测量其正向电压降时,表的读数为0.58?0.65V ;测量其反向电压降时,表的读数显示为溢出符号“1”。在测量正向电压降时,红表

笔接的是变容二极管的正极,黑表笔接的是变容二极管的负极。

2 ?性能好坏的判断用指针式万用表的R X IOk档测量变容二极管的正、反向电阻值。正

常的变容二极管,其正、反向电阻值均为8(无穷大)。若被测变容二极管的正、反向电阻

值均有一定阻值或均为0,则是该二极管漏电或击穿损坏。

(十)双基极二极管的检测

1 ?电极的判别将万用表置于R x ik档,用两表笔测量双基极二极管三个电极中任意两个电极间的正反向电阻值,会测出有两个电极之间的正、反向电阻值均为2?10k Q,这两

个电极即是基极B1和基极B2,另一个电极即是发射极E。再将黑表笔接发射极E,用红表

笔依次去接触另外两个电极,一般会测出两个不同的电阻值。有阻值较小的一次测量中,红表笔接的是基极

B2 ,另一个电极即是基极B1 。

2 .性能好坏的判断双基极二极管性能的好坏可以通过测量其各极间的电阻值是否正常来判断。用万用表

R X1k档,将黑表笔接发射极E,红表笔依次接两个基极(B1和B2), 正常时均应有几千欧至十几千欧的电阻值。

再将红表笔接发射极E,黑表笔依次接两个基极,

正常时阻值为无穷大。双基极二极管两个基极(B1和B2 )之间的正、反向电阻值均为2?

10k Q范围内,若测得某两极之间的电阻值与上述正常值相差较大时,则说明该二极管已损坏。

(十一)桥堆的检测

1 .全桥的检测大多数的整流全桥上,均标注有“ + ”、“ - ”、“ ~ ”符号(其中“ +”为整流后输出电压的正极,“-”为输出电压的负极,“~ ”为交流电压输入端),很容易确定出各电极。检测时,可通过分别测量“ + ”极与两个“ ~ ”极、“-”极与两个“ ~ ”之间各整流二极管的正、反向电阻值(与普通二极管的测量方法相同)是否正常,即可判断该全桥

是否已损坏。若测得全桥内鞭只二极管的正、反向电阻值均为0 或均为无穷大,则可判断

该二极管已击穿或开路损坏。

2.半桥的检测半桥是由两只整流二极管组成,通过用万用表分别测量半桥内部的两只二极管的正、反电阻值是否正常,即可判断出该半桥是否正常。

(十二)高压硅堆的检测高压硅堆内部是由多只高压整流二极管(硅粒)串联组成,

检测时,可用万用表的ROOk档测量其正、反向电阻值。正常的高压硅堆,其正向电阻值大于200k Q,反向电阻值为无穷大。若测得其正、反向均有一定电阻值,则说明该高压硅堆已软击穿损坏。

(十三)变阻二极管的检测用万用表R X10k档测量变阻二极管的正、反向电阻值,

正常的高频变阻二极管的正向电阻值(黑表笔接正极时)为 4.5~6k Q,反向电阻值为无穷

大。若测得其正、反向电阻值均很小或均为无穷大,则说明被测变阻二极管已损坏。

(十四)肖特基二极管的检测二端型肖特基二极管可以用万用表R X1档测量。正常时,其正向电阻值(黑表笔接正极)为 2.5?3.5 Q,投向电阻值为

无穷大。若测得正、反电阻值均为无穷大或均接近0,则说明该二

极管已开路或击穿损坏。三端型肖特基二极管应先测出其公共端,判别出共阴对

管,还是共阳对管,然后再分别测量两个二极管的正、反向电阻值。

2.3可控硅

可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K )、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单

向硅阳极与另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。

硅半导体材料构成的四层(P1N1P2N2)三端(A、C、G)器件,图1-20 (a)为晶闸

管的内部原理结构。晶闸管是由由P1N1P2N2四层半导体材料构成三个PN结:J i、J2、J3。

当晶闸管阳极A与阴极C间加上反向电压(A接负、C接正)时,J1、J3结处反向阻断状态;当加上正向电压(A接正、C接负)时,J2结处于反向阻断状态。当晶闸管满足一定的条件时,能够从正向阻断转变为正向导通,

在一定条件下又能够从导通恢复阻断。下面从晶闸管

内部结构分析其单向导通原理,如果N1层和P2层分解成两部分,则可将晶闸管等效成PNP

型和NPN型两个晶体管的背靠背连接,如图1-20 (b )所示。等效电路如图1-20 (c)所示。

如果在晶体管的阳极和阴极间加上正向电压, 在门极也加上正向门极电压,其结果就形

成强烈的正反馈,使两只等效晶体管迅速和导通, 使晶闸管由阻断转变为导通状态。晶闸管

的导通过程用等效的双晶体管原理的工作过程可以表示为:

I C f—|B2T |C2 f—I BI fT ci f

11_________ I

通过上面的分析可以证明晶闸管的工作有如下的规律。

①当晶闸管承受反向电压(A接负、C接正)时,不论门极G的电压极性如何,晶闸管都处于阻断状态。

②晶闸管导通的条件有两个:一是阳极、阴极间必须加上正向电压(A接正,C接负);

二是门极、阴极间必须加上适当的正向门极电压(G接正,C接负)和电流。即晶闸管从阻

断状态转变为导通状态必须同时具备正向阳极电压和正向门极电压。

③晶闸管一旦导通,门极即失去控制作用。不论门极电压如何变化,只要阳极、阴极间维持正向电压,晶闸管仍然保持导通。

④晶闸管在导通情况下,欲使其关断,必须使流经晶闸管的电流减小到维持电流I H以下。这可以用减小阳极电压到零或在阳极、阴极间加反向电压的方法实现。

2.3 . 1可控硅检测

1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R X1挡),可能是A、K或G、A极(对单向可控硅)也可能是T

2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接

的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R X1或

R X10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极, 黑笔所接为T1极,余下是T2极。

性能的差别:将旋钮拨至R X1挡,对于1?6A单向可控硅,红笔接K极,黑笔同时接通

G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回

8位置,则表明可控硅良好。

2、对于1?6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2 极的前提下断开G 极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。

3、若保持接通A 极或T2 极时断开G 极,指针立即退回8位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K

灯仍不息灭,否则说明可控硅损坏。

4、对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

鉴别可控硅三个极的方法很简单,根据P-N 结的原理,只要用万用表测量一下三个极之间的电阻值就可以。

阳极与阴极之间的正向和反向电阻在几百千欧以上,阳极和控制极之间的正向和反向电

阻在几百千欧以上(它们之间有两个P-N 结,而且方向相反,因此阳极和控制极正反向都不通)。

控制极与阴极之间是一个P-N 结,因此它的正向电阻大约在几欧-几百欧的范围,反向

电阻比正向电阻要大。可是控制极二极管特性是不太理想的,反向不是完全呈阻断状态的,可以有比较大的电流通过,因此,有时测得控制极反向电阻比较小,并不能说明控制极特性不好。另外,在测量控制极正反向电阻时,万用表应放在R*10 或R*1 挡,防止电压过高控制极反向击穿。

若测得元件阴阳极正反向已短路,或阳极与控制极短路,或控制极与阴极反向短路,或控制极与阴极断路,说明元件已损坏。

实验一 万用表测量二极管、三极管

实验一万用表测量二极管、三极管 一、实验目的 1.熟练掌握指针式万用表和数字万用表的使用方法。 1.熟练掌握用指针式万用表测量普通二极管和三极管。 2.熟练掌握用数字万用表测量普通二极管和三极管。 二、主要元件及仪器 1、MF-47指针式万用表 2、VC890D数字万用表 3、1N4001~1N4007系列普通整流二极管 4、1N4735(6.2V)、1N4738(8.2V)稳压二极管 5、9011~9014小功率晶体三极管 二、实验原理 (一)指针式万用表测量二极管: 二极管参数的测试可用晶体管图示仪,或其它仪器进行测试。 在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。 初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先把万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管,也不要用RX10K,该档电压太高,可能击穿管子),再将红、黑两根表笔短路,进行欧姆调零。

正向特性测试: 把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般小功率锗管的正向电阻为1KΩ左右,硅二极管约为5KΩ左右。一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。 反向特性测试: 把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。一般小功率锗管的反向电阻为几十KΩ,硅二极管约为500KΩ以上。 1.普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 (1)极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 (2)单向导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300 kΩ左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 2.稳压二极管的检测 (1)正、负电极的判别测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。 若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 (2)稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表

二级三极管

二极管和三极管: 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN 结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性

二极管及三极管电路符号大全

二极管及三极管符号大全【图】二极管符号参数二极管符号意义

CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比 CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管。硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二

极管极限电流。 IH---恒定电流。维持电流。 Ii---发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流

二极管、三极管的性能检测

二极管、三极管的性能检测 1. 二极管性能的检测 1) 普通二极管性能的检测 晶体二极管具有单向导电特性。用万用表的欧姆挡测量二极管的正、反向电阻,就可以判断出二极管管脚的极性,还可以粗略地判断二极管的好坏。 用万用表欧姆挡测量二极管的正、反向电阻原理如图4.1所示。 对于稳定电压U Z 小于万用表欧姆挡高阻挡表电池电压U o 的稳压二极管,可通过测量稳压二极管的反向电阻,用下式估算出U Z(U Z 越接近U o ,估算出的U Z 误差越大): 用万用表欧姆挡测二极管 例如:用某万用表 R ×10 k Ω挡测一只2CW55二极管,实 测反向电阻Rx 为70 k Ω,已知 U o=15V, R o=10 Ω,则 2) 发光二极管性能的检测 发光二极管除测量正、反向电阻外,还应进一步检查其是否发光。发光二极管的工作电压一般在1.6 V 左右,工作电流在1 mA 以上时才发光。用R ×10 k Ω挡测量正向电阻时,有些发光二极管能发光即可说明其正常。对于工作电流较大的发光二极管亦可用实训图4.2所示电路进行检测。 发光二极管测试电路 3) 光电(敏)二极管性能的检测 光电二极管的反向电阻随着从窗口射入光线的强弱而发生显著变化。在没有光照时,光电二极管的正、反向电阻测量以及极性判别与普通二极管一样。 光电二极管光电特性的测量方法:用万用表R ×100 k Ω挡或R ×1 k Ω挡测它的反向电阻时,用手电筒照射光电二极管顶端的窗口,万用表指示的电阻值应明显减小。光线越强,光电二极管的反向电阻越小,甚至只有几百Ω。关掉手电筒,电阻读数应立即恢复到原来的阻值。这表明被测光电二极管是良好的。 3. 三极管的管脚和类型的判别 ο οnR R R U U X X Z +=V nR R R U U X X Z 2.610101070107015433≈?+???=+=οο

二极管和三极管原理

实用文案 二极管图 三极管工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基 本原理。 穂压二郴皆 表亍拆号.込6口 ZD,D 齐于特是-□ . “ 光硕二概苛葩光电接収二巒炭:?t_很首 駅亍咼号:U.VT 車示帝号 :Q,vr ■J'L hL H九世总 NPMSl三极普 表示持号:Q.VT 亵示符冒o 福压二Hi育 靑示時耳一口 艇谭二松苛隨谨二機営 净恃至二娜苗 潮看得■ : LED 翼台SflJ世 光嗽三慨営电接收三世 斫將号:LED

一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流 lb ;把从集电极C流至发射极E的电流叫做集电极电流lc。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的B倍,即电流变化被放大了B倍,所以我们把B叫做三极管的放大倍数(B一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流lb 的变化,lb 的变化被放大后,导致了lc 很大的变化。如果集电极电流lc 是流过一个电阻R 的,那么根据电压计算公式U=R*l 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V )。当基极与发射极之间的电压小于0.7V 时,基极电流就可以认为是0 。但实际中要放大的信号往往远比0.7V 要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因

二极管三极管检测

吉林电子信息职业技术学院 毕业论文(设计) 题目:二极管三级管检测 系部:电气工程系 专业班级:09风电一班 指导教师:田军 姓名:宋贺

【摘要】NE555集成电路和电阻R1、R2电容C1等组成一个无稳态多谐振荡器,其振荡频率为f=1.44/(R1+2R2)C1将待测的晶体三极管的相应极插入管座相对应的e、b、c极孔中(若为二极管,则插入e、c两孔中)。如果被测管是PNP型,且为良好,它只能在555输出振荡方波低电平时,为PNP管提供导通通路,即在方波低电平时导通,与之串接的LED2发光管得电发光;而在振荡方波为高电平时,PNP管截止,LED1、LED2均不会发光。 如果被测晶体管是NPN型,其管子工作及导通情况,正好与上述的PNP管相反,若为好管,UED1点亮发光,LED2不亮。因此,由LED1或LED2的发光情况,可判断出是NPN,还是PNP以及其好坏。对于被损坏断路的三极管,LED1、LED2均不会发光;而对于被击穿c、e 极的三极管,则在振荡方波的高、低电平会轮流点亮,只是由于人眼视觉的滞留作用,看起来二者都亮。因此,在检测三极管时,LED1、LED2二者都亮或都不亮,说明三极管已损坏。 【关键词】NE555集成电路;二极管;三极管;LED灯; (摘要字数少,且没有英文摘要)

目录 1.绪论 (1) 1.1用NE555检测二极管、三极管的意义 (1) 1.2对二极管、三极管测试的方案选择 (2) 2.核心器件的功能介绍 (5) 2.1 NE555的简介 (5) 2.2 NE555的用处 (7) 3.电路的工作原理分析 (9) 3.1 电路的工作原理 (9) 3.2 电路框图的分析 (10) 3.3 电路的焊接与调试 (12) 3.4电路的测试结果 (13) 3.5 测试中遇到的问题及解决方法 (14) 4.总结 (15) 致谢 (16) 参考文献 (17)

各种二极管、三极管检测方法

各种二极管、三极管检测方法 一、二极管的检测方法与经验 1 检测小功率晶体二极管 A 判别正、负电极 (a) 观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。 (b) 观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 B 检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k 挡进行测试,一般正向电阻小于1K的多为高频管。 C 检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 2 检测玻封硅高速开关二极管 检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为5K~10K ,反向电阻值为无穷大。 3 检测快恢复、超快恢复二极管 用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为45K 左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几,反向电阻仍为无穷大。 4 检测双向触发二极管 A 将万用表置于R×1K挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。 将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 5 瞬态电压抑制二极管(TVS)的检测 A 用万用表R×1K挡测量管子的好坏 对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4KΩ左右,反向电阻为无穷大。 对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。 6 高频变阻二极管的检测 A 识别正、负极 高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二

实验二极管和三极管的识别与检测实验报告

实验二极管和三极管的识别与检测实验报告实验二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性

机械万用表及其欧姆档的内部等效电路如图所示。 图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到R?100或R?1K档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。

2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的R?100或R?1K档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。 (2)判断集电极和发射极 判断集电极和发射极的基本原理是把三极管接成基本单管放大电路,利用测量管子的电流放大系数?值的大小来判定集电极和发射极。以NPN型为例,如图所示。基极确定以后,用万用表两表笔分别接另外两个极,用100K?的电阻一端接基极一端接黑表笔,若电表指针偏转较大,则黑表笔所接的一端为集电极,红表笔接的是发射极。也可用手捏住基极与黑表笔(不能使两者相碰),以人体电阻代替100K?电阻的作用。

二极管、三极管最通俗的解释

二极管与三极管讲解 有些人在学习电子技术的时候对PN结、二极管、三极管不太了解,看书吧,讲的太深奥,不太明白,我用通俗的语言给大家讲一讲,希望能帮助大家,也许我讲的不怎么正确,但是我感觉基本思路是正确的,等你学的透彻以后再根据自己的见解纠正我的错误。 一、PN结 N型半导体:掺入少量杂质磷元素(或锑元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,磷原子外层的五个外层电子的其中四个与周围的半导体原子形成共价键,多出的一个电子几乎不受束缚,较为容易地成为自由电子。于是,N型半导体就成为了含电子浓度较高的半导体,其导电性主要是因为自由电子导电。 P型半导体:掺入少量杂质硼元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的离子。这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。(空穴可以移动)二、扩散运动 PN结中间相接触的部分,P带负电,N带空穴(正点),相互结合,PN结中间部分中和成不带电,但是P为负离子,N为正离子,所以形成了内部电场,方向由N指向P促使漂移运动产生。 三、漂移运动 在内部电场的作用下,N型半导体与P型半导体不接触部分的空穴(N和P都不是绝对的只有空穴和电子,而是相对来说的。空穴可以移动,带正电)在电场作用下向P运动,相反,P中的电子向N运

动,这就是漂移,因为N中的空穴很少,P中的电子很少,所以漂移运动不是很明显。 四、二极管 如果在PN结外部接一个正向电压,负极接N,正极接P,那么就加强了扩散运动,所以通过PN结的电流更容易,反之就为漂移运动,所以电流不能顺利通过,(反向截止),这样就产生了二极管。 五、二极管压降 压降的意思是:电压的损失,也就是通过二极管的时候,有电压损失,也就是正向偏置的时候,二极管可以看成一个小电阻。在这个小电阻的两端就是二极管的压降。 六、三极管 ;;;;;;;; 至于三极管、放大电路、整流、滤波、二极管的伏安特性曲线,三极管输入输出曲线等等,如果你感觉以上写的对你有帮助,就请加我QQ(912853255),我把你想要的部分用通俗的语言写出来。然后发给你。

半导体二极管和三极管分析

第7章半导体二极管和三极管 7.1 半导体的基本知识 7.2 PN结 7.3 半导体二极管 7.4 稳压二极管 7.5 半导体三极管

第7章半导体二极管和三极管 本章要求: 一、理解PN结的单向导电性,三极管的电流分配和 电流放大作用; 二、了解二极管、稳压管和三极管的基本构造、工 作原理和特性曲线,理解主要参数的意义;三、会分析含有二极管的电路。

对于元器件,重点放在特性、参数、技术指标和正确使用方法,不要过分追究其内部机理。讨论器件的目的在于应用。 学会用工程观点分析问题,就是根据实际情况,对器件的数学模型和电路的工作条件进行合理的近似,以便用简便的分析方法获得具有实际意义的结果。 对电路进行分析计算时,只要能满足技术指标,就不要过分追究精确的数值。 器件是非线性的、特性有分散性、RC 的值有误差、工程上允许一定的误差、采用合理估算的方法。

7.1 半导体的基本知识 半导体的导电特性: (可做成温度敏感元件,如热敏电阻)。 掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。 光敏性:当受到光照时,导电能力明显变化 (可做 成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。 热敏性:当环境温度升高时,导电能力显著增强

7.1.1 本征半导体 完全纯净的、具有晶体结构的半导体,称为本征半导体。 晶体中原子的排列方式 硅单晶中的共价健结构 共价健 共价键中的两个电子,称为价电子。 Si Si Si Si 价电子

Si Si Si Si 价电子 价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),同时共价键中留下一个空位,称为空穴(带正电)。 本征半导体的导电机理这一现象称为本征激发。 空穴温度愈高,晶体中产 生的自由电子便愈多。 自由电子 在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正电荷的移动)。

实验二 二极管和三极管的识别与检测实验报告

实验二 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

三极管的检测及其管脚的判别

三极管的检测及其管脚的判别 使用数字万用表判断三极管管脚(图解教程) 现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。我倒认为数字万用表在测量三极管时更加的方便。以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。 手头上有一些BC337的三极管,假设不知它是PNP管还是NPN 管。 图1三极管 我们知道三极管的内部就像二个二极管组合而成的。其形式就像下图。中间的是基极(B极)。

图2三极管的内部形式 首先我们要先找到基极并判断是PNP还是NPN管。看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。这时我们可以用数字万用表的二极管档去测基极,看图3。对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。对于NPN表来说则是红表笔(连表内电池正极)连在基极上。从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。

图3万用表的二极管测量档 图4判断BC337的B极和管型(1)

图4判断BC337的B极和管型(2) 找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。 把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。读数,再把它的另二脚反转,再读数。读数较大的那次极性就对上表上所标的字母,这时就对着字母去认BC337的C,E 极。学会了,其它的三极管也就一样这样做了,方便快速。 图5万用表上的hFE档

实验二 二极管和三极管的识别与检测实验报告

实验二二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 万用表及其欧姆档的内部等效电路如图所示。 图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100 ? R或K R1 ?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 ( 1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100 ? R或K R1 ?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

第一章 半导体二极管 三极管和场效应管

第4章半导体二极管及其应用 电子电路区别于以前所学电路的主要特点是电路中引入各种电子器件。电子器件的类型 很多,目前使用得最广泛的是半导体器件——二极管、稳压管、晶体管、绝缘栅场效应管等。 由于本课程的任务不是研究这些器件内部的物理过程,而是讨论它们的应用,因此,在简单 介绍这些器件的外部特性的基础上,讨论它们的应用电路。 4.1 PN结和半导体二极管 4.1.1 PN结的单向导电性 我们在物理课中已经知道,在纯净的四价半导体晶体材料(主要是硅和锗)中掺入微量三价(例如硼)或五价(例如磷)元素,半导体的导电能力就会大大增强。这是由于形成了有传导电流能力的载流子。掺入五价元素的半导体中的多数载流子是自由电子,称为电子半导体或N型半导体。而掺入三价元素的半导体中的多数载流子是空穴,称为空穴半导体或P型半导体。在掺杂半导体中多数载流子(称多子)数目由掺杂浓度确定,而少数载流子(称少子)数目与温度有关,并且温度升高时,少数载流子数目会增加。 在一块半导体基片上通过适当的半导体工艺技术可以形成P型半导体和N型半导体的交接面,称为PN 结。PN结具有单向导电性:当PN结加正向电压时,P端电位高于N端,PN结变窄,由多子形成的电流可以由P区向N区流通,见图4-1 (a),而当PN结加反向电压时,N端电位高于P端,PN结变宽,由少子形成的电流极小,视为截止(不导通),见图4-1 (b)。 4.1.2半导体二极管 半导体二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。由P区引出的电极称为阳极,N区引出的电极称为阴极。因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。二极管的种类很多,按材料来分,最常用的有硅管和锗管两种;按结构来分,有点接触型,面接触型和硅平面型几种;按用途来分,有普通二极管、整流二极管、稳压二极管等多种。

三极管接成二极管的特点与用途

三极管接成二极管的特点与用途 在电子电路中,常见到晶体三极管接成二极管的形式使用,特别是在集成电路中,这种情况更为普遍。 在图1的分立元件组成的差动式放大电路中,T4三极管的基极和集电极是短接在一起的,构成了一个二极管,在电路中起温度补偿作用。T4三极管的材料和类型与T3完全相同,这是因为同类型三极管的温度系数更为接近和一致,所以温度补偿的效果更好。其补偿原理是:未加入T4、R2之前,T3、R1、R3构成一个恒流源。I3=(Ec-Ube3)/[R3+(R1/B)],其特点是动态电阻大,静态电阻小,作为T1、T2的射极有源负载,抑制共模放大。由于T3的Ube3易受温度影响,使I3也易受温度影响而发生变化。加入了T4、B2之后,I3=Ec-Ube3-R1I4/[R3+(R1/β)],当温度变化引起Ube3↓时,由于T3与T4完全相同,Ubet 也↓,I4=Ec-Ube4/(R1+R2),使得I4↑从而使I3=Ec-Ube3↓-R1I4↑/[R3+(R1/β)]基本保持恒定,补偿了温度变化引起的电流变化,从而起到了温度补偿的作用。就是说,在分立元件电路中,若三极管接成二极管使用,大都是作为温度补偿使用的。转载请注明转自“维修吧-https://www.360docs.net/doc/b512294722.html,” 在集成电路内使用的二极管,多用作温度补偿元件或电位移动电路,一般也是采用三极管构成。三极管接成的二极管形式,大都采用集电极和基极短接的方式,这与集成电路的制造工艺有关。这样接成的二极管正向压降,接近于同类型三极管的Ube值,其温度系数亦与Ube的温度系数接近,故能较好地补偿三极管发射结的温度特性。这是模拟集成电路的一个重要特点。在集成电路中,根据用途的不同,所使用的二极管相当于三极管的发射极一基极结或集电极一基极结组合而成。由于集成电路采用硅材料作衬底,所以正向电压为0.6-0.9V,反向击穿电压,用发射极-基极结时为7—9V;用集电极-基极结时为30-50V。在集成电路中,三极管接成二极管使用有多种组合方式,它的特性参数如附表所示。利用温度补偿原理和半导体三极管PN结的非线性伏安特性,再和集成运算放大器配合,可以对输入信号实现对数运算和反对数运算。组成电路如图2、3所示。转载请注明转自“维修吧-https://www.360docs.net/doc/b512294722.html,”

光敏二极管和光敏三极管工作原理

光敏三极管工作原理 /光敏二极管原理 简介:光敏二极管原理光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。 光敏二极管原理 光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。 一、光敏二极管 1.结构特点与符号 光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。 光敏二极管在电路中的符号如图Z0129 所示。光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。 2.光电转换原理 根据PN结反向特性可知,在一定反向电压范围内,反向电流很

小且处于饱和状态。此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。被表面P型扩散层所吸收的主要是波长较短的蓝光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;波长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。因此,光照射时,流过PN结的光电流应是三部分光电流之和。 二、光敏三极管工作原理 光敏三极管和普通三极管的结构相类似。不同之处是光敏三极管必须有一个对光敏感的PN结作为感光面,一般用集电结作为受光结,因此,光敏三极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通三极管。其结构及符号如图Z0130所示。 三、光敏二极管的两种工作状态 光敏二极管又称光电二极管,它是一种光电转换器件,其基本原理

二极管、三极管的识别与检测

任务Ⅱ.1二极管器件的认识与检测 教学目的 ☆熟悉常用二极管的分类、用途。 ☆熟悉常用二极管参数识别。 ☆掌握利用数字存储半导体管特性图示仪和万用表检测及故障的判断方法。 知识能力 一、二极管的结构及符号 将PN结加上金属引脚和外壳后,就成了二极管,如图Ⅱ-1(a)所示,图Ⅱ-1(b)是它的符号。二极管内部就是一个PN结,我们将与P区相连的电极称正极,与N区相连的电路称为负极,由于PN结具有单向导电性,所以二极管也具有单向导电性。 二极管按材料不同分硅和锗二极管;按其结构不同可分为点接触型和面接触型两类。 图Ⅱ-1 普通二极管的结构与符号图Ⅱ-2 常见二极管的外形二极管的实际种类较多,这样电路中的成品元件在外形上有较大区别。如图Ⅱ-2所示为常见二极管的外形。如何从元件形式上区分正负极,是我们首先关注的。外表上看,对于锥形二极管来说,锥端为负极,圆端为正极,如图Ⅱ-2(b)所示;对于圆柱形二极管来说,常在一端用色环或色点表示负极,另一端为正极,如图Ⅱ-2(a)、(d)、(e)所示;对于球冠形二极管,如图Ⅱ-2(f)、(g)所示,长脚表示正极,短脚表示负极。 二极管的种类与用途较多,为在绘制电路图时便于区分与描述,人为规定了二极管的图形符号。对于不同种类的二极管,规定了不同的符号。如图Ⅱ-3所示为几种二极管图形符号。 图Ⅱ-3 二极管图形符号 二、二极管的主要性能参数 二极管的特性可以通过其参数来描述,实际应用中可以通过元器件手册来查找,并依据参数合理选择二极管。二极管参数较多,常用的有最高反向电压、最大整流电流、反向电流、最高工作频率等参数。 1. 最大整流电流I F

三极管的检测方法

三极管的检测方法 1、中、小功率三极管的检测 A、已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏 (a)、测量极间电阻。将万用表置于R×100或R×1k挡,按照红、黑表笔的六种不同接法进行测试。其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。 (b)、三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增大。而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。 通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下: 万用表电阻的量程一般选用R×100或R×1k挡,对于PNP管,黑表管接e 极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。要求测得的电阻越大越好。e-c间的阻值越大,说明管子的ICEO越小;反之,所测阻值越小,说明被测管的ICEO越大。一般说来,中、小功率硅管、锗材料低频管,其阻值应分别在几百千欧、几十千欧及十几千欧以上,如果阻值很小或测试时万用表指针来回晃动,则表明ICEO很大,管子的性能不稳定。 (c)、测量放大能力(β)。目前有些型号的万用表具有测量三极管hFE的刻度线及其测试插座,可以很方便地测量三极管的放大倍数。先将万用表功能开关拨至 挡,量程开关拨到ADJ位置,把红、黑表笔短接,调整调零旋钮,使万用

表指针指示为零,然后将量程开关拨到hFE位置,并使两短接的表笔分开,把被测三极管插入测试插座,即可从hFE刻度线上读出管子的放大倍数。 另外:有此型号的中、小功率三极管,生产厂家直接在其管壳顶部标示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表所示,但要注意,各厂家所用色标并不一定完全相同。 B、检测判别电极 (a)、判定基极。用万用表R×100或R×1k挡测量三极管三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN 型管。 (b)、判定集电极c和发射极e。(以PNP为例)将万用表置于R×100或R×1k挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。 C、判别高频管与低频管 高频管的截止频率大于3MHz,而低频管的截止频率则小于3MHz,一般情况下,二者是不能互换的。 D、在路电压检测判断法

各种二极管和三极管的检测方法

各种二极管和三极管的检测方法 中心议题:二极管二极管和三极管三极管的检测方法 二极管的检测:1、检测小功率小功率晶体二极管A、判别正、负电极(a)、观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。(b)、观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)、以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 B、检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k挡进行测试,一般正向电阻小于1k的多为高频管。 C、检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 2、检测玻封硅高速开关二极管检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为5k~10k,反向电阻值为无穷大。 3、检测快恢复、超快恢复二极管用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为4.5k左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几欧,反向电阻仍为无穷大。 4、检测双向触发二极管将万用表置于R×1k挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 5、瞬态电压抑制二极管(TVS)的检测用万用表R×1k挡测量管子的好坏。对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4kΩ左右,反向电阻为无穷大。对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。 6、高频变阻二极管的检测A、识别正、负极。高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。B、测量正、反向电阻来判断其好坏。具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×1k挡测量时,正常的高频变阻二极管的正向电阻为5k~5.5k,反向电阻为无穷大。 7、变容二极管的检测将万用表置于R×10k挡,无论红、黑表笔怎样对调测量,变容二极管的两引脚间的电阻值均应为无穷大。如果在测量中,发现万用表指针向右有轻微摆动或阻值为零,说明被测变容二极管有漏电故障或已经击穿损坏。对于变容二极管容量消失或内部的开路性故障,用万用表是无法检测判别的。必要时,可用替换法进行检查判断。 8、单色发光二极管的检测在万用表外部附接一节1.5V干电池,将万用表置R×10或R×100挡。这种接法就相当于给万用表串接上了1.5V电压,使检测电压增加至3V(发光二极管的开启电压为2V)。检测时,用万用表两表笔轮换接触发光二极管的两管脚。若管子性能良好,必定有一次能正常发光,此时,黑表笔所接的为正极,红表笔所接的为负极。 9、红外发光二极管的检测A、判别红外发光二极管的正、负电极。红外发光二极管有两个引脚,通常长引脚为正极,短引脚为负极。因红外发光二极管呈透明状,所以管壳内的电极清晰可见,内部电极较宽较大的一个为负极,而

相关文档
最新文档