功率谱估计性能分析及Matlab仿真

合集下载

基于BURG算法的谱估计研究及其MATLAB实现课件

基于BURG算法的谱估计研究及其MATLAB实现课件

三、经典谱估计
当f1=20, f2=40时得到的仿真结果如图3.5所示。 当f1=100, f2=1000时得到的仿真结果如图3.6 所示。
图3.5
图3.6
三、经典谱估计
当噪声方差 =1和 =10的仿真结果分别如图 3.7所示和图3.8所示。
图3.7
图3.8
三、经典谱估计
仿真结果: 间接法实现时在噪声信号很小的情况 下, 图3.5得到的谱线基本能分辨出两个频率值来, 但是也出现大量假峰。图3.6也能分辨出两个频率值, 假峰减少, 说明间接法在这种情况下得到的效果要
声信号增大到原来的100倍时就无法分辨两个频率 值, 而且通过多次仿真看出, 当噪声信号增大到10倍 以
后就不能分辨出两个频率点的峰值。
三、经典谱估计
■ 3.2 间接法及MATLAB仿真
结果
的估
■ 间接法又称自相关法, 记 为对计, 即
当M较小时, 上式的计算量不是很大, 因此, 此 方法是在FFT问世之前(即周期图被广泛应用之前) 常用的谱估计方法。
四、现代谱估计
当阶数=10时得到的仿真结果如图4.1所示。 当阶数=15时得到的仿真结果如图4.2所示。
图4.1
图4.2
四、现代谱估计
仿真结果: Levinson-Durbin算法得到的谱线波 动性小, 能很好的分辨出两个频率值, 而且没有出 现假峰现象。当增大阶数时得到的结果跟阶数小的 结果不相上下, 并没有增大频率分辨率, 反而增大 了计算次数。
仿真结果比较可得: 四种算法都能分辨出两个频 率值,可以明显看出直接法和间接法得到的仿真结果 出现了大量假峰,且谱的波动性较大,而 LevinsonDurbin算法和BURG算法得到的仿真结果很平滑,没有 出现假峰现象,能清楚的分辨出两个频率点的值,分 辨率远比经典谱估计要好,所以从仿真的结果也可以 看出现代谱估计性能比经典谱估计好。

MATLAB仿真实现经典谱估计(采用周期图法)

MATLAB仿真实现经典谱估计(采用周期图法)
axis([0 0.3 -2 2]);
grid on;
window = boxcar( length( xn) ) ;%矩形窗
nfft = 512;
[Pxx f]= periodogram( xn,window,nfft,Fs) ;%直接法
subplot(312)
plot( f,10* log10( Pxx) ) ;
plot( f,10*log10( Pxx) ) ;
title('直接法经典谱估计,1024点');
xlabel('频率(Hz)');
ylabel('功率谱密度');
grid on;
六、实验总结
从上图我们可以得到这样的结论:在增加数据长度N时,就会使互不相关的点数增加,提高谱曲线的分辨力,但是加剧谱曲线 的起伏。经典功率谱估计不是一致估计,这是周期图法(直接法)的一个严重的缺点。
数字信号处理课程实验报告
实验指导教师:黄启宏
实验名称
MATLAB仿真实现经典谱估计(采用周期图法)
专业、班级
电子与通信工程
姓名
张帅
实验地点
仿古楼301
实验日期
2013.11.17
一、实验内容
采用周期图法(直接法)实现经典谱估计。
二、实验目的
(1)掌握周期图法(直接法)估计出功率谱的步骤和方法;
(2)在实验的过程中找到影响经典谱估计的因素;
%采用直接法(周期图法)估计功率谱;
clear
Fs = 1000;%采样频率
n = 0:1 /Fs: .3;%产生含有噪声的序列
xn = cos(200*pibplot(311);%输出随机信号xn;

经典功率谱估计Welch法的MATLAB仿真分析

经典功率谱估计Welch法的MATLAB仿真分析

经典功率谱估计Welch法的MATLAB仿真分析杨晓明;晋玉剑;李永红【摘要】周期图法是经典功率谱估计中的一种基本方法,但是在实际应用中难以同时保证良好的分辨力和方差性能.因此本文以周期图法原理为切入点,对改进后的Welch算法进行研究,并借助MATLAB软件强大的信号处理与数值分析能力,对Welch算法的谱估计分辨力、方差等性能进行仿真分析.讨论了不同数据分段长度、不同窗函数类型等因素对算法性能产生的影响.仿真结果表明,Welch算法由于合理的引入数据分段和窗函数,得到了较好的方差性能以及分辨能力,但在对短数据进行功率谱估计时还有一定的局限性.【期刊名称】《电子测试》【年(卷),期】2011(000)007【总页数】4页(P101-104)【关键词】经典功率谱估计;周期图法;Welch法;MATLAB仿真【作者】杨晓明;晋玉剑;李永红【作者单位】中北大学,太原,030051;中北大学,太原,030051;中北大学,太原,030051【正文语种】中文【中图分类】TN911.720 引言在对平稳随机信号的频谱分析中,由于其不满足平方可积、非周期性等特点,只有应用功率谱估计(PSD)才能根据有限长信号估计出原信号的真实功率谱[1]。

文中通过分析经典功率谱周期图法的原理与所存在的缺陷,进而对改进后的Welch算法进行了讨论,并通过MATLAB软件进行仿真。

分析仿真曲线后得出结论,Welch算法通过数据分段和加窗,有效降低谱估计的方差,同时又不使分辨力遭到严重破坏,是一种有效的谱估计方法[2],仿真过程中也同时发现算法存在一定的局限性。

1 经典功率谱估计Welch算法经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。

它可以分为用随机序列求谱的自相关法和将序列直接用FFT求谱的直接法,以及改进后的Bartlett法和Welch法。

1.1 周期图法(直接法)周期图(Periodogram)的概念是在19世纪末由Schuster提出。

功率谱估计的MATLAB实现

功率谱估计的MATLAB实现

实验功率谱估计实验目的:1、掌握最大熵谱估计的基本原理。

2、了解最终预测误差(FPE)准则。

3、掌握周期图谱估计的基本原理。

4、掌握传统谱估计中直接法与间接法之间的关系。

5、复习快速傅里叶变换与离散傅里叶变换之间关系。

实验内容:1、设两正弦信号的归一化频率分别为0.175和0.20,用最大熵法编程计算信噪比S/N=30dB、N=32点时该信号的最大熵谱估计结果。

2、用周期图法编程计算上述信号的谱估计结果。

程序示例:1、最大熵谱估计clc;N=32;SNR=30;fs=1;t=1:N;t=t/fs;y=sin(2*pi*0.175*t)+sin(2*pi*0.20*t);x = awgn(y,SNR);M=1;P(M)=0;Rx(M)=0;for n=1:NP(M)=P(M)+(abs(x(n)))^2;ef(1,n)=x(n);eb(1,n)=x(n);endP(M)=P(M)/N;Rx(M)=P(M);M=2;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2; endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);TH=FPE(M-1);for n=M:Nef(M,n)=ef(M-1,n)+xishu*eb(M-1,n-1);eb(M,n)=eb(M-1,n-1)+xishu*ef(M-1,n);endM=M+1;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2;endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);for m=1:M-2a(M-1,m)=a(M-2,m)+xishu*a(M-2,M-1-m);endwhile FPE(M-1)<THTH=FPE(M-1);for n=M:Nef(M,n)=ef(M-1,n)+xishu*eb(M-1,n-1);eb(M,n)=eb(M-1,n-1)+xishu*ef(M-1,n);endM=M+1;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2;endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);for m=1:M-2a(M-1,m)=a(M-2,m)+xishu*a(M-2,M-1-m);endendT=1/fs;sum1=0;f=0.01:0.01:0.5;for m=1:M-1;sum1=sum1+a(M-1,m)*exp(-j*2*pi*m*f*T);ends1=(abs(1+sum1)).^2;s=P(M)*T./s1;plot(f,10*log10(s),'k');xlabel('f/fs');ylabel('功率谱/dB');2、周期图谱估计clc;clear;N=32;SNR=30;fs=1;t=1:N;t=t/fs;y=sin(2*pi*0.175*t)+sin(2*pi*0.20*t);x = awgn(y,SNR);sum1=0;f=0.05:0.01:0.5;for m=1:Nsum1=sum1+x(m)*exp(-j*2*pi*m*f);ends=(abs(sum1)).^2/N;plot(f,10*log10(s),'k');xlabel('f/fs');ylabel('功率谱/dB');实验结果:1、最大熵法估计结果:2、周期图法估计结果:。

功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现功率谱密度估计是信号处理领域中常用的一种方法,用于分析信号的频率特性。

MATLAB提供了多种功率谱密度估计方法的函数,包括传统的傅里叶变换方法和更现代的自相关方法。

以下是一些常见的功率谱密度估计方法及其MATLAB实现。

1.傅里叶变换方法:傅里叶变换方法是最常用的功率谱密度估计方法之一、MATLAB提供了`pwelch`函数来实现傅里叶变换方法的功率谱密度估计。

以下是一个简单的使用例子:```matlabfs = 1000; % 采样率t = 0:1/fs:1-1/fs; % 时间序列x = cos(2*pi*50*t) + randn(size(t)); % 生成一个包含50 Hz 正弦波和噪声的信号[Pxx, f] = pwelch(x, [],[],[], fs); % 估计功率谱密度plot(f, 10*log10(Pxx)); % 画出功率谱密度曲线xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```2.自相关方法:自相关方法是另一种常用的功率谱密度估计方法。

MATLAB提供了`pcov`函数来实现自相关方法的功率谱密度估计。

以下是一个简单的使用例子:```matlabfs = 1000; % 采样率t = 0:1/fs:1-1/fs; % 时间序列x = cos(2*pi*50*t) + randn(size(t)); % 生成一个包含50 Hz 正弦波和噪声的信号[Rxx, lags] = xcorr(x, 'biased'); % 估计自相关函数[Pxx, f] = pcov(Rxx, [], fs, length(x)); % 估计功率谱密度plot(f, 10*log10(Pxx)); % 画出功率谱密度曲线xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```3.周期图方法:周期图方法是一种能够处理非平稳信号的功率谱密度估计方法。

AR模型功率谱估计及Matlab实现

AR模型功率谱估计及Matlab实现

南昌大学实验报告学生姓名:学号:专业班级:实验类型:□验证□综合□设计□创新实验日期:实验成绩:一、实验名称基于AR模型的功率谱估计及Matlab实现二、实验目的1.了解现代谱估计方法,深入研究AR模型法的功率谱估计2.利用Matlab对AR模型法进行仿真三、实验原理1.现代谱估计现代功率谱估计以信号模型为基础,如下图所示为x(n)的信号模型,输入白噪声ω(n)均值为0,方差为σω2,x(n)的功率谱可由下式计算:P xx(e jω)=σω2|H(e jω)|2如果通过观测数据估计出信号模型的参数,信号功率谱就可以按上式计算出来,这样估计功率谱的问题就变成由观测数据估计信号模型参数的问题。

2.功率谱估计的步骤:(1)选择合适的信号模型;(2)根据x(n)有限的观测数据,或者有限个自相关函数估计值,估计模型的参数;(3)计算模型的输出功率谱。

3.模型选择选择模型主要考虑是模型能够表示谱峰、谱谷和滚降的能力。

对于尖峰的谱,选用具有极点的模型,如AR、ARMA模型;对于具有平坦的谱峰和深谷的信号,可以选用MA模型;既有极点又有零点的谱应选用ARMA模型,应该在选择模型合适的基础上,尽量减少模型的参数。

4.AR模型功率谱估计在实际中,AR 模型的参数估计比较简单,对其有充分的研究,AR模型功率谱估计又称为自回归模型,它是一个全极点的模型,要利用AR模型进行功率谱估可以通过列文森(Levenson)递推算法由Yule-Walker 方程求AR模型的参数。

4.MATLAB中AR模型的谱估计的函数说明:1.Pyulear函数:功能:利用Yule--Walker方法进行功率谱估计.格式:Pxx=Pyulear(x,ORDER,NFFT)[Pxx,W]=Pyulear(x,ORDER,NFFT)[Pxx,W]=Pyulear(x,ORDER,NFFT,Fs)Pyulear(x,ORDER,NFFT,Fs,RANGE,MAGUNITS)说明:Pxx =Pyulear(x,ORDER,NFFT)中,采用Yule--Walker方法估计序列x的功率谱,参数ORDER用来指定AR模型的阶数,NFFT为FFT算法的长度,默认值为256,若NFFT为偶数,则Pxx为(NFFT/2 + 1)维的列矢量,若NFFT为奇数,则Pxx为(NFFT + 1)/2维的列矢量;当x为复数时,Pxx长度为NFFT。

常见的功率谱估计方法及其Matlab仿真

常见的功率谱估计方法及其Matlab仿真

常见的功率谱估计方法及其Matlab仿真
邓泽怀;刘波波;李彦良
【期刊名称】《电子科技》
【年(卷),期】2014(027)002
【摘要】功率谱估计是数字信号处理的重要内容之一,又分为经典谱估计和现代谱估计.经典谱估计主要是周期图法及其改进方法,现代谱估计则有参数模型与非参数模型谱估计之分.文中主要介绍了几种常见的功率谱估计方法的原理、特点,并进行了Matlab仿真分析,发现基于AR参数模型的Burg法效果较好.
【总页数】3页(P50-52)
【作者】邓泽怀;刘波波;李彦良
【作者单位】西安电子科技大学理学院,陕西西安710017;西安电子科技大学理学院,陕西西安710017;西安电子科技大学理学院,陕西西安710017
【正文语种】中文
【中图分类】TN911.6
【相关文献】
1.基于功率谱估计的航磁补偿优化处理方法 [J], 吴佩霖;张群英;陈路昭;费春娇;朱万华;方广有
2.经典功率谱估计Welch法的MATLAB仿真分析 [J], 杨晓明;晋玉剑;李永红
3.功率谱估计及其MATLAB仿真 [J], 王凤瑛;张丽丽
4.功率谱估计及其MATLAB仿真 [J], 王凤瑛;张丽丽
5.基于功率谱估计的航磁补偿优化处理方法 [J], 吴佩霖; 张群英; 陈路昭; 费春娇; 朱万华; 方广有
因版权原因,仅展示原文概要,查看原文内容请购买。

随机信号 处理各种功率谱估计方法及matlab仿真实现

随机信号 处理各种功率谱估计方法及matlab仿真实现

一、随机信号原理分析随机信号的古典法谱估计广义平稳随机过程的功率谱是自相关函数的福利叶变换,它取决于无数个自相关函数值。

但对于许多实际问题,可以利用的数据往往是有限的,所以要准确的计算功率谱是不可能的。

比较合理的目标是设法得出功率谱的一个好的估计,这就是功率谱估计。

功率谱估计有两类大的方法:古典谱估计和现代谱估计。

古典谱估计又有相关法估计,周期图法估计,WOSO法,Bartlett法;现代谱估计有Levinson-Durbin算法和Burg算法。

下面对他们分别作介绍。

1.相关法谱估计这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。

这种方法的具体步骤是:第一步:从无限长随机序列x(n)中截取长度N的有限长序列X N(n)。

第二步:由N长序列求(2M-1)点的自相关函数序列。

即这里,m=-(M-1),。

,-1,0,1,。

,M-1,M N,R^在此处键入公式。

x(m)是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。

,M-1的,另一半也就知道了。

第三步:由相关函数的傅式变换求功率谱。

即以上过程中经历了两次截断,一次是将x(n)截成N长,称为加数据窗,一次是将截成(2M-1)长,称为加延迟窗。

因此所得的功率谱仅是近似值,也叫谱估计,式中的,代表估值。

一般取M〈〈N,因为只有当M较小时,序列傅式变换的点数才较小,功率谱的计算量才不至于大到难以实现,而且谱估计质量也较好。

因此,在FFT问世之前,相关法是最常用的谱估计方法。

当FFT问世后,情况有所变化。

因为截断后的可视作能量信号,由相关卷积定理可得这就将相关化为线性卷积,而线性卷积又可以用快速卷积来实现。

我们可对上式两边取(2N-1)点DFT,则有于是将时域卷积变为频域乘积。

用快速相关求的完整方案如下:1.对N长的充(N-1)个零,成为(2N-1)长的。

2.求(2N-1)点的FFT,得。

3.求。

由DFT性质,是纯实的,满足共轭偶对称,而一定是实偶的,且以(2N-1)为周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档