20.4课题学习:最短路径问题教案
最短路径问题学案教案

最短路径问题【目标导航】1.理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”. “饮马问题”,“造桥选址问题”.考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.2.解题总思路:找点关于线的对称点实现“折”转“直”.关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理.这对于我们解决此类问题有事半功倍的作用. 【合作探究】探究一:(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线l 是一条河,A 、B 是两个村庄,欲在l 上的某处修建一个水泵站M ,向A 、B 两地供水,要使所需管道M A +M B 的长度最短,在图中标出M 点.(3)如图3,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段C D 表示.试问:桥C D 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥C D 的位置.画出示意图,并用平移的原理说明理由.变式1.在边长为2㎝的正方形ABC D 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝.变式2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为__________第2题 第3题 第4题 变式3.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为_________变式4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是A D 和AB 上的动点,则B M+MN 的最小值是____.变式5.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4).OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,则PC +PD 的最小值________,此时P 点的坐标为________. 探究二:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马, 先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线.A DE P BC 第5题O x y B D A C P变式1.如图,已知平面直角坐标系中,A ,B 坐标为A (-1,3),B (-4,2),设M ,N 分别为x 轴,y 轴上一动点,问是否存在这样的点M (m ,0),N (0,n )使四边形AB MN 的周长最短?并求m ,n 的值.第1题 第2题 第3题 第4题变式2.如图,在△ABC 中,D 、E 为边AC 上的两个点,试在AB ,BC 上各取一个点M ,N ,使四边形DMNE 的周长最短.变式3.如图,已知平面直角坐标系,A 、B 两点的坐标分别为A (2,-3),B (4,-1).若C (a ,0),D (a +3,0)是x 轴上的两个动点,则当a = 时,四边形AB D C 的周长最短. 变式4.如图,抛物线23212--=x x y 与直线y=x -2交于A 、B 两点(点A 在点B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E ,再到达x 轴上的某点F ,最后运动到点B .若使点P 运动的总路径最短,则点P运动的总路径的长为 . 探究三:1.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B 是这个台阶的两个相对端点,A点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是 寸.第1题 第2题 第3题 第4题 第5题 第6题 2.如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽A D 平行且大于A D ,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是 米.(精确到0.01米)3.如图所示,是一个圆柱体,A BCD 是它的一个横截面,A B=,BC=3,一只蚂蚁,要从A 点爬行到C 点,那么,最近的路程长为 .4.如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .5.有一长、宽、高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B 处,则需要爬行的最短路径长为 .6.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是 .y O x P D B (40)A , (02)C ,【课后练习】1.如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).(1)试证明:无论点P 运动到何处,PC 与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.2.如图,已知点A (-4,8)和点B (2,n )在抛物线y=ax 2上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2)平移抛物线y=ax 2,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′C D 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.3. 如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC ,已知AB=5,DE =1,BD =8,设CD=x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式224(12)9x x ++-+的最小值.小结:上式中,原式=22222(12)3x x ++-+,而22a b +的几何意义是以a 、b 为直角边的直角三角形斜边长.【拓展提升】 1.阅读材料: 例:说明代数式221+(3)4x x +-+的几何意义,并求它的最小值.解:2222221+(3)4(0)1+(3)2x x x x +-+=-+-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则22(0)1x -+可以看成点P 与点A (0,1)的距离,22(3)2x -+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度 之和,它的最小值就是PA+PB 的最小值.设点A 关于x 轴的对称点为A ′,则PA=PA ′,因此,求PA+PB 的最小值,只需求PA ′+PB 的最小值,而点A ′、B 间的直线段距离最短,所以PA ′+PB 的最小值为线段A ′B 的长度.为此,构造直角三角形A ′CB ,因为A ′C =3,CB =3,所以A ′B =32,即原式的最小值为32. 根据以上阅读材料,解答下列问题: (1)代数式22(1)1+(2)9x x -+-+的值可以看成平面直角坐标系中点P (x ,0)与点 A (1,1)、点B 的距离之和.(填写点B 的坐标) (2)代数式2249+1237x x x +-+的最小值为 .2.如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4 x2 2A8 -2 O-2 -4 y 6 B C D -44((2)①图)4 x2 2 A ′8-2 O -2 -4 y 6 B ′ CD -4 4 A ′′((2)②图)4 x2 2 A ′8 -2 O-2 -4 y6 B ′ C D -4 4 A ′′B ′′。
初中数学《课题学习 最短路径问题》教案

教学设计阅读课本P85-87页内容,了解本节主要内容.1.创设问题情境问题1 如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.师生活动:学生回答问题,说出理由:两点之间,线段最短.【教学说明】让学生回顾“两点之间,线段最短”,为引入新课作准备.问题2:如图,要在燃气管道l上修建一个泵站,分别向A、B两村供气,泵站修在管道的什么地方,可使所用的输气管线最短?师生活动:学生回答,连接AB,线段AB与l的交点即为泵站修建的位置.【教学说明】让学生进一步感受“两点之间,线段最短”,为把“同侧的两点”转化为“异侧的两点”做铺垫.2.将实际问题抽象为数学问题问题3 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?师生活动:学生尝试回答,并相互补充,最后达成共识:(1)将A,B 两地抽象为两个点,将河l 抽象为一条直线;(2)在直线l上找到一点C,使AC与BC的和最小?【教学说明】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的概念.3.解决数学问题问题4 如图,点A,B 在直线l 的同侧,在直线l上找到一点C,使AC 与BC 的和最小?师生活动:学生独立思考,尝试画图,相互交流.如果学生有困难,教师可作如下提示:(1)如果点B在点A的异侧,如何在直线l上找到一点C,使AC 与BC的和最小(2)现在点B与点A在同侧,能否将点B移到l 的另一侧点处,且满足直线l 上的任意一点C,都能保持?(3)你能根据轴对称的知识,找到(2)中符合条件的点吗?师生共同完成作图,如下图.作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C.则点C 即为所求.【教学说明】教师一步一步引导学生,如何将同侧的两点转化为异侧的两点,为问题的解决提供思路,渗透转化思想.4.证明AC +BC “最短”问题4 你能用所学的知识证明AC +BC最短吗?师生活动:学生独立思考,相互交流,师生共同完成证明过程.证明:如图,在直线l 上任取一点(与点C 不重合),连接AC′,BC′,.由轴对称的性质知,,.∴,.在△中,,∴.即AC +BC 最短.追问1:证明AC +BC最短时,为什么要在直线l上任取一点(与点C但不重合)?师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.【教学说明】让学生体会作法的正确性,提高逻辑思维能力.追问2:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?师生活动:学生回答,相互补充.【教学说明】学生在反思中,体会轴对称的桥梁作用,感悟转化思想,丰富数学活动经验.5.巩固练习6.归纳小结教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?师生活动:教师引导,学生小结.【教学说明】:引导学生把握研究问题的基本策略和方法,体会轴对称在解决最短路径问题中的作用,感悟转化思想的重要价值.。
八年级上册 课题学习《最短路径问题》说课稿

课题学习《最短路径问题》说课稿各位领导、专家、同仁们大家好:今天我说课的的内容是:人教八年级上册第13章第四节课题学习最短路径问题。
下面我将从:教材分析、学情分析、教学目标、教学重难点、教法、学法、教学手段、教学过程、板书设计、反思十个方面展开我的说课。
一、教材分析:本节课的内容是在学习了轴对称图形及两点之间线段最短知识的基础上学习的最短路径问题。
同时为我们今后解决坐标系下线段和最短的问题打下基础。
所以本节课的学习既是对前面所学知识的应用又为今后学习新知识做了铺垫,起到了呈上起下的作用。
二、学情分析1、已有的知识与能力:八年级学生已经学习了“两点之间线段最短”“垂线段最短”这些关于距离最短问题的解决依据。
也初步接触了逻辑推理证明的方法。
2、未接触的知识能力:由于八年级学生首次遇到线段和最小,所以无从下手,另外证明两条线段和最小时要选取另外一点,学生想不到、不会用,所以利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短是本节课的难点。
3.综合能力方面:八年级学生这一阶段的学生思维能力发展较快,自我意识增强,有较强的求知欲和表现欲,在情感方面他们能进行自我教育。
经过一年多新课程理念的熏陶及实践,学生已有了初步的自主学习、合作探究的能力,但部分学生存在不自信,羞于表现等思想顾虑,但又希望能得到他人的肯定。
因此我的教学目标分了三层,照顾不同程度的学生。
在教学活动中尽量让他们参与到活动中来,减少他们的恐惧感,通过学生间的合作学习,降低他们的学习难度,使各层次的学生都有所收获,使他们体验到成功的喜悦。
通过以上教材与学情分析我制定了本节课教学目标:三、教学目标:1、知识与能力目标:(1)能利用轴对称解决简单的最短路径问题。
(2)能将实际问题中的“地点”、“河”抽象为数学中的“点”、“直线”,把实际问题抽象为数学问题。
2、过程与方法目标:(1)使学生经历提出问题——合作探究——动手操作——组间对比——理论证明——解决问题的过程。
最短路径问题教案

最短路径问题教案一、前置知识在学习最短路径问题之前,需要掌握以下基础知识:1.图的基本概念:顶点、边、度、路径、连通性等。
2.图的存储方式:邻接矩阵、邻接表等。
3.图的遍历算法:深度优先搜索(DFS)、广度优先搜索(BFS)等。
4.基本的算法思想:贪心、分治、动态规划等。
二、最短路径问题最短路径问题是指在一个加权图中,找到从一个顶点到另一个顶点的最短路径。
其中,加权图是指每条边都有一个权值,表示从一个顶点到另一个顶点的距离或代价。
最短路径问题是图论中的一个经典问题,也是许多实际问题的基础。
例如,在计算机网络中,路由器需要找到从源节点到目标节点的最短路径,以便将数据包传输到目标节点。
最短路径问题可以分为两类:单源最短路径和全源最短路径。
1. 单源最短路径单源最短路径是指从一个固定的源节点出发,到达图中其他所有节点的最短路径。
常见的算法有:•Dijkstra算法•Bellman-Ford算法•SPFA算法1.1 Dijkstra算法Dijkstra算法是一种贪心算法,用于解决单源最短路径问题。
它的基本思想是:从源节点开始,每次选择距离源节点最近的一个节点,然后以该节点为中心进行扩展,直到扩展到终点为止。
Dijkstra算法的具体步骤如下:1.初始化:将源节点到所有节点的距离初始化为无穷大,源节点到自身的距离为0。
2.选择:从未确定最短路径的节点中,选择距离源节点最近的节点。
3.更新:对于该节点的所有邻居节点,更新它们到源节点的距离。
4.标记:将该节点标记为已确定最短路径。
5.重复:重复步骤2~4,直到所有节点都被标记为已确定最短路径,或者无法到达终点。
Dijkstra算法的时间复杂度为O(n^2),其中n为节点数。
如果使用堆优化,可以将时间复杂度降为O(mlogn),其中m为边数。
1.2 Bellman-Ford算法Bellman-Ford算法是一种动态规划算法,用于解决单源最短路径问题。
它的基本思想是:从源节点开始,每次对所有边进行松弛操作,即尝试通过当前节点更新其他节点的距离,直到所有节点的距离都不再更新。
八年级数学上册《最短路径问题》教案、教学设计

4.方法指导:教师引导学生运用坐标系、网格纸等工具,将实际问题转化为数学模型。
5.课堂小结:总结解决最短路径问题的方法,提炼数学思想。
第二课时:巩固提高,解决实际问题
1.创设情境:提供一些实际生活中的问题,让学生运用所学知识解决。
2.自主探究:学生独立思考,尝试解决实际问题。
2.培养学生面对困难时,勇于挑战、积极思考的良好品质。
3.培养学生合作交流、共同解决问题的团队意识,提高沟通能力。
4.培养学生将所学知识运用到实际生活中的意识,增强学生的实践能力。
5.使学生认识到数学与现实生活的紧密联系,体会数学在解决实际问题中的价值,提高学生对数学学科的认识。
二、学情分析
八年级的学生已经具备了一定的数学基础,对于坐标系、距离计算等概念有初步的了解。在此基础上,他们对最短路径问题充满好奇心,但可能尚未形成系统性的解题思路和方法。因此,在本章节的教学中,应关注以下几个方面:
b.请学生尝试研究:在给定的条件下,如何判断两点之间是否存在最短路径?若存在,如何求解?
作业要求:
1.学生需独立完成作业,确保解题过程清晰、规范。
2.鼓励学生在解决最短路径问题时,尝试不同的方法和思路,培养创新意识。
3.做完作业后,学生应认真检查,确保答案正确,并对解题过程进行总结和反思。
4.作业完成后,及时上交,教师将进行批改和反馈。
五、作业布置
为了巩固本节课所学知识,提高学生解决最短路径问题的能力,特布置以下作业:
1.必做题:
a.请学生绘制一幅包含五个点的坐标系图,任意指定两个点作为起点和终点,找出所有可能的最短路径,并计算出它们的长度。
b.从教材或课外资料中选择两道最短路径问题的题目,运用课堂所学方法进行解答。
八年级数学上册《学习最短路径问题》教案、教学设计

1.设计练习题:根据教学目标和重难点,设计不同难度的练习题,让学生巩固所学知识。
2.独立完成:学生独立完成练习题,提高解决问题的能力。
3.教师指导:针对学生做题过程中遇到的问题,给予个别指导,帮助学生掌握解题方法。
4.评价与反馈:对学生的练习成果进行评价,及时反馈,促使学生改进和提高。
八年级数学上册《学习最短路径问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解最短路径问题的基本概念,了解其在现实生活中的应用,如地图导航、网络路由等。
2.学会使用数学方法求解最短路径问题,包括但不限于:欧几里得算法、迪杰斯特拉算法等。
3.能够运用所学的最短路径算法解决实际问题,并能够根据问题背景选择合适的算法。
(五)总结归纳
1.知识点回顾:对本节课所学的最短路径问题、欧几里得算法、迪杰斯特拉算法等知识点进行回顾和总结。
2.学生分享:邀请学生分享自己在学习过程中的收获和感悟,提高学生的表达能力。
3.教师点评:针对学生的分享,给予积极的评价和引导学生认识到数学在解决实际问题中的价值,培养他们勇于探索、积极思考的精神,以及团队合作、尊重他人的品质。
三、教学重难点和教学设想
(一)教学重点
1.最短路径问题的基本概念及其在实际中的应用。
2.欧几里得算法、迪杰斯特拉算法等最短路径求解方法。
3.将实际问题转化为数学模型的能力。
4.培养学生的逻辑思维能力和团队合作意识。
(二)教学难点
1.理解并掌握最短路径算法的原理和步骤。
2.将算法应用于解决实际问题,进行数学建模。
4.掌握最短路径问题的数学表达和建模方法,能够将实际问题转化为数学模型。
(二)过程与方法
在教学过程中,教师应关注以下过程与方法:
最短路径问题 教案
教学设计基本信息名称最短路径问题教材分析本节课是在学习了轴对称的知识后学习的与实际问题密切相关的最短路径问题,集中体现了利用数学知识解决实际问题,体现了数学知识在实际中的用处。
学情分析八年级学生中等成绩的多,优秀生和学困生较少。
知识与能力目标1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.2.能做出一个图形经轴对称变化后的图形。
3.能利用轴对称变换解决日常生活中的实际问题。
过程与方法目标通过问题解决培养学生转化问题能力教学目标情感态度与价值观目标数学来源实际服务生活,培养数学学习兴趣重点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.教学重难点难点在实际题目中会运用最短路径问题。
教学策略与设计说明利用教学资源网站,通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。
教学过程教学环节(注明每个环节预设的时间)教师活动学生活动设计意图像这样我们研究过一些关于“两点的所有连线中,线问题3 你能用所学的知识证明′.AB′,三.运用新知练习2 如图,一个旅游船从大桥AB 的P 处前往山脚下的处接游客,然后将游客送往河岸BC 上,再返请画出旅游船的最短路径。
P′,P点关于课堂小结2分钟同学们谈谈这节课运用了哪些数学知识,你们学到了什么?1、利用轴对称解决两点之间最短路径问题2、轴对称知识在生活中的运用布置作业1分钟教科书66页12题。
板书设计利用轴对称解决简单的最短路径问题教学反思我对本节课的讲授结果满意,学生能逐渐由简单到复杂,逐步深入地理解了两点在直线同侧的情况,如何找最短路径。
学生能正确做图,找到要找的点,解决了最短路径问题的作图。
这是本节课的一个目标,学生实现的很好。
在别的关于最短路径问题中,学生大部分能根据轴对称找到最短路径。
人教版八年级数学上册《课题学习 最短路径问题(第2课时)》示范教学设计
课题学习最短路径问题(第2课时)教学目标1.利用平移、轴对称解决最短路径的问题,进一步感悟化归思想.2.将实际问题抽象成几何图形的过程中,培养学生用符号语言和图形语言表达数学问题的能力.教学重点利用平移、轴对称解决最短路径的问题.教学难点体会图形的变化在解决最短路径问题中的作用,感悟化归思想.教学过程知识回顾上节课我们研究了两类最短路径问题:1.点A,B在直线l异侧:2.点A,B在直线l同侧:【师生活动】教师提出问题,学生作答.【设计意图】通过复习已研究过的最短路径问题,为引出本节课的课题“造桥选址问题”作铺垫.新知探究一、探究学习【问题】(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【师生活动】教师提问:1.这是一个实际问题,想一想可以把它抽象为怎样的数学问题?学生思考并回答:可以把河的两岸看成两条平行线a和b(如图),N为直线b上的一个动点,MN垂直于直线b,交直线a于点M.当点N在直线b的什么位置时,AM+MN+NB最小?教师提问:2.问题是否可以转化?学生回答:由于河岸宽度是固定的(MN长度固定),当AM+NB最小时,AM+MN +NB最小.所以问题可以转化为:当点N在直线b的什么位置时,AM +NB最小.教师提问:3.能否通过图形的变化将问题转化为之前研究过的问题呢?教师提示:可以考虑将问题转化为两点在直线异侧,连接A,B两点,与直线的交点即为N.依据:两点之间,线段最短.根据提示,学生思考并回答:将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.所以问题转化为:当点N在直线b的什么位置时,A′N+NB最小?教师提问:4.这是我们上节课讲的哪种类型?问题应该怎样解决?学生回答:这是我们研究的两点在直线异侧时求最短路径问题.在连接A′,B两点的线中,线段A′B最短.线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN,所得路径AMNB是最短的.教师提问:5.试着说一下作图过程.学生独立思考后,尝试画图,寻求符合条件的点,然后小组交流,学生代表汇报交流结果,师生共同补充.作法:(1)将A沿与河岸垂直的方向平移到A′,使AA′的长度等于桥长;(2)连接A′B,交直线b于点N,点N即为所求;(3)过N作NM⊥a于M,线段MN即为桥的位置.此时从A到B的路径AMNB最短.教师提问:6.你能试着证明一下吗?师生共同分析,然后学生说明证明过程,教师板书.证明:在直线b上任取一点N′,过点N′作N′M′⊥a,连接AM′,A′N′,N′B,由平移性质可知,AM=A′N,AM′=A′N′.所以AM+NB=A′N+NB=A′B,AM′+N′B=A′N′+N′B.由“两点之间,线段最短”可知:A′B<A′N′+N′B,即AM+NB<AM′+N′B,即AM+MN+NB<AM′+M′N′+N′B.【归纳】在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.【设计意图】通过证明得出新知,让学生进一步体会作法的正确性,提高逻辑思维能力.二、典例精讲【例题】已知线段a,点A,B在直线l的同侧,在直线l上求作两点P,Q(点P在点Q的左侧)且PQ=a,使得四边形APQB的周长最小.【师生活动】教师分析:先在直线l上取PQ=a(如图),连接AP,QB,AB,此时在四边形APQB中,线段PQ和线段AB的长度是固定的,所以当AP+QB最小时,四边形APQB的周长最小.学生根据分析尝试说出作图过程,教师板书.【答案】作法:(1)将点A沿直线l的方向平移到A′,使得AA′=a;(2)作A′关于直线l的对称点A′′;(3)连接A′′B,与直线l交于一点Q,Q即为所求点;(4)在点Q左侧取点P,使得PQ=a,P即为所求点.连接AP,AB,所得四边形APQB的周长最小.【设计意图】让学生进一步巩固解决最短路径问题的基本策略和基本方法.课堂小结板书设计一、将军饮马问题(复习)二、造桥选址问题。
课题学习最短路径问题优秀教学案例20人教版八年级数学上册
(五)作业小结
在作业小结环节,我会布置一些相关的练习题,让学生通过练习来巩固和加深对最短路径问题的理解。同时,我会鼓励学生在日常生活中注意观察和思考最短路径问题,将所学知识运用到实际生活中。
最后,我会对学生的学习成果进行评价,给予积极的反馈和鼓励,帮助他们建立自信心和自尊心。通过这样的教学内容与过程,我期望学生能够全面理解和掌握最短路径问题的知识和技能,培养他们的问题解决能力和团队合作能力。
在课堂讨论环节,我鼓励学生积极参与,分享自己的解题思路和心得。针对学生提出的问题,我耐心解答,帮助他们克服困难,深入理解最短路径问题的本质。通过这种方式,学生不仅掌握了最短路径问题的解决方法,还培养了团队协作和沟通能力。
在课后作业环节,我布置了相关的练习题,让学生巩固所学知识。同时,我要求学生在日常生活中注意观察和思考最短路径问题,将所学知识运用到实际生活中,提高解决实际问题的能力。
二、教学目标
(一)知识与技能
在本章节的教学中,我期望学生能够掌握最短路径问题的基本概念和解决方法。他们应该能够理解最短路径在实际生活中的应用,并能够运用所学的知识解决一些实际问题。此外,我还希望学生能够掌握图论中的基本概念,如顶点、边和图等,并能够运用这些概念来解决问题。
为了达到这个目标,我将在课堂上通过讲解和示例,帮助学生理解和掌握最短路径问题的解决方法。我会使用实际生活中的问题来引导学生思考和探索,使他们能够将所学的知识应用到实际情境中。同时,我还将会提供一些练习题和作业,让学生通过实践来巩固和加深对最短路径问题的理解。
(二)过程与方法
在教学过程中,我将以学生为中心,注重培养学生的思维能力和解决问题的能力。我会鼓励学生积极参与课堂讨论,分享自己的解题思路和心得。通过小组合作和交流,学生将能够学会倾听和理解他人的观点,培养团队合作和沟通能力。
最短路径优秀教案.doc
课题学习最短路径问题(笫1课时)教学目标1.了解将军饮马及造桥选址两个常见类型.2.会解答将军饮马及造桥选址中的最短路径问题.3.能初步应用将军饮马及造桥选址两个常见类型完成类似题目.教学重点难点1.将实际问题抽象为数学问题.2.解决最短路径问题教学内容将军饮马.教学过程一、导入新课问题1如下图,牧马人从A地出发,到一条笔直的河边/饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?二、探究新知1.将实际问题抽象为数学问题师生活动:学生尝试回答,并相互补充,最后达成共识.(1)把A、B两地抽象为两个点;(2)把河边Z近似地看成一条直线(下图),C为直线Z上的一个动点,那么,上面的问题可以转化为:当点C在/的什么位置时,AC与CB的和最小.2.尝试解决数学问题(1)由这个问题,我们可以联想到下面的问题:如图,点A, 〃分别是直线?异侧的两个点,如何在2上找到一个点,使得这个点到点A、点〃的距离的和最短?•B利用已经学过的知识,可以很容易地解决上面的问题,即:连接与直线/相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.(2)现在要解决的问题是:点A, B分别是直线2同侧的两个点,如何在2 上找到一个点,使得这个点到点A、点B的距离的和最短?(3)如何能把点B移到2的另一侧处,同时对直线2上的任一点C,都保持CB 与CB,的长度相等,就可以把问题转化为“上图”的情况,从而使新问题得到解决.(4)你能利用轴对称的有关知识,找到符合条件的点歹吗?学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:作出点B关于/的对称点B',利用轴对称的性质,可以得到CB'=CB (下右图).连接AB',则A夕与/的交点即为所求.3.师生共同分析,合作证明“AC+BC”最短.证明:如上右图,在直线/上的任一点C (与点C 不重合),连接AC, BC, BG 由轴对称的性质知:BC=B'C, BC=BC:.AC+BC=AC+B ,C=AB ,f AC ,+BC ,=AC+B f C ,.在△ ABC 中,AB ,<AC ,+B ,C ,,・•・ AC+BC<AC+BC. 即AC+BC 最短.提问:证明AC+BC 最短时,为什么要在直线/上任収一点C (与点C 不重合),证 明AC+BC<AC+BC2这里“C”的作用是什么?学生相互交流,教师适时点拨,最后达成共识.三、巩固练习已知P 是△ABC 的边BC 上的点,你能在AB 、AC 上分别确定一点Q 和几 使△P0R 的周长最短吗?学生独立完成,必要时教师点拨指导.课堂小结总结用数学解决实际问题的步骤.教学反思: 证明"I'・B'。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.4 课题学习最短路径问题
教学目标
1.了解将军饮马及造桥选址两个常见类型.
2.会解答将军饮马及造桥选址中的最短路径问题.
3.能初步应用将军饮马及造桥选址两个常见类型完成类似题目.
教学重点难点
1.将实际问题抽象为数学问题.
2.解答最短路径问题.
课时安排
2课时.
第1课时
教学内容将军饮马.
教学过程
一、导入新课
问题1 如下图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?
二、探究新知
1.将实际问题抽象为数学问题
师生活动:学生尝试回答,并相互补充,最后达成共识.
(1)把A、B两地抽象为两个点;
(2)把河边l近似地看成一条直线(下图),C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.
2.尝试解决数学问题
(1)由这个问题,我们可以联想到下面的问题:如图,点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?
利用已经学过的知识,可以很容易地解决上面的问题,即:连接AB,与直线l相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.
(2)现在要解决的问题是:点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?
(3)如何能把点B移到l的另一侧B′处,同时对直线l上的任一点C,都保持CB与CB′的长度相等,就可以把问题转化为“上图”的情况,从而使新问题得到解决.
(4)你能利用轴对称的有关知识,找到符合条件的点B′吗?
学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:
作出点B关于l 的对称点B′,利用轴对称的性质,可以得到CB′=CB(下右图).连接AB′,则AB′
与l 的交点即为所求.
3.证明“最短”
师生共同分析,合作证明“AC+BC”最短.
证明:如上右图,在直线l上的任一点C′(与点C不重合),连接AC′,BC′,B′C′,
由轴对称的性质知:BC=B′C,BC′=B′C′.
∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.
在△AB′C′中,AB′<AC′+B′C′,
∴AC+BC<AC′+BC′.
即AC+BC最短.
提问:证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里“C′”的作用是什么?
学生相互交流,教师适时点拨,最后达成共识.
三、巩固练习
已知P是△ABC的边BC上的点,你能在AB、AC上分别确定一点Q和R,使△PQR的周长最短吗?学生独立完成,必要时教师点拨指导.
四、课堂小结
总结用数学解决实际问题的步骤.
第2课时
教学内容
造桥选址.
教学过程
一、导入新课
造桥选址问题:如下图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)
二、探究新知
1.将实际问题抽象为数学问题
把河的两岸看成两条平行线a和b(下图),N为直线b上的一个动点,MN垂直于直线b,交直线a 于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB 最小?
2.尝试解决数学问题
(1)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?
(2)如下左图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样,问题就转化为:当点N在直线b的什么位置时,A′N+NB最小?
(3)如上右图,在连接A′,B两点的线中,线段A′B最短.因此,线段A′B与直线b的交点N的位置即为所求.
3.证明“最小”
为了证明点N的位置即为所求,我们不妨在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+M′N′+N′B.你能完成这个证明吗?
证明:如上右图,在△A′N′B中,
∵A′B<A′N′+BN′,
∴A′N+BN+MN<AM′+BN′+M′N′.
∴AM+MN+BN<AM′+M′N′+BN′.
即AM+MN+BN最小.
三、课堂小结
归纳:在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.。