金安区高中2018-2019学年高二下学期第二次月考试卷数学

合集下载

黄浦区高中2018-2019学年高二下学期第二次月考试卷数学

黄浦区高中2018-2019学年高二下学期第二次月考试卷数学

黄浦区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .2015222. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)3. 如果执行右面的框图,输入N=5,则输出的数等于( )A .B .C .D .4. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .5. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定6. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 7. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( ) A .(﹣1,0)B .(﹣1,1)C .(0,1)D .(1,3)8. 设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .39. 计算log 25log 53log 32的值为( )A .1B .2C .4D .810.已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐C 的离心率是( )A B .2 C D 11.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[]12.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)二、填空题13.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.14.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)15.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .16.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .17.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________.18.若P (1,4)为抛物线C :y 2=mxF 的距离为|PF|= .三、解答题19.(本题12分)如图,D 是Rt ∆.(1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .20.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.21.设p:关于x的不等式a x>1的解集是{x|x<0};q:函数的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.22.在等比数列{a n}中,a3=﹣12,前3项和S3=﹣9,求公比q.23.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.24.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.25.实数m 取什么数值时,复数z=m+1+(m ﹣1)i 分别是: (1)实数? (2)虚数? (3)纯虚数?26.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.黄浦区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 2. 【答案】D【解析】解:∵方程x 2+ky 2=2,即表示焦点在y 轴上的椭圆∴故0<k <1故选D .【点评】本题主要考查了椭圆的定义,属基础题.3. 【答案】D【解析】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出S=的值.∵S==1﹣=故选D .4. 【答案】B【解析】解:∵y=f (|x|)是偶函数, ∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.5. 【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D 连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.6.【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心,1为半径的圆及其内部,Ω2表示OABD及其内部,由几何概型得点M落在区域Ω2内的概率为112P==p2p,故选A.7.【答案】C【解析】解:∵集合M={x|x2﹣2x﹣3<0}={x|﹣1<x<3},N={x|log2x<0}={x|0<x<1},∴M∩N={x|0<x<1}=(0,1).故选:C .【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.8. 【答案】C【解析】解:∵a+b=3,b >0, ∴b=3﹣a >0,∴a <3,且a ≠0.①当0<a <3时, +==+=f (a ),f ′(a )=+=,当时,f ′(a )>0,此时函数f (a )单调递增;当时,f ′(a )<0,此时函数f (a )单调递减.∴当a=时, +取得最小值.②当a <0时, +=﹣()=﹣(+)=f (a ),f ′(a )=﹣=﹣,当时,f ′(a )>0,此时函数f (a )单调递增;当时,f ′(a )<0,此时函数f (a )单调递减.∴当a=﹣时, +取得最小值.综上可得:当a=或时,+取得最小值.故选:C .【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.9. 【答案】A【解析】解:log 25log 53log 32==1.故选:A .【点评】本题考查对数的运算法则的应用,考查计算能力.10.【答案】C 【解析】试题分析:由题意知()1,0到直线0bx ay -=的距离为22=,得a b =,则为等轴双曲故本题答案选C. 1考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2a 化为的关系式,解方程或者不等式求值或取值范围.11.【答案】B 【解析】当x ≥0时,f (x )=,由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。

尖山区高中2018-2019学年高二下学期第二次月考试卷数学

尖山区高中2018-2019学年高二下学期第二次月考试卷数学

尖山区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有成立,下列结论中错误的是( )A .f (3)=0B .直线x=﹣6是函数y=f (x )的图象的一条对称轴C .函数y=f (x )在[﹣9,9]上有四个零点D .函数y=f (x )在[﹣9,﹣6]上为增函数2. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .33. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 4. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >05. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个6. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .37. 在△ABC 中,已知a=2,b=6,A=30°,则B=( ) A .60° B .120° C .120°或60° D .45°8. 下列函数中,在区间(0,+∞)上为增函数的是( )A .y=x ﹣1B .y=()x C .y=x+D .y=ln (x+1)9. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.18 C.D.10.下列4个命题:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”;②若“¬p或q”是假命题,则“p且¬q”是真命题;③若p:x(x﹣2)≤0,q:log2x≤1,则p是q的充要条件;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2;其中正确命题的个数是()A.1个B.2个C.3个D.4个11.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为()A.1 B.2 C.3 D.412.如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.二、填空题13.若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a的取值范围为.14.设S n是数列{a n}的前n项和,且a1=﹣1,=S n.则数列{a n}的通项公式a n=.15.给出下列四个命题:①函数f(x)=1﹣2sin2的最小正周期为2π;②“x2﹣4x﹣5=0”的一个必要不充分条件是“x=5”;③命题p:∃x∈R,tanx=1;命题q:∀x∈R,x2﹣x+1>0,则命题“p∧(¬q)”是假命题;④函数f(x)=x3﹣3x2+1在点(1,f(1))处的切线方程为3x+y﹣2=0.其中正确命题的序号是.16.定义在(﹣∞,+∞)上的偶函数f(x)满足f(x+1)=﹣f(x),且f(x)在[﹣1,0]上是增函数,下面五个关于f(x)的命题中:①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0).正确命题的个数是 .17.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .18.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______.三、解答题19.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列; (Ⅱ)设b n =a nsin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n<.20.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.21.已知直线l 经过两条直线2x+3y ﹣14=0和x+2y ﹣8=0的交点,且与直线2x ﹣2y ﹣5=0平行.(Ⅰ) 求直线l 的方程;(Ⅱ) 求点P (2,2)到直线l 的距离.22.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},(1)求a ,b ; (2)解不等式ax 2﹣(ac+b )x+bc <0.23.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .24.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.25.(本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且C b B c A a cos cos cos 2+=.(1)A cos 的值;(2)若422=+c b ,求ABC ∆的面积.26.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.尖山区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:对于A :∵y=f (x )为R 上的偶函数,且对任意x ∈R ,均有f (x+6)=f (x )+f (3), ∴令x=﹣3得:f (6﹣3)=f (﹣3)+f (3)=2f (3), ∴f (3)=0,故A 正确;对于B :∵函数y=f (x )是以6为周期的偶函数, ∴f (﹣6+x )=f (x ),f (﹣6﹣x )=f (x ), ∴f (﹣6+x )=f (﹣6﹣x ),∴y=f (x )图象关于x=﹣6对称,即B 正确;对于C :∵y=f (x )在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f (3)=f (﹣3)=0, ∴方程f (x )=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f (x )是以6为周期的函数, ∴方程f (x )=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9), ∴方程f (x )=0在[﹣9,9]上有4个实根.故C 正确;对于D :∵当x 1,x 2∈[0,3]且x 1≠x 2时,有,∴y=f (x )在区间[0,3]上为增函数,又函数y=f (x )是偶函数,∴y=f (x )在区间[﹣3,0]上为减函数,又函数y=f (x )是以6为周期的函数, ∴y=f (x )在区间[﹣9,﹣6]上为减函数,故D 错误. 综上所述,命题中正确的有A 、B 、C . 故选:D .【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.2. 【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2. 故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题.3. 【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质. 4. 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.5.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.6.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.7.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.8.【答案】D【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.9.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.10.【答案】C【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;③由p:x(x﹣2)≤0,得0≤x≤2,由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.∴正确的命题有3个.故选:C.11.【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A.【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.12.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。

普陀区高中2018-2019学年高二下学期第二次月考试卷数学

普陀区高中2018-2019学年高二下学期第二次月考试卷数学

普陀区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 已知椭圆C:+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B两点,若△AF 1B 的周长为4,则C 的方程为( )A.+=1B.+y 2=1C.+=1D.+=12. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣33. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.4. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 33αα+ C. 3sin 31αα-+D.2sin cos 1αα-+ 5. 两条平行直线3x ﹣4y+12=0与3x ﹣4y ﹣13=0间的距离为( ) A .B .C .D .56. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1) C .D .7. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.{x|x≥0} B.{x|x≤1} C.{﹣1,0,1} D.R8.已知实数x,y满足约束条件,若y≥kx﹣3恒成立,则实数k的数值范围是()A.[﹣,0] B.[0,] C.(﹣∞,0]∪[,+∞)D.(﹣∞,﹣]∪[0,+∞)9.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>7 B.k>6 C.k>5 D.k>410.已知复数z满足zi=1﹣i,(i为虚数单位),则|z|=()A.1 B.2 C.3 D.11.在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0<B.0 C.0D.012.已知双曲线(a>0,b>0)的右焦点F,直线x=与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是()A.B.C.D.二、填空题13.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.14.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .15.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.16.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .17.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .18.若全集,集合,则 三、解答题19.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34. (1)求a 与b 的值;(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.20.已知函数f (x )=|x ﹣2|. (1)解不等式f (x )+f (x+1)≤2(2)若a <0,求证:f (ax )﹣af (x )≥f (2a )21.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.22.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于 点D ,过B 作O 的切线交AD 的延长线于点E .(Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.23.已知函数,且. (Ⅰ)求的解析式; (Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.24.已知矩阵A=,向量=.求向量,使得A2=.25.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.26.如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.(1)求证:平面ABD⊥平面BCD;(2)求二面角F﹣DG﹣C的余弦值.普陀区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵△AFB的周长为4,1∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.2.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.3. 【答案】C4. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.5. 【答案】D【解析】解:两条平行直线3x ﹣4y+12=0与3x ﹣4y ﹣13=0间的距离为: =3.故选:D .【点评】本题考查平行线之间的距离公式的求法,考查计算能力.6. 【答案】C【解析】解:不等式(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,即(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立若m+1=0,显然不成立若m+1≠0,则解得a .故选C .【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.7. 【答案】A【解析】解:由A={x|x ≥0},且A ∩B=B ,所以B ⊆A . A 、{x|x ≥0}={x|x ≥0}=A ,故本选项正确;B 、{x|x ≤1,x ∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误.故选:A.【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.8.【答案】A【解析】解:由约束条件作可行域如图,联立,解得B(3,﹣3).联立,解得A().由题意得:,解得:.∴实数k的数值范围是.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.9.【答案】C【解析】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 0第一圈2 2 是第二圈3 7 是第三圈4 18 是第四圈5 41 是第五圈6 88 否故退出循环的条件应为k>5?故答案选C.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.10.【答案】D【解析】解:∵复数z满足zi=1﹣i,(i为虚数单位),∴z==﹣i﹣1,∴|z|==.故选:D.【点评】本题考查了复数的化简与运算问题,是基础题目.11.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.12.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.二、填空题13.【答案】 [0,2] .【解析】解:∵|x ﹣m|﹣|x ﹣1|≤|(x ﹣m )﹣(x ﹣1)|=|m ﹣1|, 故由不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,可得|m ﹣1|≤1,∴﹣1≤m ﹣1≤1, 求得0≤m ≤2, 故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.14.【答案】 平行 .【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1 由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.15.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =12时,直线y =2mx −1与y =ln x 的图象相切,由图可知,当0<m <12时,y =ln x 与y =2mx −1的图象有两个交点, 则实数m 的取值范围是(0,12),故答案为:(0,12).16.【答案】12【解析】考点:分层抽样17.【答案】 (﹣1,1] .【解析】解:在同一坐标系中画出函数f (x )和函数y=log 2(x+1)的图象,如图所示:由图可得不等式f (x )≥log 2(x+1)的解集是:(﹣1,1],. 故答案为:(﹣1,1]18.【答案】{|0<<1} 【解析】∵,∴{|0<<1}。

金州区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

金州区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

金州区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到2. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0D .43. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形4. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A .B .C .D .5. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.6. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .47. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D . +8. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.9. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 10.线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对11.已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数Y P在降水量X至少是100的条件下,工期延误不超过15天的概率为()A.0.1 B.0.3 C.0.42 D.0.512.对“a,b,c是不全相等的正数”,给出两个判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a不能同时成立,下列说法正确的是()A.①对②错B.①错②对C.①对②对D.①错②错二、填空题13.求函数在区间[]上的最大值.14.如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.15.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.16.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是.17.若直线x﹣y=1与直线(m+3)x+my﹣8=0平行,则m=.18.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.三、解答题19.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),求f(B)的值.20.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.21.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l 1过椭圆C 1的另一焦点F 2,且与抛物线C 2相切于第一象限的点A ,设平行l 1的直线l 交椭圆C 1于B ,C 两点,当△OBC 面积最大时,求直线l 的方程.22.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.23.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x 轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;(Ⅱ)判断▱ABCD 能否为菱形,并说明理由.(Ⅲ)当▱ABCD 的面积取到最大值时,判断▱ABCD 的形状,并求出其最大值.24.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.(Ⅰ)求证:BC⊥平面A1AC;(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.金州区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.2.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=﹣x,则f(x)+f(﹣x)=f(0)=0,所以,f(﹣x)=﹣f(x),所以,函数f(x)为奇函数.又f(3)=4,所以,f(﹣3)=﹣f(3)=﹣4,所以,f(0)+f(﹣3)=﹣4.故选:B.【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.3.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.4.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.5.【答案】D第Ⅱ卷(共100分)[.Com]6. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 7. 【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB , 若存在θ∈R ,使得xcos θ+ysin θ+1=0成立,则(cos θ+sin θ)=﹣1, 令sin α=,则cos θ=,则方程等价为sin (α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.8.【答案】B9.【答案】D111]【解析】考点:相等函数的概念.10.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.11.【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)==0.5,故答案选:D.12.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.二、填空题13.【答案】.【解析】解:∵f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+.又x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1],∴sin(2x﹣)+∈[1,].即f(x)∈[1,].故f(x)在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.14.【答案】4【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成.故答案为:4.15.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。

错那县高中2018-2019学年高二下学期第二次月考试卷数学

错那县高中2018-2019学年高二下学期第二次月考试卷数学

错那县高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)2. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 3. i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i4. 在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,则A 为( ) A .锐角 B .直角 C .钝角 D .不存在5. 已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=6. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是( )A .B .C .D .07. 函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .18. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力. 9. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1210.设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤211.函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( ) A .2 B .4C .1D .﹣1二、填空题13.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .14.设函数f (x )=则函数y=f (x )与y=的交点个数是 .15.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .16.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .17.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.18.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题19.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.20.设函数f (x )=x 3﹣6x+5,x ∈R (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)若关于x 的方程f (x )=a 有3个不同实根,求实数a 的取值范围.21.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.22.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R . (1)当a=1时,解方程f (x )﹣1=0;(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围; (3)若函数f (x )有零点,求实数a 的取值范围.23.在等比数列{a n }中,a 3=﹣12,前3项和S 3=﹣9,求公比q .24.(14分)已知函数1()ln ,()e x x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分25.已知直线l 经过两条直线2x+3y ﹣14=0和x+2y ﹣8=0的交点,且与直线2x ﹣2y ﹣5=0平行. (Ⅰ) 求直线l 的方程;(Ⅱ) 求点P (2,2)到直线l 的距离.26.已知角α的终边在直线y=x 上,求sin α,cos α,tan α的值.错那县高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:∵f (x )=﹣log 2x ,∴f (2)=2>0,f (4)=﹣<0, 满足f (2)f (4)<0,∴f (x )在区间(2,4)内必有零点, 故选:C2. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 3. 【答案】A【解析】解:由复数性质知:i 2=﹣1故i+i 2+i 3=i+(﹣1)+(﹣i )=﹣1故选A【点评】本题考查复数幂的运算,是基础题.4. 【答案】A【解析】解:在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,即(sinA ﹣sinC )x 2+2sinB x+(sinA+sinC )=0 有两个不等的实根,∴△=4sin 2B ﹣4 (sin 2A ﹣sin 2C )>0,由正弦定理可得 b 2+c 2﹣a 2>0,再由余弦定理可得 cosA=>0,故A 为锐角, 故选A .5. 【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 6. 【答案】A【解析】解:取AB 的中点C ,连接OC ,,则AC=,OA=1∴sin=sin ∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A .7. 【答案】C 【解析】考点:指数函数的概念. 8. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)nx n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .9. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质.10.【答案】 B【解析】解:定义域为R 的函数f (x )是奇函数, 当x ≥0时,f (x )=|x ﹣a 2|﹣a 2=图象如图,∵f (x )为R 上的1高调函数,当x <0时,函数的最大值为a 2,要满足f (x+l )≥f (x ),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.11.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.12.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.二、填空题13.【答案】存在x∈R,x3﹣x2+1>0.【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.14.【答案】4.【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.15.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx ﹣y+1=0与y 轴垂直或与y=x 垂直,是解答的关键.16.【答案】 [1,5)∪(5,+∞) .【解析】解:整理直线方程得y ﹣1=kx ,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y 轴上,而该椭圆关于原点对称,故只需要令x=0有 5y 2=5m得到y 2=m要让点(0.1)在椭圆内或者椭圆上,则y ≥1即是y 2≥1得到m ≥1∵椭圆方程中,m ≠5m 的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.17.【答案】 6【解析】解:集合A 为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查.18.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===222x y +=.三、解答题19.【答案】【解析】(1)由题意知,)cos )(sin cos (sin 23cos sin )(x x x x x x x f +-+=⋅= )32sin(2cos 232sin 21π-=-=x x x ……………………………………3分 令223222πππππ+≤-≤-k x k ,Z k ∈,则可得12512ππππ+≤≤-k x k ,Z k ∈. ∴)(x f 的单调递增区间为]125,12[ππππ+-k k (Z k ∈).…………………………5分20.【答案】【解析】解:(Ⅰ)∴当,∴f (x )的单调递增区间是,单调递减区间是当;当(Ⅱ)由(Ⅰ)的分析可知y=f (x )图象的大致形状及走向,∴当的图象有3个不同交点,即方程f (x )=α有三解.21.【答案】(1)a ≤;(2)193a <<. 【解析】试题分析:(1)原问题等价于()0f x '≤对()0,+∞恒成立,即12a x x≤+对()0,+∞恒成立,结合均值不等式的结论可得a ≤;(2)由题意可知()2210x ax f x x-+-'==在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的取值范围是193a <<.试题解析:(2)∵函数()f x 在()0,3上既有极大值又有极小值,∴()2210x ax f x x-+-'==在()0,3上有两个相异实根, 即2210x ax -+=在()0,3上有两个相异实根,记()221g x x ax =-+,则()()003{ 40030ag g ∆><<>>,得{012 193a a a a -<<<,即193a <<.22.【答案】【解析】解:(1)a=1时,f (x )=4x ﹣22x +2, f (x )﹣1=(2x )2﹣2•(2x )+1=(2x ﹣1)2=0, ∴2x =1,解得:x=0;(2)4x ﹣a •(2x+1﹣1)+1>0在(0,1)恒成立, a •(2•2x ﹣1)<4x +1, ∵2x+1>1, ∴a >,令2x=t ∈(1,2),g (t )=,则g ′(t )===0,t=t 0,∴g (t )在(1,t 0)递减,在(t 0,2)递增, 而g (1)=2,g (2)=, ∴a ≥2;(3)若函数f (x )有零点,则a=有交点,由(2)令g (t )=0,解得:t=,故a ≥.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题. 23.【答案】【解析】解:由已知可得方程组,第二式除以第一式得=,整理可得q 2+4q+4=0,解得q=﹣2.24.【答案】解:(1)e(1)()exx g x -'=,令()0g x '=,得x = 1. 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3分(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x a f x x-'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立,∴()h x 在[3,4]上为增函数. 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f xh x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e xa x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11e e x x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4],∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3.∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. 8分(3)由(1)知()g x 在(0,e]上的值域为(0,1]. ∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2em >.①此时()f x 在2(0,)m 上递减,在2(,e)m上递增,∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.②由①②,得3e 1m -≥.∵1(0,e]∈,∴2()(1)0f f m =≤成立.下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立.∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立.再证()e m f -≥1.∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. 14分25.【答案】【解析】解:(Ⅰ)联立,解得其交点坐标为(4,2).…因为直线l 与直线2x ﹣2y ﹣5=0平行,所以直线l 的斜率为1.… 所以直线l 的方程为y ﹣2=1×(x ﹣4),即x ﹣y ﹣2=0.… (Ⅱ) 点P (2,2)到直线l的距离为.…【点评】本题考查直线方程的求法,点到直线距离公式的应用,考查计算能力.26.【答案】【解析】解:直线y=x ,当角α的终边在第一象限时,在α的终边上取点(1,),则sin α=,cos α=,tan α=;当角α的终边在第三象限时,在α的终边上取点(﹣1,﹣),则sinα=﹣,cosα=﹣,tanα=.【点评】本题考查三角函数的定义,涉及分类讨论思想的应用,属基础题.。

普安县高中2018-2019学年高二下学期第二次月考试卷数学

普安县高中2018-2019学年高二下学期第二次月考试卷数学

普安县高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .32. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β3. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.154. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91525. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( ) A .0<a <1 B.﹣≤a≤ C .﹣1≤a ≤1 D .﹣2≤a ≤26. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .4B .16C .27D .367. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .38. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 9. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l 10.函数y=x 3﹣x 2﹣x 的单调递增区间为( )A .B .C .D .11.已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]12.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.二、填空题13.如图,在矩形ABCD 中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________ 14.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .15.设函数 则______;若,,则的大小关系是______.16.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .17.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.18.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.三、解答题19.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.20.已知向量=(,1),=(cos ,),记f (x )=.(1)求函数f (x )的最小正周期和单调递增区间;(2)将函数y=f (x )的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x )﹣k 在的零点个数.21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.22.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.23.已知a >0,a ≠1,设p :函数y=log a (x+3)在(0,+∞)上单调递减,q :函数y=x 2+(2a ﹣3)x+1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.24.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程;(2)求||||PB PA ⋅的最值.25.已知向量=(x ,y ),=(1,0),且(+)•(﹣)=0.(1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y=kx+m 相交于不同的两点M 、N ,又点A (0,﹣1),当|AM|=|AN|时,求实数m 的取值范围.26.已知直角梯形ABCD 中,AB ∥CD ,,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.普安县高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵指数函数的反函数是对数函数,∴函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1.故选:B.【点评】本题给出f(x)是函数y=3x(x∈R)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题.2.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D3.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.4.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.5.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a ≤ 故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.6. 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是, 则输出的36。

宜州区高中2018-2019学年高二下学期第二次月考试卷数学

宜州区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3 B4C5 D62. 若x ,y满足且z=y ﹣x 的最小值为﹣2,则k 的值为( ) A .1B .﹣1C .2D .﹣23. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( ) A .B 2=AC B .A+C=2B C .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )4. 关于x 的方程ax 2+2x ﹣1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .﹣1≤a <0C .a >0或﹣1<a <0D .a ≥﹣15. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β6. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.15 7. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠ D .若tan α≠1,则α=8. 在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或 C .±1 D.9. 已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11?10.如果向量满足,且,则的夹角大小为( ) A .30° B .45° C .75°D .135°11.函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)12.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 33αα+ C. 3sin 31αα-+ D .2sin cos 1αα-+二、填空题13.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.14.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .16.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.17.当a>0,a≠1时,函数f(x)=log a(x﹣1)+1的图象恒过定点A,若点A在直线mx﹣y+n=0上,则4m+2n 的最小值是.18.若在圆C:x2+(y﹣a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是.三、解答题19.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.20.设函数f(x)=a(x+1)2ln(x+1)+bx(x>﹣1),曲线y=f(x)过点(e﹣1,e2﹣e+1),且在点(0,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥0时,f(x)≥x2;(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.21.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.22.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.23.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.24.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.25.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.26.已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x (1)当x<0时,求f(x)的解析式.(2)作出函数f(x)的图象,并指出其单调区间.宜州区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 2.【答案】B【解析】解:由z=y﹣x得y=x+z,作出不等式组对应的平面区域如图:平移直线y=x+z由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最小,此时最小值为﹣2,即y﹣x=﹣2,则x﹣y﹣2=0,当y=0时,x=2,即A(2,0),同时A也在直线kx﹣y+2=0上,代入解得k=﹣1,故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段.3.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n=,B=S2n=,C=S3n=,B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);故B(B﹣A)=A(C﹣A);故选:C.【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.4.【答案】D【解析】解:(1)当a=0时,方程是2x﹣1=0,可知有一个正实根.(2)当a≠0,当关于x的方程ax2+2x﹣1=0有实根,△≥0,解可得a≥﹣1;①当关于x的方程ax2+2x﹣1=0有一个正实根,有﹣<0,解可得a>0;②当关于x的方程ax2+2x﹣1=0有二个正实根,有,解可得a<0;,综上可得,a≥﹣1;故选D.【点评】本题主要考查一个一元二次根的分布问题,属于中档题.在二次项系数不确定的情况下,注意一定要分二次项系数分为0和不为0两种情况讨论.5.【答案】D【解析】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.6.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.7.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C.8.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x≥2时,2x=1,解得x=(舍).综上得x=±1故选:C.9.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.10.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.11.【答案】C【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).故选:C.【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.12.【答案】A【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.二、填空题13.【答案】()(),10,1-∞-⋃【解析】14.【答案】 300 .【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.15.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系 16.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.17.【答案】2.【解析】解:整理函数解析式得f(x)﹣1=log a(x﹣1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m=2n,即2m=n,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:218.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.三、解答题19.【答案】【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,再结合频率分布直方图可知n=,∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,;(Ⅱ)因为第2,3,4组回答正确的人数共有54人,∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;第4组:人(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,其中恰好没有第3组人共3个基本事件,∴所抽取的人中恰好没有第3组人的概率是:.【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.20.【答案】【解析】解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e﹣1)=ae2+b(e﹣1)=a(e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2.…(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m<0即时,h′(x)=2(x+1)ln(x+1)+(1﹣2m)x,h′′(x)=2ln(x+1)+3﹣2m,令h′′(x)=0,得,当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,∴h(x)<h(0)=0,不成立.综上,.…21.【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)22.【答案】【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:×=2.9;(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只有一个科目得分为A,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,则P(B)=.【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.23.【答案】【解析】解:(1)…令∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);单减区间为(﹣2,0).…(2)令∴x=0和x=﹣2,…∴∴f(x)∈[0,2e2]…∴m<0…24.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x,y1),B(x2,y2),1与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k==2﹣,k2==﹣21此时k1+k2=0,猜想λ=1时成立.证明如下:k+k2=+=2+m=2﹣2=01当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.25.【答案】【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e)=e﹣.(2)lg25+lg2﹣log29×log32===1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.26.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.。

金州区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

金州区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣22.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)3.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60°B.120°C.150°D.60°或120°4.已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I(A∩B)等于()A.{3,4} B.{1,2,5,6} C.{1,2,3,4,5,6} D.∅5.连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,﹣2),则⊥的概率是()A.B.C.D.6.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A.1372 B.2024 C.3136 D.44957.下列关系正确的是()A.1∉{0,1} B.1∈{0,1} C.1⊆{0,1} D.{1}∈{0,1}8.函数y=a1﹣x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣1=0(mn>0)上,则的最小值为()A.3 B.4 C.5 D.69.定义在(0,+∞)上的单调递减函数f(x),若f(x)的导函数存在且满足,则下列不等式成立的是()A.3f(2)<2f(3)B.3f(4)<4f(3)C.2f(3)<3f(4)D.f(2)<2f(1)10.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a11.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形12.双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离心率为( )A .2B .C .4D .二、填空题13.若tan θ+=4,则sin2θ= .14.-23311+log 6-log 42()= . 15.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.16.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.17.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .18.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .三、解答题19.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0). (1)讨论f (x )的单调性;(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.20.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以 在1,2,3,4,5,6点中任选一个,并押上赌注m 元,然后掷1颗骰子,连续掷3次,若你所押的点数 在3次掷骰子过程中出现1次, 2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的 1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.21.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.22.已知函数f (x )=x 3+ax+2.(Ⅰ)求证:曲线=f (x )在点(1,f (1))处的切线在y 轴上的截距为定值;(Ⅱ)若x ≥0时,不等式xe x +m[f ′(x )﹣a]≥m 2x 恒成立,求实数m 的取值范围.23.设定义在(0,+∞)上的函数f (x )=,g (x )=,其中n ∈N *(Ⅰ)求函数f (x )的最大值及函数g (x )的单调区间;(Ⅱ)若存在直线l :y=c (c ∈R ),使得曲线y=f (x )与曲线y=g (x )分别位于直线l 的两侧,求n 的最大值.(参考数据:ln4≈1.386,ln5≈1.609) 24.设函数()xf x e =,()lng x x =.(Ⅰ)证明:()2e g x x≥-;(Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.金州区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.2.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.3.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.4.【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A∩B={3,4},∵全集I={1,2,3,4,5,6},∴∁I(A∩B)={1,2,5,6},故选B.【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.5.【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A.【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.6.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.7.【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.8.【答案】B【解析】解:函数y=a1﹣x(a>0,a≠1)的图象恒过定点A(1,1),∵点A在直线mx+ny﹣1=0(mn>0)上,∴m+n=1.则=(m+n)=2+=4,当且仅当m=n=时取等号.故选:B.【点评】本题考查了“乘1法”与基本不等式的性质、指数函数的性质,属于基础题.9.【答案】A【解析】解:∵f(x)为(0,+∞)上的单调递减函数,∴f′(x)<0,又∵>x,∴>0⇔<0⇔[]′<0,设h(x)=,则h(x)=为(0,+∞)上的单调递减函数,∵>x>0,f′(x)<0,∴f(x)<0.∵h(x)=为(0,+∞)上的单调递减函数,∴>⇔>0⇔2f(3)﹣3f(2)>0⇔2f(3)>3f(2),故A正确;由2f(3)>3f(2)>3f(4),可排除C;同理可判断3f(4)>4f(3),排除B;1•f(2)>2f(1),排除D;故选A.【点评】本题考查利用导数研究函数的单调性,求得[]′<0是关键,考查等价转化思想与分析推理能力,属于中档题.10.【答案】C【解析】解:∵ a=ln2<lne 即,b=5=,c=xdx=,∴a ,b ,c 的大小关系为:b <c <a . 故选:C .【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.11.【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 12.【答案】D【解析】解:双曲线﹣=1(a >0,b >0)的一条渐近线方程为bx+ay=0,∵渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,∴=4,∴a 2=3b 2, ∴c 2=4b 2,∴e==.故选:D.【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.二、填空题13.【答案】.【解析】解:若tanθ+=4,则sin2θ=2sinθcosθ=====,故答案为.【点评】本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于中档题.14.【答案】33 2【解析】试题分析:原式=233331334log log16log16log1622+=+=+=+=。

邗江区高中2018-2019学年高二下学期第二次月考试卷数学

邗江区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=22. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f()的值为()A. B .0 C. D.3. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( ) A.B.C.D.4. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处5. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .126. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B.C.D .﹣17. 若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是( )A. B. C. D.8. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( ) A .1B.C.D.9. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .7 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,511.设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与 sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 12.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .二、填空题13.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .14.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .15.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .16.运行如图所示的程序框图后,输出的结果是17.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .18.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .三、解答题19.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.20.若已知,求sinx 的值.21.在等比数列{a n }中,a 1a 2a 3=27,a 2+a 4=30试求:(1)a 1和公比q ;(2)前6项的和S 6.22.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点间的曲线与x轴交于点(π,0),φ∈(﹣,).(1)求这条曲线的函数解析式;(2)写出函数的单调区间.23.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.24.已知函数f(x)=ax2+blnx在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.25.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.26.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.邗江区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos+cos2xsin)=2sin(2x+),∴T==π,A=2故选:B2.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.3.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.4.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.5.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.6.【答案】A【解析】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行∴有2a=2∴a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.7.【答案】A【解析】解:∵双曲线M上存在四个点A,B,C,D,使得四边形ABCD是正方形,∴由正方形的对称性得,其对称中心在原点,且在第一象限的顶点坐标为(x,x),∴双曲线渐近线的斜率k=>1,∴双曲线离心率e=>.∴双曲线M 的离心率的取值范围是(,+∞).故选:A .【点评】本题考查双曲线的离心率的取值的范围的求法,是中档题,解题时要认真审题,注意双曲线性质的合理运用.8. 【答案】D【解析】解:设函数y=f (x )﹣g (x )=x 2﹣lnx ,求导数得=当时,y ′<0,函数在上为单调减函数,当时,y ′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t 的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x 2>lnx 恒成立,问题转化为求两个函数差的最小值对应的自变量x 的值.9. 【答案】A解析:模拟执行程序框图,可得 S=0,n=0满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5满足条件5≤k ,S=75,n=6 …若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选: 10.【答案】D 【解析】试题分析:分析题意可知:对应法则为31y x =+,则应有42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩(1)或42313331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩(2),由于*a N ∈,所以(1)式无解,解(2)式得:25a k =⎧⎨=⎩。

玉门市高中2018-2019学年高二下学期第二次月考试卷数学

玉门市高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .32.已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .3 3. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣84. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心5. 若a 是f (x )=sinx ﹣xcosx 在x ∈(0,2π)的一个零点,则∀x ∈(0,2π),下列不等式恒成立的是( ) A. B .cosa≥C.≤a ≤2πD .a ﹣cosa ≥x ﹣cosx6. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B两点,且•=4,则实数a的值为( ) A.或﹣B.或3C.或5D .3或57. “a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件8. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣19. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n+,则S 2015的值是( )A.B.C .2015 D.10.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .个B .个C .个D .个11.已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.12.已知点P (1,﹣),则它的极坐标是( )A .B .C .D .二、填空题13.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .14.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .15.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.16.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 17.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆. 18.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页,共 15 页 金安区高中2018-2019学年高二下学期第二次月考试卷数学 一、选择题 1. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )

A.24 B.80 C.64 D.240 2. 给出下列各函数值:①sin100°;②cos(﹣100°);③tan(﹣100°);④.其中符号为

负的是( ) A.① B.② C.③ D.④ 3. 若,,且,则λ与μ的值分别为( )

A. B.5,2 C. D.﹣5,﹣2 4. 若

)2(,2)2(),2()(xxxf

xfx则)1(f的值为( )

A.8 B.81 C.2 D.21 5. 已知命题p:存在x0>0,使2<1,则¬p是( ) A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<

1

C.存在x0>0,使2≥1 D.存在x0≤0,使2<1 6. 设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )

A.(﹣1,0)∪(1,+∞) B.(﹣∞,﹣1)∪(0,1) C.(﹣∞,﹣1)∪(1,+∞

D.(﹣1,0)∪(0,1) 7. 在正方体ABCD﹣A1B1C1D1中,点E,F分别是棱AB,BB1的中点,则异面直线EF和BC1

所成的角是

( ) A.60° B.45° C.90° D.120°

8. 已知f(x)为R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3),x1,x2∈[0,3],x1≠x2时,有

成立,下列结论中错误的是( ) A.f(3)=0 B.直线x=﹣6是函数y=f(x)的图象的一条对称轴 C.函数y=f(x)在[﹣9,9]上有四个零点 D.函数y=f(x)在[﹣9,﹣6]上为增函数

班级_______________ 座号______ 姓名_______________ 分数_______________ __________________________________________________________________________________________

_________ 第 2 页,共 15 页

9. 若方程C:x2+=1(a是常数)则下列结论正确的是( ) A.∀a∈R+,方程C表示椭圆 B.∀a∈R﹣,方程C表示双曲线

C.∃a∈R﹣,方程C表示椭圆 D.∃a∈R,方程C表示抛物线 10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)<0,则使

得f(x)>0成立的x的取值范围是( )

A.(﹣∞,﹣2)∪(0,2) B.(﹣∞,﹣2)∪(2,+∞) C.(﹣2,0)∪(2,+∞) D.(﹣2,0)

∪(0,2)

11.过抛物线y=x2上的点的切线的倾斜角( )

A.30° B.45° C.60° D.135°

12.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( ) A.28 B.76 C.123 D.199 二、填空题

13.已知||2a,||1b,2a与13b的夹角为3

,则|2|ab .

14.已知两个单位向量,ab满足:12ab,向量2ab与的夹角为,则cos . 15.设()xxfxe,在区间[0,3]上任取一个实数0x,曲线()fx在点00,()xfx处的切线斜率为k,则随机事件“0k”的概率为_________.

16.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°

,则

椭圆的离心率为 .

17.定义在(﹣∞,+∞)上的偶函数f(x)满足f(x+1)=﹣f(x),且f(x)在[﹣1,0]上是增函数,下面

五个关于f(x)的命题中:

①f(x)是周期函数; ②f(x) 的图象关于x=1对称; ③f(x)在[0,1]上是增函数; ④f(x)在[1,2]上为减函数; ⑤f(2)=f(0). 正确命题的个数是 .

18.若执行如图3所示的框图,输入,则输出的数等于 。 第 3 页,共 15 页

三、解答题 19.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|fxx.

(1)若不等式1()21(0)2fxmm的解集为,22,,求实数m的值;

(2)若不等式()2|23|2y

y

afxx,对任意的实数,xyR恒成立,求实数a的最小值.

【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.

20.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA (1)确定角C的大小;

(2)若c=,且△ABC的面积为,求a+b的值.

21.已知函数,. 第 4 页,共 15 页

(Ⅰ)求函数的最大值; (Ⅱ)若,求函数的单调递增区间.

22.已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>

0}

(1)求A∩B (2)若A∪C=C,求实数m的取值范围.

23.直三棱柱ABC﹣A1B1C1 中,AA1=AB=AC=1,E,F分别是CC1

、BC 的中点,AE⊥

A1B1,D为棱A1B1

上的点.

(1)证明:DF⊥AE; (2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.

24.在△ABC中,cos2A﹣3cos(B+C)﹣1=0. 第 5 页,共 15 页

(1)求角A的大小; (2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.

25.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为

AA1的中点,F为BC的中点 (1)求证:直线AF∥平面BEC1

(2)求A到平面BEC1的距离.

26.在等比数列{an}中,a1a2a3=27,a2+a4=30试求: (1)a1和公比q;

(2)前6项的和S6. 第 6 页,共 15 页

金安区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案) 一、选择题 1. 【答案】B 【解析】

试题分析:805863

1

V,故选B.

考点:1.三视图;2.几何体的体积. 2. 【答案】B 【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,

④∵sin>0,cosπ=﹣1,tan<0, ∴>0,

其中符号为负的是②,

故选:B. 【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.

3. 【答案】A 【解析】解:由,得. 又,,

∴,解得.

故选:A. 【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.

4. 【答案】B 【解析】

试题分析:311328ff

,故选B。

考点:分段函数。 5. 【答案】A 【解析】解:∵命题p:存在x0>0,使2<1为特称命题,

∴¬p为全称命题,即对任意x>0,都有2x≥1.

相关文档
最新文档